
Ergodic Theory of Group Actions

DARREN CREUTZ

darren.creutz@dcreutz.com

6 April 2016

mailto:darren.creutz@dcreutz.com


– ii –



Contents

Overview 1

The Ergodic Theory of Transformations 3

1 Historical Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Hamiltonian Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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Overview

Ergodic theory is the subfield of dynamics concerned with actions of groups and semigroups
on measure spaces. This text covers the basics of classical ergodic theory and then moves to
the more modern and more general setting of group actions on probability spaces.

Classical ergodic theory is concerned with Z-actions (or N-actions) on (completions of)
standard Borel spaces, usually referred to as transformations (the single map which generates
the action). The most common case, and the one primarily considered here, is when the
measure of the entire space is finite (and hence can and will be normalized to be a probability
measure).

The more modern material focuses especially on the situation of nonamenable groups,
where many of the results from the classical theory are not available. The emphasis is on
the aspects of ergodic theory that arise in connection with the rigidity theory of lattices in
semisimple groups, particularly the aspects arising in the author’s research.
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Chapter 1

Historical Introduction

Historically, the subject arose in connection with attempts to understand classical mechanics.
In classical mechanics, one is presented with a space X of all possible states or configurations
of some physical system (e.g. R6 representing position and momentum of a particle) and a
map T : X → X representing the time evolution of the system (here we are restricting our
attention to discrete time systems). So if the system starts at a configuration x0 ∈ X then
at time one the system will be in configuration x1 = T (x0) and at time n, it will be in
xn = T n(x0). The orbit {T n(x0)}n∈Z then represents the entire history and future of the
system.

1.1 Hamiltonian Dynamics

One case of particular interest is Hamiltonian dynamics, in which the system is represented
by pairs (p, q) of vectors representing position and momentum and the dynamics are governed
by a Hamiltonian function H(p, q) under the equations:

ṗ = −∂H
∂q

q̇ = −∂H
∂p

.

Let Tt : (p(0), q(0)) 7→ (p(t), q(t)) be the solution to the above system with initial conditions
(p(0), q(0)). If H satisfies some basic regularity conditions, the solution exists and is unique
for every initial condition. In physical terms, the quantity H, which is necessarily conserved,
represents the energy. Let X be the collection of all possible states of the system with energy
bounded by some fixed constant. Then X can be treated as a bounded subset of some Rn. In
physics, this is most often the case and many problems in classical mechanics can be phrased
as Hamiltonian systems.

A natural question, of interest in the mid-1800s, was, given a Hamiltonian system and
an initial configuration (p(0), q(0)), what conditions ensure that the system will eventually
return to a state close to the initial state. Considered abstractly for a general H, this
is essentially intractable because the dynamics are closely tied to a very large number of
differential equations (the partial differential equations above, when p and q are vectors,
represent a large number of single-variable equations).

1.2 Poincar�e Recurrence

In 1890, Poincaré solved this problem in a startlingly general setting and in a very surprising
manner. His approach was to endow the bounded set X with the Lebesgue measurem,
making it a finite measure space, and apply ideas and techniques from probability theory.
Louisville, in 1838, proved that Hamiltonian systems satisfy a condition amounting to the
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Chapter 1. Historical Introduction

phase-space distribution being constant over time (we omit the precise statement as it is not
relevant) and one easy consequence of this is that for any measurable set E ⊆ X of possible
initial configurations, m(Tt(E)) = m(E) for all times t.

Now, let T = T1 be the time-one map T : X → X which preserves m. Then (X,m, T ) is
a measure-preserving transformation on a finite measure space. Fix ε > 0. Let

W = {x ∈ X : d(T n(x), x) ≥ ε for all n ∈ N}

where d is the usual metric inherited by X. Thus, a point x is in W precisely when it does not
return to within ε of itself under iterations of T . Divide W into finitely many disjoint pieces
of diameter less than ε (as X is bounded, so is W ) denoted Wi. Let Wi be a fixed such piece.
Suppose that for some positive integers n and k there is x ∈ T−n(Wi) ∩ T−(n+k)(Wi). Then
y = T n(x) ∈ Wi ∩ T−k(Wi). As y ∈ T−k(Wi), T

k(y) ∈ Wi so d(T k(y), y) ≤ diam(Wi) < ε.
As y ∈ Wi ⊆ W , d(T k(y), y) ≥ ε. This contradiction means that the sets T−n(Wi) for each
fixed i as n ranges over the positive integers are pairwise disjoint. Therefore

∞ > m(X) ≥ m(
∞⋃
n=0

T−n(Wi)) =
∞∑
n=0

m(T−n(Wi)) =
∞∑
n=0

m(Wi)

and hence m(Wi) = 0. Then m(W ) = 0 since there are finitely many Wi. As this holds for
all ε > 0 (and the W increase as ε→ 0), this proves that for almost every x ∈ X there exists
a strictly increasing sequence of positive integers {nk} such that T nk(x)→ x.

In this sense, Poincaré solved the question posed above in the most general setting possible
(requiring only that there be an upper bound on the energy) modulo that there is a possibly
nontrivial null set of points where the condition does not hold (it was later verified that this
is, in general, a nontrivial null set). This result, and the more abstract version which we
will discuss below, is called the Poincaré Recurrence Theorem as is regarded as the birth of
ergodic theory.

1.3 The Ergodic Hypothesis

Around the same time period, Boltzmann, while studying statistical mechanics, formulated
the ergodic hypothesis in 1898, stating that, under some reasonable conditions on a system
(X,m, T ), the “time average is equal to the space average”, or more precisely (though not in
his original formulation) that for any given set F ⊆ X, regarded as a possible measurement
or observation of the system,

1

N

N∑
n=1

1F (T n(x))→ m(F )

where 1F means the indicator function of the set F . Physically this means that repeated
uniform random sampling of a system, taken on average, necessarily approximates the “true”
value of the measurement. There is an obvious benefit to knowing this hypothesis to be true,
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Chapter 1. Historical Introduction

as it validates experimental technique in many situations.
The term “ergodic” was coined by Boltzmann and derives from the Greek words ergon

(translation: work) and odos (translation: path). We will see below that the class of trans-
formations satisfying the ergodic hypothesis is a quite natural one and such transformations
will be called ergodic. Building on the ideas of Poincaré, and many others, Birkhoff and von
Neumann independently proved the validity of the ergodic hypothesis (in slightly different
contexts). These results, known as the Ergodic Theorems, are regarded as the “deep results”
that propelled ergodic theory into being an independent area of mathematical study.

– 7 –



Chapter 1. Historical Introduction

– 8 –



Chapter 2

Transformations

2.1 Measure-Preserving Systems

We now turn to the basic objects of study in ergodic theory.

Definition 2.1. Let (X,B, µ) be a (completion of) a standard Borel space. A measurable
map T : X → X preserves µ when µ(T−1(E)) = µ(E) for all E ∈ B (here T−1(E) is
the set T−1(X) = {x ∈ X : T (x) ∈ E}). Such a map is called a measure-preserving
transformation and the system (X,B, µ, T ) is a measure-preserving system.

Classical ergodic theory is concerned with the study of such transformations, particularly
in the case when µ is finite. We will focus primarily on this case:

Definition 2.2. A measure-preserving system (X,B, µ, T ) is a probability-preserving
system when µ(X) = 1, and in this case T is a probability-preserving transformation.

Definition 2.3. A measure-preserving transformation T on (X,B, µ) is invertible when
there is a map S : X → X such that T (S(x)) = S(T (x)) = x and in this case we write T−1

for the inverse map.

Notation. We will generally drop the B and simply write (X,µ, T ) for such a system. We
will also write T : (X,µ)→ (X,µ).

Unless otherwise stated, the term transformation shall mean invertible probability-
preserving transformation.

A transformation T can be regarded as defining an action of the semigroup N on X by
n · x = T n(x). For any measurable set E ⊆ X, one may consider the sets T−n(E), thereby
inducing an action on the measurable sets. Note that even when T is not invertible, the
above sets are well defined (however the set T (E) only makes sense when T is invertible).

2.2 Abstract Poincar�e Recurrence

We now have enough to state the abstract form of Poincaré’s theorem:

Theorem 2.4 (The Poincaré Recurrence Theorem – Poincaré 1890). Let T : (X,µ)→ (X,µ)
be a (probability-preserving) transformation. For any measurable set E ⊆ X and almost
every x ∈ E there exists a strictly increasing sequence {nk} of positive integers such that
T nk(x) ∈ E for all k.

Exercise 2.1 Adapt the proof sketch in the case of Hamiltonian dynamics to give a proof
of the abstract formulation of Poincaré Recurrence.
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2.3 The Probabilistic Point of View

The true power of ergodic theory comes from the fact that we may apply ideas from probabil-
ity theory to the study of dynamical systems, even systems that are completely determined
(i.e. if we know that a system starts in state x then we know that at time n it is in state
T n(x)). Given a dynamical system (X,T ) where X is the space of possible configurations
and T : X → X is the time map, provided we can introduce an invariant probability measure
µ on X, we may consider the collection B of measurable events E ⊆ X, those sets for which
it is possible to ask “is x ∈ E” and consider µ(E) to be the probability that a “random
state” is in E. The measurable functions on X then correspond to random variables.

For a measurable function f , the sequence of random variables Xn = f ◦ T n will be a
stochastic process:

Prob[Xi1 ∈ Ei1 , . . . , Xik ∈ Eik ] = µ
(⋂

j = 1k{x ∈ X : f(T ij(x)) ∈ Eij
)

and the invariance of µ forces it to be stationary:

Prob[X`+i1 ∈ Ei1 , . . . , X`+ik ∈ Eik ] = Prob[Xi1 ∈ Ei1 , . . . , Xik ∈ Eik ].

The point here is that properties of the stochastic process f(T n(x)) can be answered
using the tools of probability theory whereas in the traditional study of dynamical systems,
one is forced to use numerical methods or differential equations techniques.
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Chapter 3

Ergodicity

3.1 Ergodic Transformations

As in any area of mathematics, once one settles on the objects of study, in our case trans-
formations, a question of crucial importance is to what extent they can be decomposed into
simpler objects.

Definition 3.1. Let T : (X,µ) → (X,µ) be a transformation. A measurable set E ⊆ X is
invariant when T−1(E) = E.

If E is an invariant set for a transformation T , then clearly T
∣∣
E

, the restriction of T to E,

and T
∣∣
X\E are transformations in their own right and one may consider T as the direct sum

of them (this will be made precise later). On the other hand, if there is no such invariant
set for T then it is in some sense indecomposable.

Definition 3.2. Let T : (X,µ)→ (X,µ) be a transformation. Then T is ergodic when for
every invariant set E ⊆ X, it holds that µ(E) = 0 or µ(X \ E) = 0.

The ergodic transformations will be the class of indecomposable objects in our study.
Later we will see how to decompose an arbitrary transformation into ergodic components,
thus reducing the study of transformations to the study of ergodic transformations (hence
the name ergodic theory).

3.1.1 Some Equivalent Characterizations

Theorem 3.3. Let T : (X,µ)→ (X,µ) be a transformation. The following are equivalent:

• T is ergodic;

• for every measurable set E such that µ(E4T−1(E)) = 0, either µ(E) = 0 or µ(X\E) =
0; and

• for every measurable function f : X → R, if f ◦ T = f then f is constant almost
everywhere (that is, every invariant function is constant).

Proof. Assume T is ergodic. Let E such that µ(E4T−1(E)) = 0. Consider the set

E0 = {x ∈ X : T n(x) ∈ E for infinitely many k}.

If x ∈ E0 \ E then there is some k such that x ∈ T−k(E) \ E. So

E0 \ E ⊆
⋃
k≥1

T−k(E)4E.
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If x ∈ E \ E0 then there exists k such that x /∈ T−k(E) so x ∈ E \ T−k(E). Therefore

E04E ⊆
⋃
k≥1

T−k(E)4E.

Since the function d(A,B) = µ(A4B) defines a metric on measurable sets (details are left
to the reader), by the triangle inequality,

µ(E4T−(k+1)(E)) ≤ µ(E4T−1(E)) + µ(T−1(E)4T−(k+1)(E))

= µ(E4T−1(E)) + µ(E4T−k(E)).

Since µ(E4T−1(E)) = 0, by induction, µ(E4T−k(E)) = 0 for all k. Therefore µ(E04E) =
0. Clearly T−1(E0) = E0 by construction, so as T is ergodic, µ(E0) = 0 or µ(X \ E0) = 0.
Therefore µ(E) = 0 or µ(X \ E) = 0. The converse is obvious. The equivalence with the
third condition is left as an exercise.

Exercise 3.1 Prove that the third condition above is equivalent to ergodicity. Hint: first
consider indicator functions and then consider the class of invariant functions as a subset of
measurable functions.

3.2 Irrational Rotations

A simple class of transformations, known as rotations, will serve as our first examples of
ergodic and nonergodic transformations. The irrational rotations turn out to play a crucial
role in the structure theory of ergodic transformations, a topic we will touch on later.

