Math 31B Midterm \#2 Solutions

Darren Creutz

21 May 2010

1. For each of the following integrals, compute the integral or show that it diverges.

$$
\int_{0}^{1} 2 x \ln (x) d x
$$

Solution. Since the function $x \ln (x)$ is not well-defined at 0 this is an improper integral and so

$$
\int_{0}^{1} 2 x \ln (x) d x=\lim _{R \rightarrow 0^{+}} \int_{R}^{1} 2 x \ln (x) d x
$$

To evaluate that integral we proceed by parts and set

$$
u=\ln (x) \quad d v=2 x d x
$$

and so

$$
d u=\frac{d x}{x} \quad v=x^{2}
$$

and therefore

$$
\begin{aligned}
\int_{R}^{1} 2 x \ln (x) d x & =\int_{R}^{1} u d v \\
& =\left.u v\right|_{x=R} ^{x=1}-\int_{R}^{1} v d u \\
& =\left.x^{2} \ln (x)\right|_{x=R} ^{x=1}-\int_{R}^{1} x^{2} \frac{d x}{x} \\
& =1^{2} \ln (1)-R^{2} \ln (R)-\int_{R}^{1} x d x \\
& =0-R^{2} \ln (R)-\frac{1^{2}}{2}+\frac{R^{2}}{2} \\
& =-\frac{1}{2}+\frac{1}{2} R^{2}-R^{2} \ln (R)
\end{aligned}
$$

Taking the limit as $R \rightarrow 0^{+}$we find that

$$
\lim _{R \rightarrow 0^{+}} \frac{1}{2} R^{2}=0
$$

and by L'Hopital's Rule (since $R^{2} \ln (R)=0(-\infty)$ is indetermine that

$$
\begin{aligned}
\lim _{R \rightarrow 0^{+}} R^{2} \ln (R) & =\lim _{R \rightarrow 0^{+}} \frac{\ln (R)}{R^{-2}} \\
& =\lim _{R \rightarrow 0^{+}} \frac{R^{-1}}{-2 R^{-3}} \\
& =\lim _{R \rightarrow 0^{+}} \frac{R^{2}}{-2}=0
\end{aligned}
$$

and plugging this back in

$$
\begin{gathered}
\int_{0}^{1} 2 x \ln (x) d x=-\frac{1}{2}+0-0=-\frac{1}{2} \\
\int_{0}^{\infty} \frac{x d x}{x^{2}+1}
\end{gathered}
$$

Solution. When $x \geq 1$ we see that

$$
\frac{x}{x^{2}+1} \geq \frac{x}{2 x^{2}}=\frac{1}{2 x}
$$

and by the Theorem on improper integrals of powers

$$
\int_{1}^{\infty} \frac{d x}{2 x}=\frac{1}{2} \int_{1}^{\infty} \frac{d x}{x}=\infty
$$

which is to say it diverges. Then by the Convergence Test

$$
\int_{1}^{\infty} \frac{x d x}{x^{2}+1}=\infty
$$

also diverges.
Since the integrand is nonnegative on $x \geq 0$

$$
\int_{0}^{\infty} \frac{x d x}{x^{2}+1} \geq \int_{1}^{\infty} \frac{x d x}{x^{2}+1}=\infty
$$

diverges.
2. Compute the following sums:

$$
\sum_{n=0}^{\infty} \frac{2+3^{2 n}-2^{n+2}}{10^{n}}
$$

Solution. Using the linearity of sums

$$
\sum_{n=0}^{\infty} \frac{2+3^{2 n}-2^{n+2}}{10^{n}}=2 \sum_{n=0}^{\infty}\left(\frac{1}{10}\right)^{n}+\sum_{n=0}^{\infty}\left(\frac{9}{10}\right)^{n}+4 \sum_{n=0}^{\infty}\left(\frac{1}{5}\right)^{n}
$$

since by the geometric series formula each of these is summable so

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{2+3^{2 n}-2^{n+2}}{10^{n}}=2 \frac{1}{1-\frac{1}{10}}+\frac{1}{1-\frac{9}{10}}-4 \frac{1}{1-\frac{1}{5}} \\
&=2 \frac{10}{9}+10-4 \frac{5}{4}=\frac{65}{9} \\
& \sum_{n=2}^{\infty} \frac{2}{n(n+2)}
\end{aligned}
$$

Solution. First we realize that

$$
\frac{2}{n(n+2)}=\frac{1}{n}-\frac{1}{n+2}
$$

and therefore the series is telescoping and so

$$
\begin{aligned}
\sum_{n=2}^{N} \frac{2}{n(n+2)} & =\sum_{n=2}^{N} \frac{1}{n}-\frac{1}{n+2} \\
& =\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+\frac{1}{5}-\frac{1}{7}+\frac{1}{6}-\frac{1}{8}+\cdots+\frac{1}{N}-\frac{1}{N+2} \\
& =\frac{1}{2}+\frac{1}{3}-\frac{1}{N+1}-\frac{1}{N+2}
\end{aligned}
$$