Definition 3.4. Let α be a real number and define the map Tα : [0, 1)→ [0, 1) by Tα(x) =
x+ α mod 1. Then Tα is the rotation on the unit circle by angle α. When α is irrational,
Tα is an irrational rotation.

Thinking of the unit circle S1 = {e2πix : x ∈ [0, 1)}, it is clear that Tα is indeed rotation
by α. It is also clear that Tα preserves the Lebesgue measure on [0, 1) and that Tα is
invertible. Note that there is a striking difference between the cases when α is rational and
irrational: when α = p/q, the set ∪q−1

j=0[j/q, j/q + 1/2q) has measure one half and is invariant
under the transformation (meaning the rational rotations are not ergodic); however, when
α is irrational, the only invariant sets are null or of full measure (irrational rotations are
ergodic). That irrational rotations are ergodic is a straightforward consequence of Weyl’s
equidistribution theorem that the sequence {nα mod 1}n∈Z is uniformly distributed on the
circle when α is irrational.

3.3 The Ergodic Theorems

The Poincaré Recurrence Theorem establishes that for a general transformation, almost
every point is recurrent in the sense that its orbit returns arbitrarily close to it. The ergodic
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hypothesis asserts something much stronger–that, on average, the orbit almost every point
should be within a set E an amount of time proportional to the size of E. There is an
obvious obstruction to this happening, namely when there is an invariant set, in which case
the orbit of any point not in that set will never enter it. The content of the ergodic theorems
is that this is the only obstruction.

3.3.1 The Mean Ergodic Theorem

While Poincaré recurrence is stated in terms of almost every point, one can easily obtain a
slightly weaker “mean” version of it:

Theorem 3.5 (Mean Poincaré Recurrence – Poincaré 1890). Let T : (X,µ) → (X,µ) be a
transformation and E ⊆ X such that µ(E) > 0. Then µ(E ∩ T−n(E)) > 0 infinitely often.

Proof. Let En = {x ∈ E : T n(x) ∈ E} = E ∩ T−n(E). Fix N ∈ N. By the pointwise version
of the recurrence theorem, for almost every x ∈ E there exists n > N such that x ∈ T−n(E).
Then E = ∪n>NEn. Since µ(E) > 0 and there are countably many En, for some n > N ,
µ(E ∩ T−n(E)) ≥ µ(En) > 0.

This is referred to as the mean version since it is recurrence “in the mean” for the set E.

The Mean Ergodic Theorem, or von Neumann Ergodic Theorem, strengthens this result
both in terms of the infinitely often and in terms of the greater than zero:

Theorem 3.6 (The Mean Ergodic Theorem – von Neumann 1932 [vN32]). Let T : (X,µ)→
(X,µ) be an ergodic transformation and A,B ⊆ X be measurable sets. Then

lim
N→∞

1

N

N∑
n=1

µ(T−n(A) ∩B) = µ(A)µ(B).

Before proving the theorem, let us consider what it says. Treating A and B as events,
in the sense of probability, this states that, on average, the amount of time that A happens
conditioned on knowing that B occurred at time zero is equal to the probability of A hap-
pening without regard to B. Thus, the ergodic theorem states that every pair of events are
asymptotically independent on average. Treating A and B as sets, the theorem says that
ergodicity is equivalent to mixing on the average: on average, A and B are mixed together
by T–the amount of B appearing in A at time n equals, on average, the product of the sizes
of A and B.

It is easy to see that the mean ergodic theorem generalizes the mean recurrence theorem
above, and in fact gives some indication as to the frequency of the infinitely often and the
size of the intersections. We will in fact prove an equivalent version of the ergodic theorem
stated in terms of functions:

Theorem 3.7 (The Mean Ergodic Theorem – von Neumann 1932). Let T : (X,µ)→ (X,µ)
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be an ergodic (probability-preserving) transformation. Then for any f ∈ L2(X,µ),

1

N

N−1∑
n=0

f ◦ T n →
∫
f dµ

in the L2-norm.

Proof. Since µ is invariant for T , ‖f ◦ T‖ = ‖f‖ (by definition for indicator functions,
that it holds for all functions is an easy exercise for the reader) where ‖ · ‖ is the L2-
norm. Consider first functions f of the form f = g − g ◦ T for some g ∈ L2(X,µ). Then∫
f dµ =

∫
f dµ−

∫
f ◦ T dµ = 0 by the invariance of µ. Clearly

∥∥∥ 1

N

N−1∑
n=0

f ◦ T n
∥∥∥ =

1

N
‖g − g ◦ TN‖ ≤ 1

N
2‖g‖ → 0

so the theorem holds for such functions. Let F be the closure, in the L2-norm, of {f ∈ L2 :
f = g − g ◦ T for some g ∈ L2}. Let f ∈ F . Then for any ε > 0, there exists F = g − g ◦ T
for some g ∈ L2 such that ‖f − F‖ < ε. Choose N0 such that ‖ 1

N

∑N−1
n=0 F ◦ T n‖ < ε for all

N > N0 (possible since the theorem is established for F ). Then, for N > N0,

∥∥∥ 1

N

N−1∑
n=0

f ◦ T n
∥∥∥ ≤ ∥∥∥ 1

N

N−1∑
n=0

(f − F ) ◦ T n
∥∥∥+

∥∥∥ 1

N

N−1∑
n=0

F ◦ T n
∥∥∥

≤ 1

N

N−1∑
n=0

‖(f − F ) ◦ T n‖+ ε = ‖f − F‖+ ε < 2ε.

. This proves that the theorem holds on F .

Let f ∈ L2(X,µ) be perpendicular to F . Then g = f − f ◦ T ∈ F and so 〈f, g〉 = 0.
Therefore

〈f, f ◦ T 〉 = 〈f, f − (f − f ◦ T )〉 = 〈f, f − g〉 = ‖f‖2

and so

‖f−f ◦T‖2 = 〈f−f ◦T, f−f ◦T 〉 = ‖f‖2−2〈f, f ◦T +‖f ◦T‖2 = ‖f‖2−2‖f‖2 +‖f‖2 = 0.

Hence f = f ◦ T almost everywhere and so f =
∫
f dµ is constant by ergodicity. Therefore,

for an arbitrary f ∈ L2, it holds that f = f0 +
∫
f dµ where f0 is the projection of f to F .

Then 1
N

∑N−1
n=0 f ◦ T n = 1

N

∑N−1
n=0 f0 ◦ T n +

∫
f dµ→ 0 +

∫
f dµ.

Exercise 3.2 Prove that the two versions of the mean ergodic theorem are equivalent. Hint:
considering indicator functions, one direction is easy; for the other, consider the definition
of Lebesgue integration in terms of simple functions.
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3.3.2 The Pointwise Ergodic Theorem

For the purposes of these notes, the mean ergodic theorem will be a much more important
theorem than the pointwise version, though historically, and in physics, the pointwise version
was considered the more important (and also has a far more difficult proof):

Theorem 3.8 (The Pointwise Ergodic Theorem – Birkhoff 1931). Let T : (X,µ) → (X,µ)
be an ergodic (probability-preserving) transformation and f ∈ L1(X,µ). Then for almost
every x ∈ X,

lim
N→∞

1

N

N−1∑
n=0

f(T n(x)) =

∫
f dµ.

Birkhoff’s theorem is the “true” proof of the ergodic hypothesis in the sense that if
one considers the “time average” of a function f defined as f̂(x) = limN

1
N

∑N−1
n=0 f(T n(x))

wherever the limit exists and the “space average” of f which is
∫
f dµ then Birkhoff’s

theorem asserts that the time average exists almost everywhere and is equal to the space
average.

While the proof of this theorem is interesting, and somewhat involved, we will opt not
to present it here. A proof can be found in most any textbook on ergodic theory if the
reader is interested. The reason we will not consider the proof is that for our goal in these
notes, to study arbitrary group actions, it will turn out the mean version, and the functional
analytical approach to its proof, is far more important.

3.4 Nonergodic Transformations

Let T : (X,µ) → (X,µ) be an arbitrary (not necessarily ergodic) transformation. Consider
the algebra of invariant functions: I = {f ∈ L2(X,µ) : f ◦ T = f} (clearly this is a
closed subalgebra of L2 which is T -invariant). Let E[f |I] be the conditional expectation
from L2(X,µ) to I (see Chapter 7): the conditional expectation E[f |I] is the unique (up to
measure zero) element of I such that

∫
E[f ] h dµ =

∫
f h dµ for all h ∈ I.

Theorem 3.9 (The Mean Ergodic Theorem – von Neumann 1932). Let T : (X,µ)→ (X,µ)
be a (probability-preserving) transformation and f ∈ L2(X,µ). Then

1

N

N−1∑
n=0

f ◦ T n → E[f |I]

in the L2-norm.

Proof. In the proof of the mean ergodic theorem in the case when T is ergodic, no mention of
ergodicity was made until after showing that the theorem holds for the class F of functions
defined as the L2-closure of {f ∈ L2 : f = g − g ◦ T for some g ∈ L2} and after showing
that for f perpendicular to F it necessarily holds that f = f ◦ T , that is f ∈ I. Rather
than using ergodicity to conclude that such an f is constant, we simply conclude that for f
perpendicular to F it holds that f = E[f |I] and the proof proceeds identically.
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Theorem 3.10 (The Pointwise Ergodic Theorem – Birkhoff 1931). Let T : (X,µ)→ (X,µ)
be a (probability-preserving) transformation and f ∈ L1(X,µ). Then for almost every x ∈ X,

lim
N→∞

1

N

N−1∑
n=0

f(T n(x)) = E[f |I](x).

Again, we omit the proof, but mention briefly that in the case of nonergodic transfor-
mations, the “space average” cannot be defined as a constant, but instead is defined as a
“constant on each invariant set” which is precisely conditioning on the invariant functions.

3.5 Ergodic Decomposition

A general transformation can be decomposed into ergodic transformations in a canonical
fashion. We will omit the details for now, as we will return to them later in a much more
general context of actions of arbitrary groups on probability spaces and quotient maps of
such actions, and for now simply state the result.

Let (Y, ν) be a probability space and y 7→ (Xy, µy, Ty) be a measurable assignment of Y
to probability-preserving systems. Let X be the disjoint union of the Xy over all y ∈ Y .
Define a probability measure µ on X by

µ(E) =

∫
Y

µy(E ∩Xy) dν(y)

and a transformation T on X by T (x) = Ty(x) for x ∈ Xy.

Let S : (Z, ζ) → (Z, ζ) be a transformation. If (Z, ζ, S) is isomorphic to (X,µ, T )
via an isomorphism Θ then we will say that (Z, ζ, T ) has a decomposition over (Y, ν) into
components (Xy, µy, Ty).

Theorem 3.11 (Ergodic Decomposition). Let T : (X, ν) → (X, ν) be a transformation.
Then there exists a decomposition of (X, ν) over a probability space (Y, η) into components
(Xy, µy, Ty) such that every component is ergodic and the space L2(Y, η) is isomorphic to
the space of invariant functions in L2(X, ν). Moreover, this decomposition is unique up to
measure zero.

3.6 Maps on Compact Metric Spaces

Before turning our attention to a new topic, we mention briefly the justification for imposing
invariant measures on more abstract dynamical systems. In the case of classical mechanics,
one usually has Lebesgue measure (or some similar object) at hand which is naturally in-
variant. In general, however, one wishes to consider dynamical systems T : X → X where
T is a continuous map on some metric space X. We will make the simplifying assumption
that X is compact (though the reader will see that dropping this condition merely leads to
the need for infinite measures).
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Let X be a compact metric space and T : X → X be a continuous map (or even merely a
Borel measurable map). Let µ0 be an arbitrary Borel probability measure on X (a probability
measure such that every Borel set is measurable). Consider the Borel probability measures
µN defined by, for each Borel set B,

µN(B) =
1

N

N−1∑
n=0

µ0(T−n(B)).

That these are in fact well-defined Borel probability measures is left to the reader. Each µN
defines a linear functional on L1(X,µ0) of norm one and by the weak compactness of the
unit ball, there is necessarily a convergent subsequence µNk

→ µ in the weak* topology: for
every f a continuous function on X it holds that

∫
f(x) dµNk

(x)→
∫
f(x) dµ(x). The linear

functional µ then extends to being a Borel measure (again, details are left to the reader) on
X.

Observe that µ(X) = limk µNk
(X) = 1 since µN(X) = 1 for all n. Also observe that for

any measurable set B,

∣∣µNk
(T−1(B))− µNk

(B)
∣∣ =

∣∣∣ 1

Nk

Nk−1∑
n=0

(
µ0(T−n(T−1(B)))− µ0(T−n(B))

)∣∣∣
=
∣∣∣ 1

Nk

(
µ0(T−Nk(B))− µ0(B)

)∣∣∣ ≤ 2

Nk

→ 0

and therefore µ(T−1(B)) = µ(B) and so µ is invariant. Thus there always exists invariant
probability measures for continuous maps on compact metric spaces.

Of course, in general, the µ above is not given explicitly and could be supported on
a small subset of X (even a single point, if there is a fixed point). However, if the system
(X,T ) is topologically minimal (every orbit is dense) then µ must be supported on the entire
space.
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Chapter 4

Spectral Theory

A basic question arising in the study of transformations, as in any area of mathematics, is
how to determine when two objects are “the same”. In the context of transformations, the
correct notion of equivalence is:

Definition 4.1. Let T : (X,µ) → (X,µ) and S : (Y, ν) → (Y, ν) be measure-preserving
transformations. Then T and S are (measure-theoretically) isomorphic when there
exists an isomorphism of measure spaces Θ : (X,µ)→ (Y, ν) such that S ◦Θ = Θ ◦ T .

The question of understanding when two transformations are isomorphic is an active
area of study and known to be a very difficult problem (in general, the question is not Borel
decidable – a result of Foreman, Rudolph, and Weiss in 2009).

The main approach to the problem of isomorphism is then to find invariants that are
easier to study. The property of being ergodic is one such invariant, and is an example of
what is called a spectral invariant.

4.1 The Koopman Operator

Given a transformation T : (X,µ) → (X,µ), one can consider the induced operator on the
space of measurable functions on X. The most useful setting to consider is that of the
L2 functions since the Hilbert space structure brings a variety of additional tools into the
picture:

Definition 4.2. Let T : (X,µ)→ (X,µ) be a transformation. The operator UT : L2(X,µ)→
L2(X,µ) defined by UTf = f ◦ T is the induced operator or Koopman operator asso-
ciated with T .

Proposition 4.1.1. Let T : (X,µ) → (X,µ) be a (probability-preserving, invertible) trans-
formation. Then UT is a unitary operator.

Proof. Since T is invertible, UT is surjective. For f, g ∈ L2(X,µ), using that µ ◦ T = µ,

〈UTf, UTg〉 =

∫
f(T (x))g(T (x)) dµ(x) =

∫
f(x)g(x) dµ(x) = 〈f, g〉.

Thus UT is an isometric surjective linear operator.

4.2 Spectral Invariants

The Koopman operator associated to a transformation makes possible the definition of a
weaker form of equivalence for transformations than isomorphism:
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Definition 4.3. Let T : (X,µ) → (X,µ) and S : (Y, η) → (Y, η) be transformations. Then
T and S are spectrally isomorphic when UT and US are unitarily equivalent: when there
exists an invertible linear operator W : L2(X,µ) → L2(Y, η) such that WUT = USW and
〈Wf,Wg〉 = 〈f, g〉 for all f, g ∈ L2(X,µ).

Proposition 4.2.1. Let T : (X,µ) → (X,µ) and S : (Y, η) → (Y, η) be transformations. If
T and S are (measure-theoretically) isomorphic then they are spectrally isomorphic.

Proof. Let Θ : (X,µ) → (Y, η) be a measure-theoretic isomorphism. Then the operator
W : L2(Y, η)→ L2(X,µ) given by Wf = f ◦Θ makes US and UT unitarily equivalent.

The converse of the above statement is false: there are spectrally isomorphic transforma-
tions that are not (measure-theoretically) isomorphic; examples of these arise in the Bernoulli
shifts which will be discussed later.

Definition 4.4. A property of a transformation that is preserved under spectral isomorphism
is a spectral invariant of the transformation.

Proposition 4.2.2. Ergodicity is a spectral invariant.

Proof. One equivalent characterization of ergodicity is that every invariant function is con-
stant. This can be stated as saying that, for T : (X,µ)→ (X,µ) an ergodic transformation,

dim{f ∈ L2(X,µ) : UTf = f} = 1

which is clearly a spectral invariant.

4.3 The Point Spectrum

The spectrum of the Koopman operator associated to a transformation is itself a spectral in-
variant (and in fact is the reason for the term spectral in the discussion) and many properties
of dynamical systems can be seen in the spectrum.

Definition 4.5. Let T : (X,µ) → (X,µ) be a transformation. The point spectrum of T
is the set of eigenvalues of the Koopman operator UT :

{λ ∈ C : UTf = λf for some f ∈ L2(X,µ)}.

Exercise 4.1 Show that the point spectrum of a probability-preserving transformation is a
countable subset of the unit circle.

Exercise 4.2 Let Tα : [0, 1)→ [0, 1) be an irrational rotation. Show that the point spectrum
of Tα is {e2πinα : n ∈ Z} and conclude that irrational rotations are nonisomorphic for distinct
values of α.

Definition 4.6. Let T : (X,µ) → (X,µ) be a transformation. Let F be the L2-closure of
the span of the eigenfunctions of UT . Then T has
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• discrete spectrum or pure point spectrum when F = L2(X,µ);

• continuous spectrum when F = {constants}; and

• mixed spectrum otherwise.

Proposition 4.3.1. Irrational rotations have discrete spectrum.

Proof. Let Tα : [0, 1)→ [0, 1) be the rotation T (x) = x+α mod 1 for α irrational. For each
k ∈ Z, let fk ∈ L2(X,µ) be given by f(x) = e2πikx. Then fk(T (x)) = e2πikαf(x). Since the
functions fk are a basis for L2, irrational rotations have discrete spectrum.

Proposition 4.3.2. Let T : (X,µ) → (X,µ) and S : (Y, η) → (Y, η) be transformations
with pure point spectrum and the same set of eigenvalues. Then T and S are spectrally
isomorphic.

Proof. Let {λj} enumerate the eigenvalues (counting multiplicity) and for each j, let fj ∈
L2(X,µ) and gj ∈ L2(Y, η) such that UTfj = λjfj and USgj = λjgj. We may assume the fj
and gj are of norm one. Then {fj} spans a dense subset of L2(X,µ) and likewise for {gj}
since T and S have pure point spectrum. Define the operator W : L2(X,µ) → L2(Y, η) by
Wfj = gj and extending linearly (recall that if λj 6= λk then 〈fj, fk〉 = 0 since otherwise
〈fj, fk〉 = 〈UTfj, UTfk〉 = λjλk〈fj, fk〉). Then W is a spectral isomorphism of T and S.

The point spectrum turns out to be a complete invariant for transformations with discrete
spectrum, however for mixed and continuous spectra, the situation is far more complicated:

Theorem 4.7 (The Discrete Spectrum Theorem – Halmos, von Neumann 1942). Let T :
(X,µ)→ (X,µ) and S : (Y, η)→ (Y, η) be transformations with pure point spectrum and the
same set of eigenvalues. Then T and S are (measure-theoretically) isomorphic.

In fact, Halmos and von Neumann proved that ergodic transformations with pure point
spectra are always isomorphic to rotations on compact abelian groups, a result later gener-
alizes in a very deep and surprising way by Host and Kra (a topic we will return to later
when discussing the structure theory or ergodic transformations).

4.4 Spectral Measures

Given a transformation T : (X,µ) → (X,µ) and the associated Koopman operator UT :
L2(X,µ) → (X,µ), we will be interested in studying the behavior of Un

T as n → ±∞ (for
negative n, set Un

T = (U∗T )|n|; when UT is invertible then U−1
T is its inverse). In particular,

we will consider the behavior of Un
T on Hilbert spaces of the form

Hf = span{Un
T f : n ∈ Z}

where f ∈ L2(X,µ) with ‖f‖ = 1.

– 21 –



Chapter 4. Spectral Theory

Theorem 4.8. Let T : (X,µ)→ (X,µ) be a transformation and f ∈ L2(X,µ) with ‖f‖ = 1.
Then there exists a unique Borel probability measure σf on the unit circle S1 such that
UT : Hf → Hf is unitarily equivalent to the operator M : L2(S1, σf ) → L2(S1, σf ) given by
Mg(z) = zg(z).

Proof. Let an = 〈Un
T f, f〉 for n ∈ Z. Then a−n = an and for any c1, . . . , cN ∈ C,

N∑
n,m=1

cncman−m = 〈
N∑
n=1

cnU
n−m
T f, cmf〉 = ‖

N∑
n=1

cnU
n
T f‖2 ≥ 0

meaning that {an} is positive-definite. A theorem of Herglotz states that any such sequence
of numbers is the Fourier coefficients of a unique Borel probability measure σf on S1, that is

σ̂f (n) =

∫
S1

zn dσf (z) = an = 〈Un
T f, f〉

for all n ∈ Z.
Now if

∑N
n=1 cnU

n
T f = 0 in L2(X,µ) for some constants cn then

∑N
n=−N cnz

n = 0 in
L2(S1, σf ) since

‖
N∑
n=1

cnz
n‖2

L2(σf ) =
N∑

n,m=1

cncmσ̂f (n−m) =
N∑

n,m=1

cncm〈Un−m
T f, f〉 = ‖

N∑
n=1

cnU
n
T f‖2

L2(µ).

Therefore the operator W : Hf → L2(S1, σf ) by W (Un
T f) = zn extends by linearity to

span{Un
T f : n ∈ Z}. Observe that

‖W (Un
T f)‖2 = ‖zn‖2 = σf (S

1) = 1

so W is an isometry and therefore W extends to a linear isometry Hf → L2(S1, σf ). The
image of W contains the trigonometric polynomials, which are dense in L2(S1, σf ), and its
image is closed hence it is a unitary operator (details are left to the reader as standard
functional analytic facts).

Clearly, W (UT (Un
T f)) = zn+1 = zW (Un

T f) so WUT = MW on {Un
T f : n ∈ Z}. Therefore

WUT = MW on Hf .

Definition 4.9. Let T : (X,µ) → (X,µ) be a transformation and f ∈ L2(X,µ) with
‖f‖ = 1. The spectral measure for T and f is the measure σf appearing in the previous
theorem that has the property σ̂f (n) = 〈Un

T f, f〉 for all n.

4.5 Singular, Simple and Lebesgue Spectra

Definition 4.10. A transformation has Lebesgue spectrum or absolutely continuous
spectrum when every spectral measure is absolutely continuous with respect to Lebesgue
measure on the circle.
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Definition 4.11. A transformation has singular spectrum when every spectral measure
is singular with respect to Lebesgue measure on the circle.

Definition 4.12. A transformation T : (X,µ)→ (X,µ) has spectral multiplicity

m(T ) = inf
{
m ∈ N : there exists f1, . . . , fm ∈ L2(X,µ) such that

{Un
T fj : n ∈ Z, j = 1, . . . ,m} is dense in L2(X,µ)

}
and has simple spectrum when m(T ) = 1.

The spectral multiplicity is always at most countable since we consider only transforma-
tions on standard Borel spaces and therefore the corresponding L2 space is always separable.

There is a long-standing open question on the existence of a transformation with sim-
ple Lebesgue spectrum (it is known that there are examples with Lebesgue spectrum of
multiplicity two).

In general, transformations can admit complicated spectral measures: for a general trans-
formation T : (X,µ) → (X,µ) one “expects” to have countably infinitely many functions
{fn} such that L2(X,µ) = ⊕nHfn with spectral measures σfn containing discrete, absolutely
continuous and singular (continuous) parts.

4.6 The Spectrum of a Transformation

Recall that the set of eigenvalues for the Koopman operator is referred to as the point
spectrum of a transformation. Following the usual approach of the spectral theory of unitary
operators, it seems natural to consider the full spectrum of the Koopman operator:

Definition 4.13. Let T : (X,µ)→ (X,µ) be a transformation. The spectrum of T is

spec(T ) = {λ ∈ S1 : UT − λId is not invertible }.

Clearly the point spectrum is contained in the spectrum since the existence of an eigen-
function certainly makes the operator above noninvertible. Points in the spectrum that are
not in the point spectrum are sometimes referred to as approximate eigenvalues due to the
following easy fact:

Exercise 4.3 Let T : (X,µ) → (X,µ) be a transformation and λ ∈ S1. Show that λ ∈
spec(T ) if and only if for every ε > 0 there exists f ∈ L2(X,µ) with ‖f‖ = 1 such that
‖UTf − λf‖ < ε.

However, in the context of ergodic theory, the full spectrum of the Koopman operators
is essentially useless:

Theorem 4.14. Let T : (X,µ) → (X,µ) be an invertible probability-preserving transfor-
mation that is aperiodic (there does not exist an integer N > 1 with TN = T ). Then the
spectrum spec(T ) is all of S1.
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Proof. The key ingredient in the proof is what is known as the Rokhlin Lemma, which will
be the subject of the next chapter and which will be proved there. The Rokhlin Lemma
states that if T : (X,µ)→ (X,µ) is an aperiodic probability-preserving transformation then
for every ε > 0 and every positive integer N there exists a measurable set B ⊆ X such that
the sets B, T−1(B), . . . , T−N(B) are mutually disjoint and µ(∪Nj=0T

−j(B)) > 1− ε. We now
prove that the spectrum is all of S1 assuming the Rokhlin Lemma.

Let λ ∈ S1 and ε > 0 be arbitrary. Let N be a positive integer with 1
N
< ε. By the

Rokhlin Lemma, there exists a measurable set B such that B, . . . , T−N(B) are disjoint and
such that the set C = X \∪Nj=0T

−j(B) has µ(C) < ε. Define a function f : X → R as follows:
set f(x) = a for x ∈ B where a is a constant to be specified later, and proceed inductively
to define f(x) = λ−1f(T (x)) for x ∈ T−j(B) for j = 1, . . . , N , and finally set f(x) = 1 on C.