Taking the limit $N \rightarrow \infty$ we obtain $\frac{5}{6}$.
3. Compute the following integral:

$$
\int \frac{5 x^{2}+4 x+3}{x^{3}+x^{2}+x} d x
$$

Solution. First we factor the denominator as $x\left(x^{2}+x+1\right)$ and find a partial fraction expansion

$$
\frac{5 x^{2}+4 x+3}{x\left(x^{2}+x+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+x+1}
$$

for some A and B and C. Clearing denominators we obtain

$$
5 x^{2}+4 x+3=A\left(x^{2}+x+1\right)+(B x+C) x=(A+B) x^{2}+(A+C) x+A
$$

and therefore

$$
A+B=5 \quad A+C=4 \quad A=3
$$

which means $B=2$ and $C=1$.
Therefore

$$
\begin{aligned}
\int \frac{5 x^{2}+4 x+3}{x^{3}+x^{2}+x} d x & =\int \frac{3}{x}+\frac{2 x+1}{x^{2}+x+1} d x \\
& =3 \ln |x|+\int \frac{d u}{u} \\
& =3 \ln |x|+\ln |u|+C \\
& =3 \ln |x|+\ln \left|x^{2}+x+1\right|+C
\end{aligned}
$$

4. Let $T_{n}(x)$ be the Taylor Polynomials around $a=\pi$ for the function

$$
f(x)=\sin (x)+2 \cos (x)
$$

(a) Compute $T_{4}(x)$ (you may leave factors of $x-\pi$).
(b) Find n such that $\left|f(\pi-1)-T_{n}(\pi-1)\right| \leq 10^{-3}$.

Solution. First we need to compute derivatives:

$$
\begin{array}{ll}
f(x) & =\sin (x)+2 \cos (x) \\
f^{\prime}(x) & =\cos (x)-2 \sin (x) \\
f^{\prime \prime}(x) & =-\sin (x)-2 \cos (x) \\
f^{\prime \prime \prime}(x) & =-\cos (x)+2 \sin (x) \\
f^{(4)}(x) & =\sin (x)+2 \cos (x)
\end{array}
$$

And then we plug in $a=\pi$:

$$
f(\pi)=-2 \quad f^{\prime}(\pi)=-1 \quad f^{\prime \prime}(\pi)=2 \quad f^{\prime \prime \prime}(\pi)=1 \quad f^{(4)}(\pi)=-2
$$

and so

$$
\begin{aligned}
T_{4}(x) & =f(\pi)+f^{\prime}(\pi)(x-\pi)+\frac{f^{\prime \prime}(\pi)}{2}(x-\pi)^{2}+\frac{f^{\prime \prime \prime}(\pi)}{3!}(x-\pi)^{3}+\frac{f^{(4)}(\pi)}{4!}(x-\pi)^{4} \\
& =-2-(x-\pi)+\frac{2}{2}(x-\pi)^{2}+\frac{1}{6}(x-\pi)^{3}-\frac{2}{24}(x-\pi)^{4} \\
& =-2-(x-\pi)+(x-\pi)^{2}+\frac{1}{6}(x-\pi)^{3}-\frac{1}{12}(x-\pi)^{4}
\end{aligned}
$$

The Error Bound for $T_{n}(x)$ around π is

$$
\left|f(x)-T_{n}(x)\right| \leq K \frac{|x-\pi|^{n+1}}{(n+1)!}
$$

where K is such that $\left|f^{(n+1)}(u)\right| \leq K$ for all u between x and π. In our case we have $x=\pi-1$ and for any u

$$
\left|f^{(n+1)}(u)\right| \leq 3
$$

since it looks like either a sin or a cos and then twice the other. So we can use $K=3$. Then

$$
\left|f(\pi-1)-T_{n}(\pi-1)\right| \leq 3 \frac{(\pi-\pi+1)^{n+1}}{(n+1)!}=\frac{3}{(n+1)!}
$$

and therefore if we take $n=11$ we will certainly be less than 10^{-3}.
5. Compute the arc length of the curve $f(x)=-\ln (\cos (x))$ over $\left[0, \frac{\pi}{4}\right]$.

Solution. First we notice that

$$
f^{\prime}(x)=-\frac{-\sin (x)}{\cos (x)}=\tan (x)
$$

and therefore

$$
\begin{aligned}
\sqrt{1+f^{\prime}(x)^{2}} & =\sqrt{1+\tan ^{2}(x)} \\
& =\sqrt{\sec ^{2}(x)}=\sec (x)
\end{aligned}
$$

The arc length formula is

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x \\
& =\int_{0}^{\frac{\pi}{4}} \sec (x) d x \\
& =\ln \left(\sec \left(\frac{\pi}{4}\right)+\tan \left(\frac{\pi}{4}\right)\right)-\ln (\sec (0)+\tan (0)) \\
& =\ln (\sqrt{2}+1)-\ln (1+0)=\ln (\sqrt{2}+1)
\end{aligned}
$$