Clearly f is measurable and by construction,∫
T−(j+1)(B)

|f(x)|2 dµ(x) =

∫
T−(j+1)(B)

|λ−1f(T (x))|2 dµ(x)

=

∫
T−j(B)

|λ−1|2|f(x)|2 dµ(x) =

∫
T−j(B)

|f(x)|2 dµ(x)

for all j = 0, . . . , N − 1. Since
∫
B
|f(x)|2 dµ(x) = |a|2µ(B), then

‖f‖2 =

∫
X

|f(x)|2 dµ(x) =
N∑
j=0

∫
T−j(B)

|f(x)|2 dµ(x) +

∫
C

|f(x)|2 dµ(x)

= (N + 1)|a|2µ(B) + µ(C)

so f ∈ L2(X,µ). Set

a =

√
1− µ(C)

(N + 1)µ(B)

so that ‖f‖ = 1.

Note that µ(B) ≤ 1
N+1

since there are N+1 disjoint translates of B. Then the denomina-
tor above is greater than or equal to 1 and the numerator is greater than 1− ε so |f(x)| ≤ 1
for all x.

Observe now that for x ∈ ∪N−1
j=0 T

−j(B),

λ−1(UTf)(x) = λ−1f(T (x)) = f(x)

by construction. Therefore

‖UTf − λf‖2 =

∫
X

|(UTf)(x)− λf(x)|2 dµ(x)
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=
N−1∑
j=0

∫
T−j(B)

|λf(x)− λf(x)|2 dµ(x)

+

∫
T−N (B)

|(UTf)(x)− λf(x)|2 dµ(x) +

∫
C

|(UTf)(x)− λf(x)|2 dµ(x)

≤ 0 + 2‖f‖2
∞µ(T−N(B)) + 2‖f‖2

∞µ(C)

≤ 0 + 2µ(B) + 2µ(C) ≤ 0 + 2
1

N
+ 2ε ≤ 4ε.

So, for every ε > 0 there exists f ∈ L2(X,µ) such that ‖Utf − λf‖ < ε. Hence λ is an
approximate eigenvalue, and as λ was chosen arbitrarily, the result follows.

The fact that the spectrum of the Koopman operator is never interesting in and of itself
explains the focus on spectral measures in the study of transformations and why terms like
continuous and singular spectra always refer to the spectral measures and not the spectrum.
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The Rokhlin Lemma

We now return to the study of transformations directly, rather than spectrally, focusing first
on an observation made by Rokhlin in 1949 that in a loose sense all transformations exhibit
a certain type of structure:

Theorem 5.1 (The Rokhlin Lemma – Rokhlin 1949). Let T : (X,µ) → (X,µ) be a
probability-preserving transformation that is aperiodic (µ({x ∈ X : T n(x) = x}) = 0 for
all N ∈ N). For any ε > 0 and any N ∈ N there exists a measurable set B ⊆ X such that
B, T−1(B), . . . , T−N(B) are mutually disjoint and µ(∪Nj=0T

−j(B)) > 1− ε.

This says that arbitrary transformations can be reasonably well-approximated by very
simple transformations – those that can be visualized as a “tower” in the sense that if one
places the set B at the “top” of a tower and places T−j−1(B) “below” T−j(B) for each j
then one has a tower of height n where the map T is defined on all but ε+µ(B) of the space
as simply the map “up” the tower. Later, we will see this can be stated more formally in
terms of cutting and stacking rank-one transformations.

5.1 Proof of the Rokhlin Lemma

Lemma 5.1.1. Let T : (X,µ) → (X,µ) be an aperiodic transformation, A ⊆ X a positive
measure set and n a positive integer. Then there exists a positive measure set F ⊆ A such
that µ(T−n(F ) ∩ F ) = 0.

Proof. Suppose not. Let B ⊆ A be any positive measure set and set E = T−n(B) \B. Then
T−n(E) ∩ E = ∅ since x ∈ T−n(E) implies T n(x) /∈ B but x ∈ E implies T n(x) ∈ B. By
supposition then µ(E) = 0 since otherwise the lemma is proved.

Now assume that X is a compact metric space and that T is a Borel map with respect to
the metric (we do not assume that the metric is T -invariant). A proof that such a “compact
model” always exists will be presented later in the more general setting of group actions.
Let d denote the metric on X. For ε > 0 and x ∈ X, let Bε,x = {y ∈ A : d(x, y) < ε} be the
ε-ball about x intersected with A. Then µ(T−n(Bε,x)\Bε,x) = 0 for all x and ε by the above.
As T preserves µ, µ(T−n(Bε,x)) = µ(Bε,x) and so µ(T−n(Bε,x)4Bε,x) = 0 for all x and ε.

For each x ∈ X and ε > 0, consider the set

Ex,ε = {y ∈ T−n(Bε,x) : d(y, T n(y)) ≥ 3ε}.

Since µ(T−n(Bε,x)4Bε,x) = 0 and Ex,ε ⊆ T−n(Bε,x), the above gives that µ(Ex,ε) = µ(Ex,ε ∩
Bx,ε). But for y ∈ Ex,ε ∩ Bx,ε we would have that d(T n(y), x) < ε and d(y, T n(y)) ≥ 3ε and
d(y, x) < ε which are contradictory. Therefore, for all x ∈ X and ε > 0,

µ({y ∈ T−n(Bε,x) : d(y, T n(y)) ≥ 3ε}) = 0
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Fix ε > 0 and choose a countable collection of points xi such that the union of Bε,xi covers
A. Then

µ({x ∈ A : d(x, T n(x)) ≥ 3ε}) = µ({x ∈ X : T n(x) ∈ A and d(x, T n(x)) ≥ 3ε})

≤ µ
(⋃

i

{x ∈ X : T n(x) ∈ Bε,xi and d(x, T n(x)) ≥ 3ε}
)

≤
∑
i

µ({x ∈ T−n(Bε,xi) : d(x, T n(x)) ≥ 3ε}) = 0.

Taking ε→ 0 this means that

µ({x ∈ A : d(x, T n(x)) > 0}) = 0

and therefore
µ({x ∈ X : T n(x) = x}) = µ(A) > 0

contradicting that T is not aperiodic.

Lemma 5.1.2. Let T : (X,µ) → (X,µ) be a transformation and n a nonnegative integer.
Then there exists a measurable set E ⊆ X with µ(E) > 0 such that E, T−1(E), . . . , T−n(E)
are mutually disjoint.

Proof. The case n = 1 is trivial: take E = X. Proceeding inductively, assume that there
exists a measurable set E ⊆ X with µ(E) > 0 such that T−j(E) are mutually disjoint for
j = 0, 1, . . . , n. By Lemma 5.1.1, there exists a measurable set F ⊆ E with µ(F ) > 0 such
that µ(F ∩ T−(n+1)(F )) = 0. The sets T−j(F ) are mutually disjoint for 0 ≤ j ≤ n since
F ⊆ E. For 1 ≤ j ≤ n, observe that (since 1 ≤ n+ 1− j ≤ n)

T−j(F ) ∩ T−(n+1)(F ) = T−j(F ∩ T−(n+1−j)(F )) ⊆ T−j(E ∩ T−(n+1−j)(E)) = T−j(∅)

and therefore the sets T−j(F ) are mutually disjoint for j = 0, 1, . . . , n+ 1.

Proof of Theorem 5.1. Fix ε > 0 and n a positive integer. Fix a positive integer m such that
1
m
< ε

n
. Let E be the collection of all positive measure sets E ⊆ X such that T−j(E) are

mutually disjoint for j = 0, . . . ,m. By Lemma 5.1.2, E is nonempty. Define a partial order
on E by saying E1 <µ E2 if and only if E1 ⊆ E2 and µ(E1) < µ(E2). By Zorn’s Lemma,
there is then a maximal element E in E with respect to <µ. Note that µ(E) ≤ 1

m
since there

are m disjoint translates of E.

Define the entry time function for E on X by

rE(x) = inf{` ≥ 1 : T `(x) ∈ E}
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which is allowed to take on the value of ∞. For k ∈ N, define the sets

Ek = {x ∈ X : rE(x) = k} = T−k(E) \
k−1⋃
j=1

T−j(E)

which are mutually disjoint. Note that Ek+1 ⊆ T−1(Ek) in particular.

Let E∗ = ∪∞k=1Ek = ∪∞k=1T
−k(E). Then, by Poincaré Recurrence,

E∗ = {x ∈ X : ∃ k ≥ 0 s.t. T k(x) ∈ E} = {x ∈ X : T `(x) ∈ E for infinitely many ` ≥ 0 }.

Therefore T−1(E∗) = E∗ since T `(T (x)) ∈ E infinitely often if and only if T `(x) ∈ E
infinitely often. If µ(X \E∗) > 0 then Lemma 5.1.2 applied to the restriction of T to X \E∗
(with renormalized measure) gives a positive measure set E ′ ⊆ X \ E∗ with E ′ ∈ E (it has
m disjoint translates). But then E <µ E ∪ E ′ contradicting the maximality of E. So we
conclude that µ(E∗) = 1.

Define the set

F =
∞⋃
k=1

Enk = {x ∈ X : n divides rE(x)}.

Observe that if rE(x) > 1 then necessarily rE(T (x)) = rE(x)− 1. Let 0 < j < n and x ∈ F .
Then n divides rE(x) and rE(x) ≥ n so rE(T j(x)) = rE(x) − j meaning that n does not
divide rE(T j(x)). So F ∩ T−j(F ) = ∅.

Let j < ` be distinct positive integers less than or equal to n. Then

T−j(F ) ∩ T−`(F ) = T−j(F ∩ T−`+j(F )) = ∅

so the sets F, T−1(F ), . . . , T−(n−1)(F ) are mutually disjoint.

Now observe that for any positive integer k, any 0 ≤ j < n,

Enk+j ⊆ T−1(Enk+j−1) ⊆ · · · ⊆ T−j(Enk) ⊆ T−j(F )

and therefore
∞⋃
`=n

E` ⊆
n−1⋃
j=0

T−j(F ).

Now, using that E∗ is measure one and that µ(E) < 1
m
< ε

n
,

µ
( n−1⋃
j=0

T−j(F )
)
≥ µ

( ∞⋃
`=n

E`
)

= µ(E∗)− µ
( n−1⋃
`=1

E`
)
≥ 1− nµ(E) ≥ 1− n ε

n
= 1− ε.

– 29 –



Chapter 5. The Rokhlin Lemma

5.2 Rank-One Transformations

The “towers” constructed via the Rokhlin Lemma lead to a natural class of transformations,
first considered by von Neumann and Kakutani, that are constructed by reversing the Rokhlin
Lemma and using “cutting and stacking” to define transformations from towers. This class,
especially the simplest version of it – the rank-one transformations – has served as a useful
method for finding examples and counterexamples in ergodic theory, especially in terms of
the various mixing properties to be covered in the next chapter.

Before explaining the general construction, we focus on a specific example: the dyadic
odometer transformation. Begin with the unit interval [0, 1) and “cut” it into two equal
sized pieces: [0, 1/2) and [1/2, 1). Now “stack” the right-hand interval on “top” of the left-hand
interval and define a map T : [0, 1/2) → [1/2, 1) by mapping points “straight up” the stack,
that is, T (x) = x + 1/2 for 0 ≤ x < 1/2. Treating these two intervals as a “tower” of height
two, again cut the tower into two equal pieces – the tower [0, 1/4) → [1/2, 3/4) and the tower
[1/4, 1/2)→ [3/4, 1). Again, stack the right-hand piece on top of the left-hand piece to obtain
a tower of height four. Extend the map T to the top of the left-hand tower by mapping
straight up into the base of the right-hand tower, that is, T (x) = x − 1/4 for 1/2 ≤ x < 3/4.
So T is now defined on [0, 3/4) and has range [1/4, 1).

Continue this process inductively, at each stage cutting the tower of height 2n into two
equal pieces and stacking the right-hand tower on top of the left-hand tower by mapping the
top of the left-hand tower to the base of the right-hand tower. At each stage this extends
T to half of the remaining space. The limit of this process therefore defines a measurable
transformation on T : [0, 1) → [0, 1). Clearly T preserves the Lebesgue measure. Note
that for the dyadic odometer transformation, the conclusion of the Rokhlin Lemma follows
immediately and in a very specific way for the towers of height 2n.

More generally, one can instead cut the intervals (and towers at the later stages) into n
pieces rather than two; in this case, the stacking procedure is always presumed to involve
stacking the right onto the left at all the cut points, leaving a single new tower with levels
of size 1/n of the previous size and a map defined on all but the top of the rightmost piece
with range all but the base of the leftmost tower. In fact, one can vary the number of cuts
used at each stage in the process.

In addition to the cutting and stacking process just described, one can also add “spacer
levels” at various stages. Consider now the same process as the dyadic odometer but with
the following addition: after cutting a tower into two pieces, before performing the stacking
operation, place a “spacer level” above the left-hand piece – that is, at the first stage, cut
[0, 1) into [0, 1/2) and [1/2, 1) and then place the interval [1, 3/2) above [0, 1/2). After placing
the spacer level, stack from right to left as before. So, after one stage, the map T is defined
on [0, 1/2) ∪ [1, 3/2) and has range [1/2, 3/2). At each stage, one introduces a spacer level of
size one-half of the previous stage, so the resulting transformation is a measure-preserving
transformation of [0, 2) to itself with Lebesgue measure. Renormalizing this to a probability
measure leads to a probability-preserving transformation.

For a second example, consider the transformation obtained by cutting into three pieces
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at each stage, and adding a single spacer level over the middle sub column at each stage.
This is the Chacon Transformation which we will see later is a useful counterexample in
the study of mixing.

More generally, one can add various numbers of spacer levels over each subcolumn be-
tween the cutting and the stacking process, and one can vary these numbers at each stage.
To describe the process in general one then needs a sequence of positive integers, the cut
sequence {rn} that determines the number of pieces to cut into at the nth stage and the
spacer sequence {sn,j}{rn}, a doubly-indexed sequence of nonnegative integers (j ranges
from 0 to rn − 1) that determines the number of spacer levels to place over each subcolumn
at each stage – by convention, the subcolumns are numbered starting from 0 on the left to
rn− 1 on the right, and so sn,j is the number of spacers to place above the jth subcolumn at
the nth stage. A transformation obtained in this manner is a rank-one transformation.

Another example we will discuss later is the staircase transformation obtained by
cutting with rn = n cuts at the nth stage and placing sn,j = j spacer levels above the
subcolumns in a “staircase” pattern.

Exercise 5.1 Prove that rank-one transformations are ergodic.

There is in fact one more generalization possible in the above process, in which one is
allowed to have more than one tower at each stage. A rank-two transformation is constructed
by cutting and stacking (and spacing) with two towers simultaneously and one is allowed to
stack the subcolumns from one tower into the other. Specifying this construction in a general
setting is a notational nightmare and we will not present it here. However, the finite-rank
transformations, those which can be obtained by cutting and stacking with a finite number
of towers, enjoy a variety of properties and have been the focus of much study.

5.3 Induced Transformations

Interpreting the Rokhlin Lemma as stating that there always exist sets that make the trans-
formation “look like” a tower of disjoint sets, one can also ask to what extent the opposite
phenomena happens and focus on the recurrence property. The concept of induced trans-
formation, due to Kakutani in the 1940s, essentially provides a complementary result to the
Rokhlin Lemma allowing one to study much more concretely the recurrence of points in sets.

Let T : (X,µ) → (X,µ) be a transformation and E ⊆ X a measurable set of positive
measure. Define the return time function for E by

rE(x) = inf{n ≥ 1 : T n(x) ∈ E}

for all x ∈ E. By Poincaré Recurrence, rE(x) < ∞ for almost every x ∈ E. Therefore, one
can define a measurable map TE : E → E by

TE(x) = T rE(x)(x)

and a probability measure µE on E by restricting µ to E and renormalizing: for B ⊆ E

– 31 –



Chapter 5. The Rokhlin Lemma

measurable, set

µE(B) =
1

µ(E)
µ(E ∩B).

The map TE : (E, µE)→ (E, µE) is the induced transformation from T on E (implicitly,
the algebra of measurable sets here is the same as that of X, or equivalently, the algebra of
measurable sets given by A ∩ E for all A is the algebra for X).

Observe that, since TE(E) = E (up to null sets), using that T preserves µ,

µE(T−1
E (B)) =

1

µ(E)
µ(E ∩ T−1

E (B)) =
1

µ(E)
µ(T−1

E (E ∩B))

=
1

µ(E)

∞∑
n=1

µ(T−1
E ({x ∈ E : rE(x) = n} ∩B))

=
1

µ(E)

∞∑
n=1

µ(T−n({x ∈ E : rE(x) = n} ∩B))

=
1

µ(E)

∞∑
n=1

µ({x ∈ E : rE(x) = n} ∩B)

=
1

µ(E)
µ(E ∩B) = µE(B)

and therefore the induced transformation is a genuine probability-preserving transformation.

Exercise 5.2 Prove that a transformation is ergodic if and only if every induced transfor-
mation from it is ergodic.
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Mixing Properties

Turning back to the view that ergodicity is equivalent to mixing on the average, we now
formalize the meaning of mixing and study the various mixing-type properties of dynamical
systems.

Definition 6.1. Let T : (X,µ)→ (X,µ) be a transformation. Then T is (strong) mixing
when for all measurable sets A,B ⊆ X,

lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B).

This is referred to as mixing since it says that, provided enough time is allowed to pass,
the amount of the set A that is “in” B is proportional to the sizes of the two sets. From the
probabilistic viewpoint, mixing is also referred to as asymptotic independence.

6.1 Weak Mixing

Viewing ergodicity as a spectral property, namely that 1 is a simple eigenvalue (the only in-
variant functions are constant so the dimension of the space of eigenfunctions with eigenvalue
1 is one), leads to the study of the following spectral property:

Definition 6.2. Let T : (X,µ) → (X,µ) be a transformation. Then T is weak mixing
when the only eigenfunctions for UT are constant: if f ∈ L2(X,µ) and λ ∈ C such that
UTf = λf then f is constant (almost everywhere).

Definition 6.3. The space of mean zero L2-functions is

L2
0(X,µ) = {f ∈ L2(X,µ) :

∫
f dµ = 0}.

So weak mixing can be stated as saying that T has no nontrivial eigenfunctions in
L2

0(X,µ). The reason for the name weak mixing will become apparent shortly when we
discuss the equivalence of it with various other notions that are more obviously related to
mixing-type behavior. Clearly weak mixing implies ergodicity, but:

Proposition 6.1.1. Irrational rotations are ergodic but not weak mixing.

Proof. The L2 function f(x) = e2πix has the property that f(T (x)) = e2πiαf(x) hence there
exist nonconstant eigenfunctions.

Weak mixing is, by definition, the same as saying that the transformation has continuous
spectrum. The reason for this terminology is:
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Proposition 6.1.2. Let T : (X,µ) → (X,µ) be a weak mixing transformation. Then for
every f ∈ L2

0(X,µ), the spectral measure σf for T and f is nonatomic.

Proof. Suppose there exists f ∈ L2
0(X,µ) with ‖f‖ = 1 such that σf has an atom λ ∈ S1.

Consider the sequence of functions 1
N

∑N−1
n=0 λ

−nUn
T f . This sequence is norm bounded hence

there is a weakly convergent subsequence with limit g ∈ L2(X,µ). Now for any h ∈ L2(X,µ),

〈UTg, h〉 = lim
k
〈λ 1

Nk

Nk−1∑
n=0

λ−(n+1)Un+1
T f, h〉 = 〈λg, h〉

and therefore g is an eigenfunction for UT with eigenvalue λ. Observe that

〈g, f〉 = lim
k

1

Nk

Nk−1∑
n=0

λ−n〈Un
T f, f〉 = lim

k

1

Nk

Nk−1∑
n=0

λ−n
∫
S1

zn dσf (z)

=

∫
S1

(
lim
k

1

Nk

Nk−1∑
n=0

(λ−1z)n
)
dσf (z) = σf (λ) > 0

and therefore g 6= 0. Since T is weak mixing, then g = c is constant. Then

c =

∫
g(x) dµ(x) = lim

k

1

Nk

Nk−1∑
n=0

λ−n
∫
Un
T f(x) dµ(x) = lim

k

1

Nk

Nk−1∑
n=0

λ−n
∫
f(x) dµ(x).

However, c 6= 0 but 1
Nk

∑Nk−1
n=0 λ−n → 0 by Weyl’s Equidistribution unless λ = 1. So λ = 1

and
∫
f dµ = c 6= 0 is a contradiction.

6.2 Total Ergodicity

An intermediate property between ergodicity and weak mixing is total ergodicity:

Definition 6.4. Let T : (X,µ) → (X,µ) be a transformation. Then T is totally ergodic
when the transformation Tk : (X,µ) → (X,µ) given by Tk(x) = T k(x) is ergodic for each
positive integer k.

Proposition 6.2.1. If T is totally ergodic then the point spectrum of T does not contain
any “rational eigenvalues” of the form e2πi p

q except 1.

Proof. Write exp(x) = e2πix. Let f ∈ L2(X,µ) such that f(T (x)) = exp(p
q
)f(x). Then

f(T q(x)) = f(x). So if T q is ergodic then f is constant and so p = q.

Clearly total ergodicity implies ergodicity and weak mixing implies total ergodicity. The
converses are false in general:

Proposition 6.2.2. The dyadic odometer transformation is ergodic but not totally ergodic.
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Proof. The set [0, 1/2) is invariant under T 2.

Proposition 6.2.3. Irrational rotations are totally ergodic but not weak mixing.

Proof. We already have shown they are not weak mixing; total ergodicity follows from the
fact that if Tα is rotation by α then T nα is rotation by nα which is also irrational.

Exercise 6.1 Prove that the p-adic odometer – the rank-one transformation with cut se-
quence {rn = p} and no spacers where p is prime and constant – has the property that T j

is ergodic for 0 < j < p but that T p is not ergodic.

6.3 Characterizations of Weak Mixing

Recall that a transformation is defined to be weak mixing when there are no nonconstant
eigenfunctions. The motivation for the term weak mixing is given by the following fact:

Theorem 6.5. Let T : (X,µ)→ (X,µ) be a transformation. Then T is weak mixing if and
only if there exists a mixing sequence for T : a (strictly increasing) sequence {nj} such that
limj µ(T−nj(A) ∩B) = µ(A)µ(B) for every pair of measurable sets A and B.

We will actually prove the equivalence of weak mixing with several statements, including
the one above.

In order to state the first collection of equivalences, we introduce the following definitions:

Definition 6.6. Let S = {nj} ⊆ N be a strictly increasing sequence (treated also as a subset
of positive integers). For N ∈ N, write [N ] for the set {1, 2, . . . , N}. The sequence S has
density one when

lim
N→∞

1

N
|S ∩ [N ]| = 1

where | · | represents cardinality.

We now state the first list of equivalent characterizations of weak mixing:

Theorem 6.7. Let T : (X,µ)→ (X,µ) be a transformation. The following are equivalent:

(a) T is weak mixing (the only eigenfunctions are constant);

(b) 1
N

∑N−1
n=0

∣∣〈Un
T f, f〉

∣∣2 → 0 for every f ∈ L2
0(X,µ);

(c) 1
N

∑N−1
n=0

∣∣〈Un
T f, f〉

∣∣→ 0 for every f ∈ L2
0(X,µ);

(d) 1
N

∑N−1
n=0

∣∣〈Un
T f, g〉 −

∫
f dµ

∫
g dµ

∣∣→ 0 for every f, g ∈ L2(X,µ);

(e) for all measurable sets A,B ⊆ X there exists a density one sequence {nj} such that
µ(T−nj(A) ∩B)→ µ(A)µ(B) as j →∞;
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(f) there exists a density one sequence {nj} such that µ(T−nj(A) ∩ B) → µ(A)µ(B) as
j →∞ for all measurable sets A and B; and

(g) there exists a sequence {nj} such that µ(T−nj(A) ∩ B)→ µ(A)µ(B) as j →∞ for all
measurable sets A and B.

Proof. (a) implies (b). Let f ∈ L2
0(X,µ) and let σ be the spectral measure for T and f . Set

an = |σ̂(n)|2. For any constants c1, . . . , cN ∈ C,

N∑
n,m=1

cncman−m =
N∑

n,m=1

cncm

∣∣∣ ∫ zn−m dσ(z)
∣∣∣2

=
N∑

n,m=1

cncm

∫∫
zn−mwn−m dσ × σ(z, w)

=

∫∫ ∣∣∣ N∑
n=1

cnz
nw−n

∣∣∣2 dσ × σ(z, w)

meaning that an is positive-definite and hence is the Fourier coefficients of a Borel probability
measure τ on S1.

Observe that for any z ∈ S1, if z 6= 1 then 1
N

∑N−1
n=0 z

n → 0 by the Weyl Equidistribution

Theorem and if z = 1 then 1
N

∑N−1
n=0 z

n = 1→ 1. Therefore, using Dominated Convergence,

τ({1}) =

∫
lim
N

1

N

N−1∑
n=0

zn dτ(z)

= lim
N

1

N

N−1∑
n=0

τ̂(n) = lim
N

1

N

N−1∑
n=0

∣∣σ̂(n)
∣∣2

=

∫∫
lim
N

1

N

N−1∑
n=0

(zw−1)n dσ × σ(z, w)

=

∫∫
1D(z, w) dσ × σ(z, w) = σ × σ(D)

where D = {(z, w) ∈ S1 × S1 : z = w} is the diagonal in S1 × S1.

Fubini’s Theorem states that for any Borel probability measures σ and ρ on S1 and any
σ × ρ-measurable set E ⊆ S1 × S1, the set Ez = {w ∈ S1 : (z, w) ∈ E} is ρ-measurable for
σ-almost every z ∈ S1 and furthermore σ × ρ(E) =

∫
ρ(Ez) dσ(z). Applying this to the set

D with σ = ρ, since Dz = {z},

τ({1}) = σ × σ(D) =

∫
σ({z}) dσ(z) =

∑
z

∣∣σ({z})
∣∣2
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is the sum of the measures of the atoms of σ (there are at most countably many since σ is
finite so the sum above is well-defined).

Since T is weak mixing, σ has no atoms and therefore τ({1}) = 0. Therefore, by Domi-
nated Convergence,

lim
N

1

N

N−1∑
n=0

∣∣〈Un
T f, f〉

∣∣2 = lim
N

1

N

N−1∑
n=0

∣∣σ̂(n)
∣∣2 = lim

N

1

N

N−1∑
n=0

τ̂(n) = τ({0}) = 0.

(b) implies (c). Let f ∈ L2
0(X,µ) and σ be the corresponding spectral measure. For δ > 0,

let Sδ = {n ∈ N : |σ̂
∣∣ ≥ δ}. Observe that for any δ > 0,

1

N

N−1∑
n=0

∣∣〈Un
T f, f〉

∣∣2 ≥ 1

N

∣∣Sδ ∩ [N ]
∣∣δ2

and therefore 1
N

∣∣Sδ ∩ [N ]
∣∣→ 0 for all δ > 0. However, for any δ > 0, also

1

N

N−1∑
n=0

∣∣〈Un
T f, f〉

∣∣ ≤ 1

N
δ
(
N − |Sδ ∩ [N ]|

)
+

1

N
|Sδ ∩ [N ]|

and therefore lim supN
1
N

∑N−1
n=0

∣∣〈Un
T f, f〉

∣∣ ≤ δ for all δ > 0 hence the limit is zero.

(c) implies (d). Let f, g ∈ L2(X,µ) with
∫
f dµ = 0. Then, using Cauchy-Schwarz, for

any δ > 0, retaining the Sδ notation above,

( 1

N

N−1∑
n=0

∣∣〈Un
T f, g〉

∣∣2)2

=
( 1

N

N−1∑
n=0

∫∫
f(T n(x))g(x) f(T n(y))g(y) dµ× µ(x, y)

)2

=
(∫∫ ( 1

N

N−1∑
n=0

f(T n(x))f(T n(y))
)
g(x)g(y) dµ× µ(x, y)

)2

≤
∫∫ ∣∣∣ 1

N

N−1∑
n=0

f(T n(x))f(T n(y))
∣∣∣2dµ× µ(x, y)

∫∫ ∣∣g(x)g(y)
∣∣2dµ× µ(x, y)

=
1

N2

N−1∑
n,m=0

∫∫
f(T n(x))f(T n(y))f(Tm(x))f(Tm(y)) dµ× µ(x, y)‖g‖4

=
1

N2

N−1∑
n,m=0

∣∣〈Un
T f, U

m
T f〉

∣∣2‖g‖4
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=
1

N

N−1∑
`=1−N

N − |`|
N

∣∣〈U `
Tf, f〉

∣∣2‖g‖4

≤ 1

N

N−1∑
`=1−N

∣∣〈U `
Tf, f〉

∣∣2‖g‖4

≤
(
δ + 2

1

N
|Sδ ∩ [N ]|

)
‖g‖4

and therefore the limit is less than δ‖g‖4 for all δ > 0 hence is zero. For a general f ∈
L2(X,µ), write f = f0 + c where c =

∫
f dµ and observe that

1

N

N−1∑
n=0

∣∣〈Un
T f, g〉 −

∫
f dµ

∫
g dµ

∣∣2 =
1

N

N−1∑
n=0

∣∣〈Un
T f0, g〉

∣∣2.
Condition (d) now follows as (c) did from (b).

(d) implies (e). Let A,B ⊆ X be measurable sets. For each t ∈ N, define the set

Qt = {n ∈ N : |µ(T−n(A) ∩B)− µ(A)µ(B)| < t−1}

and so, using indicator functions, (d) implies that N−1|Qt∩ [N ]| → 1 for each t. Now choose
Nt to be a strictly increasing (with t) sequence such that for each t and all N ≥ Nt it holds
that N−1|Qt ∩ [N ]| > 1− t−1. Define the set

Q =
∞⋃
t=1

Qt ∩ [Nt+1].

For any N there exists a unique t such that Nt ≤ N < Nt+1. Then

N−1|Q ∩ [N ]| ≥ N−1|Qt ∩ [N ]| > 1− t−1

since N ≥ Nt. Since t→∞ as N →∞, this means that Q is density one.

Now let ε > 0 be arbitrary. Choose t0 such that t−1
0 < ε. Since each Nt is finite,

N0 = max{Nt : t ≤ t0 + 1} is finite. For any n ∈ Q with n > N0 it holds that n ∈ Qt for
some t > t0. Therefore for any n ∈ Q \ [N0],

|µ(T−n(A) ∩B)− µ(A)µ(B)| < t−1 < t−1
0 < ε.

So lim supn |µ(T−n(A)∩B)− µ(A)µ(B)| ≤ ε for all ε hence the limit is zero. Therefore Q is
a density one sequence along which T is mixing for A and B.
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(e) implies (f). Let D be the collection of finite unions of dyadic intervals:

D0 = {[p2−n, q2−n] : p, q, n ∈ N, p < q} and D = {∪nj=1Dj : n ∈ N, Dj ∈ D0}.

Clearly D is countable. For each D,E ∈ D let QD,E be a density one sequence along which

lim
n∈QD,E ,n→∞

µ(T−n(D) ∩ E) = µ(D)µ(E)

which exists by (e). Let Dn be the collection of elements of D such that no power of 2
greater than 2n appears in the denominator of any interval in the finite union. Then Dn is
a finite set and D = ∪nDn is an increasing union. By the exercise following the proof, the
finite intersection of density one sequences is also a density one sequence so the sequence
Qn = ∩D,E∈DnQD,E is density one. Note that for D,E ∈ Dn,

lim
q∈Qn,q→∞

µ(T−q(D) ∩ E) = µ(D)µ(E)

since q is eventually greater than or equal to Nn for all n.

For each n, choose Nn increasing with n such that N−1|Qn ∩ [N ]| > 1 − n−1 for all
N ≥ Nn. Define Q = ∪n(Qn ∩ [Nn+1]). Given N , choose n such that Nn ≤ N < Nn+1.
Then N−1|Q ∩ [N ]| ≥ N−1|Qn ∩ [N ]| ≥ 1 − n−1 and so Q is density one as in the previous
argument. Let D,E ∈ D. Then there exists some n0 such that D,E ∈ Dn for all n ≥ n0.
Therefore

lim
q∈Q,q→∞

µ(T−q(D) ∩ E) = µ(D)µ(E).

So Q is a density one mixing sequence for D. Let A,B ⊆ X be arbitrary measurable sets.
For any ε > 0 there exists D,E ∈ D such that µ(A4D) < ε and µ(B4E) < ε. Then for
any n,∣∣µ(T−n(A) ∩B)− µ(T−n(D) ∩ E)

∣∣
≤
∣∣µ(T−n(A) ∩B)− µ(T n(D) ∩B)

∣∣+
∣∣µ(T−n(D) ∩B)− µ(T n(D) ∩ E)

∣∣
≤ µ(A4D) + µ(B4E) < 2ε.

Therefore
lim

n∈Q,n→∞

∣∣µ(T−n(A) ∩B)− µ(A)µ(B)
∣∣ ≤ 3ε

and as this holds for all ε > 0, the limit is zero. Hence Q is a density one mixing sequence
for T .

(f) implies (g). This is trivial.

(g) implies (a). Let f ∈ L2(X,µ). For any ε > 0 there exists constants c1, . . . , cN and measur-
able sets B1, . . . , BN such that ‖f−

∑N
n=1 cn1Bn‖ < ε. Then also |

∫
f dµ−

∑N
n=1 cnµ(Bn)| <
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ε. Define the functions gn = 1Bn − µ(Bn). Write f0 = f −
∫
f dµ. Then

‖f0 −
N∑
n=1

cngn‖ ≤ 2ε

and therefore for any m ∈ Z

∣∣〈Um
T f0, f0〉 − 〈Um

T

( N∑
n=1

cngn
)
,

N∑
t=1

ctgt〉
∣∣ ≤ 4ε2.

By (g) there exists a sequence {mj} such that µ(T−mj(A) ∩ B)→ µ(A)µ(B) as j →∞ for
all measurable sets A,B so

〈Umj

T

( N∑
n=1

cngn
)
,
N∑
t=1

ctgt〉 =
N∑

n,t=1

cnct
(
µ(T−mj(Bn) ∩Bt)− µ(Bn)µ(Bt)

)
→ 0.

As ε was arbitrary then 〈Umj

T f, f〉 → (
∫
f dµ)2 as j →∞.

Suppose T is not weak mixing. Let f be a nonconstant eigenfunction of T with eigenvalue
λ. Then λ 6= 1, ‖f‖ = 1 and

∫
f dµ = 0 (since

∫
f dµ =

∫
UTf dµ = λ

∫
f dµ). By the

above,

λmj = 〈Umj

T f, f〉 → (

∫
f dµ)2 = 0

but |λmj | = 1 so this is a contradiction.

Exercise 6.2 Prove that the intersection of a finite number of density one sequences is a
density one sequence. Give an example to show that the countable intersection of density
one sequences need not be density one.

Another characterization of weak mixing can be stated in terms of products of transfor-
mations:

Definition 6.8. Let T : (X,µ) → (X,µ) and S : (Y, η) → (Y, η) be transformations. The
product of T and S is the transformation T × S : (X × Y, µ × ν) → (X × Y, µ × ν) given
by (T × S)(x, y) = (T (x), S(y)) (which clearly preserves µ× ν).

Theorem 6.9. Let T : (X,µ)→ (X,µ) be a transformation. The following are equivalent:

(a) T is weak mixing;

(h) T × T is ergodic; and

(i) for every ergodic probability-preserving transformation S : (Y, ν) → (Y, ν) the product
T × S is ergodic.
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Proof. That (i) implies (h) is trivial. Suppose that T is not weak mixing. Then there
exists f ∈ L2

0(X,µ) with ‖f‖ = 1 and λ ∈ S1 such that UTf = λf . Define the function
F (x, y) = f ⊗ f(x, y) = f(x)f(y). Then F ∈ L2(X ×X,µ× µ) and

UT×TF (x, y) = f(T (x))f(T (y)) = λf(x)λf(y) = f(x)f(y) = F (x, y)

So F is a T × T -invariant function. But ‖F‖ = ‖f‖2 = 1 and
∫
F dµ × µ = (

∫
f dµ)2 = 0

so F is not constant. Therefore T × T is not ergodic. So (h) implies (a).

Now assume that T is weak mixing and let S : (Y, ν)→ (Y, ν) be an ergodic transforma-
tion. Let f ∈ L2

0(X,µ) and g ∈ L2
0(Y, ν) with ‖f‖ = ‖g‖ = 1 and write σf and σg for their

spectral measures. The sequence an = σ̂f (n)σ̂g(n) has the property that

N∑
n,m=1

cncman−m =

∫∫ N∑
n,m=1

cncmz
n−mwm−n dσf × σg(z, w)

=

∫∫ ∣∣ N∑
n=1

cnz
nw−n

∣∣2 dσf × σg(z, w)

and hence is positive-definite. Therefore it defines a Borel probability measure τ on S1 with
τ̂(n) = σ̂f (n)σ̂g(n). Observe that, by Dominated Convergence and the Weyl Equidistribution
Theorem,

lim
N

1

N

N−1∑
n=0

〈Un
T×S(f ⊗ g), (f ⊗ g)〉 =

∫
lim
N

1

N

N−1∑
n=0

zn dτ(z) = τ({1})

and also that

τ({1}) =

∫∫
lim
N

1

N

N−1∑
n=0

(zw−1)n dσf × σg(z, w) = σf × σg(D)

where D is the diagonal in S1 × S1. By Fubini’s Theorem, then

τ({1}) =

∫
σg({z}) dσf (z) =

∑
z

σg({z})σf ({z})

but T is weak mixing so σf has no atoms other than 1 and therefore

τ({1}) = σg({1})σf ({1}) =
(∫

f dµ
)2(∫

g dµ
)2
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meaning that

lim
N

1

N

N−1∑
n=0

〈Un
T×S(f ⊗ g), (f ⊗ g)〉 =

(∫
f dµ

)2(∫
g dµ

)2

Since any L2-function can be approximated by finite linear combinations of f⊗g, then T ×S
is ergodic.

There is also a natural spectral characterization of weak mixing:

Theorem 6.10. Let T : (X,µ)→ (X,µ) be a transformation. The following are equivalent:

(a) T is weak mixing; and

(j) for every f ∈ L2
0(X,µ) the set {Un

T f : n ∈ Z} is not compact.

Proof. Assume T is not weak mixing. Then for any eigenfunction f the set {Un
T f : n ∈ Z} is

isomorphic to S1. Conversely, if {Un
T f : n ∈ Z} is compact then the set {zn} is compact in

L2(S1, σf ) by the unitary equivalence. By Stone-Weierstrauss, the span of {zn} is dense and
therefore L2(S1, σf ) is finite-dimensional. Therefore the multiplication operator on L2(σf ) is
a finite-dimensional unitary operator hence has nontrivial eigenvalues (since f is orthogonal
to the constants). Then, by the unitary equivalence, T also has nontrivial eigenvalues hence
is not weak mixing.

6.4 Mixing Rank-One Transformations

The class of rank-one transformations gives easy examples of mixing and non mixing behav-
ior. We have already seen how to distinguish weak mixing, total ergodicity and ergodicity
using them; here we do the same for mixing and weak mixing.

Theorem 6.11 (Chacon 1967). The Chacon Transformation is weak mixing but not (strong)
mixing.

Proof. Recall that the Chacon transformation T is defined by cut sequence rn = 3 and
spacer sequence 0, 1, 0 at each stage. Let {hn} be the height sequence for T , so h0 = 1 and
hn+1 = 3hn + 1. Let I be a level in the nth stage tower. Then µ(T hn(I) ∩ I) ≥ 1

3
µ(I) since

the left third will be mapped to the middle third. Also µ(T hn(I)∩T−1(I)) ≥ 1
3
µ(I) provided

I is not the base of the tower since the middle third will be mapped to the right third one
level below. In fact, if B is a union of levels in the nth column then µ(T hn(B) ∩ B) ≥
1
3
µ(B). In particular, the left third of the base of the initial column B has the property that

lim infn µ(T hn(B) ∩B) ≥ 1
3
µ(B) but µ(B) < 1

3
so this means T is not (strong) mixing.

Suppose that f =
∑n

j=1 cj1Aj
is a function with cj constants and Aj levels in the nth

column such that f(T (x)) = λf(x) for some λ ∈ S1. For x ∈ Aj ∩ T−hn(Aj), which a set of
measure at least one third the size of Aj, it then holds that cj = f(T hn(x)) = λhnf(x) = λhnc.
Likewise, for x ∈ Aj ∩ T−hn−1(Aj), which is also at least one third the size of Aj, it holds
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that cj = . . . = λhn+1cj. Therefore, either cj = 0 or λ = 1. Hence the only eigenfunctions in
the form of linear combinations of indicator functions of levels are constant.

The rest of the proof of weak mixing (that there are no eigenfunctions) is left as an
exercise.

Exercise 6.3 Show that if T is a rank-one transformation then the collection of functions

F = {
n∑
j=1

cn1Aj
: n ∈ N, cj ∈ C, Aj a level }

is dense in L2. Use this to complete the proof that Chacon’s transformation is weak mixing.

On the other hand, rank-one transformations that are strong mixing do exist:

Theorem 6.12 (Adams 1997). The staircase transformation is mixing.

6.5 Rigidity and Mild Mixing

The last mixing property we will discuss is that of mild mixing which lies between weak
mixing and strong mixing. Mild mixing turns out to have deep connections to combinatorial
properties of sequences of integers and many natural classes of sequences can be described
in terms of how the “ergodic averages” along them behave for mild mixing transformations.

Definition 6.13. Let T : (X,µ) → (X,µ) be a probability-preserving transformation. A
function f ∈ L2(X,µ) is rigid for T when there exists a (strictly increasing) sequence of
positive integers {nj} such that ‖Unj

T f − f‖ → 0.

Definition 6.14. Let T : (X,µ)→ (X,µ) be a probability-preserving transformation. Then
T is rigid when there exists a (strictly increasing) sequence {nj} such that for all measurable
sets A ⊆ X,

lim
j
µ(T−nj(A) ∩ A) = µ(A).

Rigidity clearly precludes strong mixing; however, perhaps surprisingly, it does not pre-
clude weak mixing. In fact, a generic transformation (i.e. for a transformation in a dense
Gδ set of transformations in the weak topology) is both weak mixing and admits a rigidity
sequence.

Definition 6.15. Let T : (X,µ)→ (X,µ) be a probability-preserving transformation. Then
T is mild mixing when the only rigid L2-functions are constant (almost everywhere).

Theorem 6.16. Let T : (X,µ) → (X,µ) be a probability-preserving transformation. The
following are equivalent:

(a) T is mild mixing;
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(b) for every measurable set A ⊆ X with 0 < µ(A) < 1 one has lim infn µ(T−n(A)4A) > 0;
and

(c) for every ergodic measure-preserving transformation S : (Y, ν) → (Y, ν), including
those on σ-finite infinite measure spaces, the product transformation T × S is ergodic.

We opt not to present a proof of the above facts and refer the reader to a text dedicated
to the theory of transformations for details. We also mention that Chacon’s transformation
is mild mixing but not strong mixing.

6.6 Bernoulli Shifts

We now present our final class of examples of transformations and study some of their
properties. Let N ∈ N be a positive integer and let pj be nonnegative real numbers for

1 ≤ j ≤ N such that
∑N

j=1 pj = 1. Then the pj determine a probability measure P on the

finite set S = [N ]. Let X = SZ be the countable product of copies of S indexed by the
integers. Elements of X will be written as x = (. . . , x−n−1, x−n, . . . , x0, x1, . . .) = (xj)j. The
probability measure µ on X that is the product of the measure P on S given by P ({sj}) = pj
is the Bernoulli measure on X corresponding to (S, P ).

For j1, . . . , jn ∈ Z distinct integers and k1, . . . , kn ∈ S, the cylinder set with coordinates
j1, . . . , jn and values k1, . . . , kn is

Aj1,...,jn;k1,...,kn = {x ∈ X : xji = ki for all 1 ≤ i ≤ n }.

Define the probability measure µ on cylinder sets by

µ(Aj1,...,jn;k1,...,kn) =
n∏
i=1

pki

and then extend µ to the Borel sets of X.
The Bernoulli shift for (S, P ) is the transformation T : (X,µ)→ (X,µ) given by

(T (x))j = xj+1.

Exercise 6.4 Show that the Bernoulli shift preserves µ.

Theorem 6.17. Bernoulli shifts on nonatomic probability spaces are mixing.

Proof. Let T be a Bernoulli shift. Let A and B be cylinder sets. Let J be the set of
coordinates for A and L the set of coordinates for B. So, if J ∩ L = ∅ then µ(A ∩ B) =
µ(A)µ(B). Also, T−n(A) is a cylinder set with coordinates J−n for any n ∈ Z. Since J and L
are finite sets there exists n0 ∈ Z such that max(J)−n0 < min(L). Then for n ≥ n0, the sets
T−n(A) and B are cylinder sets such that µ(T−n(A) ∩ B) = µ(T−n(A))µ(B) = µ(A)µ(B).
Therefore T is mixing on cylinder sets. Since the cylinder sets generate the measurable sets,
T is mixing.
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Theorem 6.18. Any Bernoulli shift T : (X,µ) → (X,µ) on a nonatomic probability space
has countable Lebesgue spectrum – more, specifically, there exists fn ∈ L2

0(X,µ) for n ∈ N
such that the closed UT -invariant subspaces

Hn = span {Um
T f : m ∈ Z}

have the property that L2(X,µ) = ⊕n∈NHn and such that the spectral measures σfn are all
equal to the Lebesgue measure on S1.

Proof. Rather than prove the theorem in full generality, we will sketch the proof for the case
when S is the two element set and P puts equal probability on each of the two elements.
The general case follows from similar arguments but with additional technicalities.

Let T be the Bernoulli shift on the two element set with equal probabilities. Then
X = {0, 1}Z and µ is the product measure on it. For every finite nonempty set of integers
A ⊂ Z, define the function fA on X by

fA(x) =
∏
j∈A

(−1)xj

and set f∅(x) = 1. Then the fA are bounded measurable functions hence in L2. Now for A
nonempty,

∫
fA dµ = 0 since the probability of ±1 are equal. Observe that for A,B ⊆ Z

finite sets,

fA(x)fB(x) =
∏

j∈A4B

(−1)xj = f
A4B

(x)

and therefore 〈fA, fB〉 = 0 for A 6= B. Also observe that {fA} separates points in X and
contains 1. Therefore, by Stone-Weierstrauss, span {fA : A ⊆ Z finite } = L2(X,µ). For
A ⊆ Z and n ∈ Z, write A+ n = {a+ n : a ∈ A}. Then UTfA = fA+1.

Let σA be the spectral measure for fA. Then, for n 6= 0,

σ̂A(n) = 〈Un
T fA, fA〉 = 〈fA+n, fA〉 = 0

and so σA is the Lebesgue measure for every nonempty A. As there clearly infinitely many
equivalence classes for the relation A ∼ B if and only if there exists n ∈ Z such that
A+ n = B, this completes the proof.

The fact that all Bernoulli shifts are spectrally isomorphic is then a consequence of the
following exercise:

Exercise 6.5 Show that any two invertible probability-preserving transformations with
countable Lebesgue spectrum (the property just shown for Bernoulli shifts) are spectrally
isomorphic.
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6.7 Entropy

The question of determining whether two transformations are measure-theoretically isomor-
phic is, in a sense, the central problem of the subject. The various mixing properties and
other spectral invariants discussed so far give some useful criteria for showing two transfor-
mations are not isomorphic, but so far we have not seen any hard evidence that measure-
theoretic isomorphism is more complicated than spectral isomorphism; however, the fact that
all Bernoulli shifts are spectrally isomorphic makes them an obvious candidate for finding
non-isomorphic transformations that are spectrally isomorphic.

Kolmogorov and Sinai introduced the notion of entropy for a transformation and showed
that it is a measure-theoretic isomorphism invariant; then showed that Bernoulli shifts can
take on different entropy values, thereby showing that measure-theoretic isomorphism is
indeed more complex than spectral isomorphism. We will not state the definition of entropy,
as it involves a careful study of measurable partitions and the behavior of transformations
on them, but will mention that in the special case of Bernoulli shifts the entropy is simply
the quantity −

∑
j pj log(pj).

The Ornstein Isomorphism Theorem solves completely the isomorphism question for
Bernoulli shifts:

Theorem 6.19 (Ornstein 1970). Two Bernoulli shifts are measure-theoretically isomorphic
if and only if they have the same entropy.

In contrast to Bernoulli shifts, rank-one transformations always have zero entropy. A
major open question in the field is the so-called weak Pinsker conjecture which states that
for every transformation T : (X,µ)→ (X,µ) and every ε > 0 there exists closed T -invariant
subalgebras C,D of measurable sets such that C and D are independent, together generate the
measurable sets, T restricted to C is isomorphic to a Bernoulli shift and T restricted to D has
entropy less than ε. (The original Pinsker conjecture, shown to be false by Ornstein, was that
every transformation could be split into a Bernoulli shift and a zero-entropy transformation).

6.8 Multiple Mixing

To complete the discussion of mixing properties, we mention that there are “multiple” ver-
sions of each of the mixing properties. For example,

Definition 6.20. A transformation T : (X,µ)→ (X,µ) is mixing of order 2 when for all
measurable sets A,B,C ⊆ X,

lim
n,m→∞

µ(T−n−m(A) ∩ T−n(B) ∩ C) = µ(A)µ(B)µ(C).

More generally,

Definition 6.21. Let T : (X,µ)→ (X,µ) be a probability-preserving transformation. Then
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T is mixing of order k when for all measurable sets B0, . . . , Bk

lim
n1,...,nk→∞

µ
( k⋂
j=0

T−
∑j

i=1 ni(Bj)
)

=
k∏
j=0

µ(Bj).

If this holds for all k ∈ N then T is mixing of all orders.

There is a long-standing open question, due to Rokhlin in 1949, as to whether mixing
implies mixing of all orders. This is known to be true in the case of rank-one transformations
(Kalikow) and when the transformation has singular spectrum (Host).

6.9 Multiple Recurrence

The naive generalization of Poincaré Recurrence to the multiple setting would be:

Theorem 6.22. Let T : (X,µ) → (X,µ) be a probability-preserving transformation and
B ⊆ X a measurable set with µ(B) > 0. Then for any positive integer k there exists
infinitely many k-tuples of distinct positive integers (n1, . . . , nk) such that

µ(B ∩ T−n1(B) ∩ · · · ∩ T−nk(B)) > 0.

The reason this is naive is that it is an immediate consequence of the usual Poincaré
Recurrence: choose n1 such that µ(B ∩ T−n1(B)) > 0; then choose n2 such that µ((B ∩
T−n1(B)) ∩ T−n2(B ∩ T−n1(B))) > 0 and continue in this fashion.

The more natural generalization of Poincaré Recurrence to the setting of multiple recur-
rence is due to Furstenberg:

Theorem 6.23 (Furstenberg). Let T : (X,µ) → (X,µ) be a probability-preserving trans-
formation and B ⊆ X a measurable set with µ(B) > 0. Then for any k ∈ N there exists
infinitely many n ∈ N such that

µ(B ∩ T−n(B) ∩ T−2n(B) ∩ · · · ∩ T−nk(B)) > 0.

The proof of the multiple recurrence theorem relies heavily on the structure theory of
transformations which will be the subject of the next chapter.

The multiple version of the ergodic theorem proved to be an extremely difficult under-
taking and was only established in 2005 by Host and Kra:

Theorem 6.24 (Host-Kra 2005). Let T : (X,µ)→ (X,µ) be a probability-preserving trans-
formation. Then for any nonnegative f ∈ L∞(X,µ), f 6= 0, and any k ∈ N,

lim
N→∞

1

N

N−1∑
n=0

∫
f(x)f(T n(x))f(T 2n(x))f(T 3n(x)) · · · f(T kn(x)) dµ(x)

exists.
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In fact, the limit can be written in an explicit form, but we will wait to present that form
until after establishing the structure theory.

The above result for weak mixing is more straightforward and is due to Furstenberg:

Theorem 6.25 (Furstenberg). Let T : (X,µ) → (X,µ) be a weak mixing probability-
preserving transformation. Then for any k ∈ N and any measurable sets B0, . . . , Bk,

lim
N→∞

1

N

N−1∑
n=0

µ(B0 ∩ T−n(B1) ∩ T−2n(B2) ∩ · · · ∩ T−kn(Bk)) = µ(B0) · · ·µ(Bk).

One of the main tools in the proof, the van der Corput “trick”, has in recent times become
a standard and useful tool in much of ergodic theory, particularly in the realm of ergodic
Ramsey theory.

Lemma 6.9.1 (The van der Corput Trick). Let {xn} be a bounded sequence in a Hilbert
space H. If

lim
H→∞

lim sup
N→∞

1

H

H∑
h=1

1

N

N∑
n=1

〈xn+h, xn〉 = 0

then ‖ 1
N

∑N
n=1 xn‖ → 0.

Proof. Let M ≥ 0 such that ‖xn‖ ≤M for all n. For a fixed H ≥ 1,

∥∥ 1

N

N∑
n=1

xn −
1

H

H∑
h=1

1

N

N∑
n=1

xn+h

∥∥ =
∥∥ 1

H

H∑
h=1

1

N

( N∑
n=1

xn −
N∑
n=1

xn+h

)∥∥
≤ 1

H

H∑
h=1

1

N

∥∥x1 + · · ·+ xh − xn+1 − · · · − xn+h

∥∥
≤ 1

H

H∑
h=1

1

N
2hM =

H(H + 1)M

HN

which tends to zero as N →∞.

Note that for any {yn} in H,

∥∥ 1

N

N∑
n=1

yn
∥∥2

=
1

N2

N∑
n,m=1

〈yn, ym〉 ≤
1

N2

N∑
n,m=1

‖yn‖‖ym‖ =
( 1

N

N∑
n=1

‖yn‖
)2

≤ 1

N

N∑
n=1

‖yn‖2

by Jensen’s Inequality. Then

lim sup
N→∞

∥∥ 1

H

H∑
h=1

1

N

N∑
n=1

xn+h

∥∥2 ≤ lim sup
N→∞

1

N

N∑
n=1

∥∥ 1

H

H∑
h=1

xn+h

∥∥2
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= lim sup
N→∞

1

N

N∑
n=1

1

H2

H∑
h,k=1

〈xn+h, xn+k〉

≤ M2

H
+ lim sup

N→∞

1

N

N∑
n=1

1

H2

H∑
h,k=1;h6=k

〈xn+h, xn+k〉

which tends to zero as H →∞ by the hypothesis.

Before proving the multiple recurrence for weak mixing transformations, we first prove a
preliminary version:

Proposition 6.9.2. Let T : (X,µ)→ (X,µ) be a weak mixing probability-preserving trans-
formation. Then for any positive integers a1, . . . , ak, the transformation T a1×T a2×· · ·×T ak :
(Xk, µk)→ (Xk, µk) is ergodic.

Proof. Let S be a density one sequence that is mixing for T . Let E = N \ S so E is density
zero. For any positive a ∈ Z, define

Ea = {n
a

: n ∈ E ∩ aN}.

Then
1

N
|Ea ∩ [N ]| = a

1

aN
|(E ∩ aN) ∩ [aN ]| ≤ a

1

aN
|E ∩ [aN ]|

which tends to zero as E is density zero. Therefore T a is weak mixing for each positive
a ∈ N.

This proves the case k = 1. We proceed by induction. Assume the claim holds for k and
let a1, . . . , ak+1 be positive integers. Then

T a1 × · · · × T ak+1 = (T a1 × · · · × T ak)× T ak+1

is the product of two weak mixing systems hence is weak mixing.

Theorem 6.25 is actually a straightforward consequence of:

Theorem 6.26 (Furstenberg). Let T : (X,µ) → (X,µ) be a weak mixing probability-
preserving transformation and let f1, . . . , fk ∈ L∞(X,µ). Then

lim
N→∞

∥∥∥ 1

N

N∑
n=1

Un
T f1U

2n
T f2 · · ·Ukn

T fk −
∫
f1 dµ · · ·

∫
fk dµ

∥∥∥
L2

= 0.

Proof. The proof is by induction on k. The result for k = 1 is the mean ergodic theorem.
Now assume the result for holds for k − 1 and let f1, . . . , fk ∈ L∞(X,µ). Observe that

1

N

N∑
n=1

Un
T f1U

2n
T f2 · · ·Ukn

T fk −
∫
f1 dµ · · ·

∫
fk dµ
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=
1

N

N∑
n=1

Un
T

(
f1 −

∫
f1 dµ

)
U2n
T f2 · · ·Ukn

T fk

+
(∫

f1 dµ
)
Un
T

( 1

N

N∑
n=1

Un
T f2 · · ·U (k−1)n

T fk −
∫
f2 dµ · · ·

∫
fk dµ

)
and the right-hand term in the sum converges to zero by the inductive hypothesis so we may
assume that

∫
f1 dµ = 0.

Define the functions un for n ≥ 1 by

un = Un
T f1U

2n
T f2 · · ·Ukn

T fk

which are clearly in L2(X,µ). For h ≥ 0, define gh,j = U jh
T fjfj. Then

〈un, un+h〉 =

∫
Un
T f1U

2n
T f2 · · ·U (k+1)n

T fkU
n+h
T f1U

2(n+h)
T f2 · · ·Uk(n+h)

T fk dµ

=

∫
Un
T (f1Uh

Tf1)U2n
T (f2U2h

T f2) · · ·Ukn
T (fkUkh

T fk) dµ

=

∫
Un
T gh,1U

2n
T gh,2 · · ·Ukn

T gh,k dµ

=

∫
gh,1U

n
T gh,2 · · ·Ukn

T gh,k dµ

= 〈Un
T gh,2 · · ·Ukn

T gh,k, gh,1〉

By the inductive hypothesis applied to the k − 1 functions gh,2, . . . , gh,k,

lim
N→∞

1

N

N∑
n=1

〈un, un+h〉 = lim
N→∞

1

N

N∑
n=1

〈Un
T gh,2 · · ·Ukn

T gh,k, gh,1〉

=

∫
gh,2 dµ · · ·

∫
gh,k dµ

∫
gh,1 dµ

Then, for any H ∈ N,

1

H

H∑
h=1

lim
N→∞

1

N

N∑
n=1

〈un, un+h〉 =
1

H

H∑
h=1

∫
gh,1 dµ

∫
gh,2 dµ · · ·

∫
gh,k dµ

=
1

H

H∑
h=1

∫
· · ·
∫
UTh×T 2h×···Tkh(f1 ⊗ f2 ⊗ · · · ⊗ fk)f1 ⊗ f2 ⊗ · · · ⊗ fk dµ× · · · × µ

→
(∫
· · ·
∫
f1 ⊗ f2 ⊗ · · · ⊗ fk dµ× · · · × µ

)2

as H →∞ by the ergodicity of T h×· · ·×T kh (the previous proposition). Since
∫
f1 dµ = 0,

– 50 –



Chapter 6. Mixing Properties

then

lim
H→∞

lim
N→∞

1

H

H∑
h=1

1

N

N∑
n=1

〈un, un+h〉 = 0.

By the van der Corput trick then

0 = lim
N→∞

∥∥∥ 1

N

N∑
n=1

un

∥∥∥ = lim
N→∞

∥∥∥ 1

N

N∑
n=1

Un
T f1U

2n
T f2 · · ·Ukn

T fk

∥∥∥
which is precisely the result claimed.
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Chapter 7

Factors and Joinings

Before turning to the structure theory of transformations, we need to introduce the technical
machinery that we will use to formulate it. There are two basic constructions that will play
the central role in the structural study of transformations: factors, which give a means for
determining when one transformation is “contained in” or “part of” another transformations;
and joinings, which give a means for constructing from two given transformations a third
transformation sharing properties of the two.

7.1 Conditional Expectation

The first tool we need is the notion of conditional expectation which arose originally in the
context of probability theory where it is interpreted as a generalized expectation (integral)
taking values into a subset of the original possible values, usually coming from known infor-
mation about some other random variable (hence the phrase conditioning on a variable or
collection of variables).

Definition 7.1. Let (X,µ) be a standard probability space (isomorphic modulo null sets
to the unit interval or to a countable or finite set or a combination thereof) and write B for
the σ-algebra of Borel sets. Let C ⊆ B be a closed sub-σ-algebra. For f a B-measurable
function with finite mean (

∫
f dµ exists), the conditional expectation of f with respect

to C is the unique C-measurable function E[f |C] such that for all C ∈ C,∫
C

f(x) dµ(x) =

∫
C

E[f |C](x) dµ(x).

Theorem 7.2. The conditional expectation exists and is unique (up to null sets).

Proof. Let f ≥ 0 be a B-measurable function with
∫
f dµ finite. Define a measure ν

on C as follows: for C ∈ C set ν(C) =
∫
C
f dµ (that this is a measure follows directly

from µ being a measure). Clearly ν is absolutely continuous with respect to µ so by the
Radon-Nikodym Theorem there exists a measurable function dν

dµ
which is in L1(X,µ). By

construction, dν
dµ

is C-measurable as ν is only defined on C. Set E[f |C] to be dν
dµ

. This shows
that conditional expectation exists for nonnegative functions, by linearity this extends to all
measurable functions. The uniqueness is an immediate consequence of the uniqueness of the
Radon-Nikodym derivative.

For our purposes, a useful example is the ergodic decomposition: if T : (X,µ)→ (X,µ) is
a probability-preserving transformation and I is the collection of T -invariant measurable sets
(which is clearly a closed sub-σ-algebra) then f 7→ E[f |I] takes every measurable function
f to the “closest” T -invariant function.
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7.2 Measurable Homomorphisms

In order to introduce the notion of factors for transformations, we first need to discuss the
equivalent concept purely in the setting of probability spaces.

Definition 7.3. Let (X,µ) be a standard probability space and π : X → Y be a measurable
map to either a Borel space or a measure space. The pushforward of µ to Y is the
probability measure π∗µ on Y given by π∗µ(B) = µ(π−1(B)) for all measurable B ⊆ Y .

Definition 7.4. Let (X,µ) and (Y, ν) be standard probability spaces. A measurable
homomorphism is a measurable map π : X → Y such that π∗µ = ν. This is usually
written as π : (X,µ)→ (Y, ν).

Given a measurable homomorphism π : (X,B, µ) → (Y, C, ν) of probability spaces, con-
sider the collection

F = {π−1(C) : C ∈ C} ⊆ B.

This is clearly a closed sub-σ-algebra and so there is a conditional expectation from B to C.

Definition 7.5. Let π : X → Y be a Borel map of compact metric spaces. Let P (X) denote
the space of Borel probability measures on X. Given µ ∈ P (X), write ν = π∗µ and then
π : (X,µ) → (Y, ν) is a measurable homomorphism. The disintegration of µ over ν is a
Borel map Dπ : Y → P (X) such that

• Dπ(y) is supported on π−1(y) (recall the support of a probability measure is the smallest
closed set that has measure one); and

• for all Borel sets B ⊆ X, it holds that

µ(B) =

∫
Y

Dπ(y)(B) dν(y).

The usual notation is to drop the Dπ and simply write µy for Dπ(y).

Theorem 7.6 (Rokhlin 1952). The disintegration is well-defined (even in the context of
merely measurable homomorphisms) and is unique almost everywhere.

The proof of the disintegration theorem is rather technical, so we will omit the details,
but mention that in our later study of group actions, we will essentially establish the above
theorem in a more general context.

The disintegration is often referred to as “fibering” (X,µ) over (Y, ν) where the fibers
are the probability spaces (πy, µy) for each y ∈ Y .
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Exercise 7.1 Let π : (X,µ) → (Y, ν) be a measurable homomorphism. For f ∈ L1(X,µ),
define the function F on Y by

F (y) =

∫
X

f(x) dµy(x) =

∫
π−1(y)

f(x) dµy(x).

Show that F ∈ L1(Y, ν) and that F = E[f |F ] where F is the sub-σ-algebra of measurable
sets on X that are pullbacks of the measurable sets on Y .

Notation. Let π : (X,µ)→ (Y, ν) be a measurable homomorphism. Write

Fπ = {f ◦ π : f ∈ L2(Y, ν)} ⊆ L2(X,µ)

for the embedding of L2(Y, ν) into L2(X,µ) via π and for f ∈ L2(X,µ) write

Eπ[f ] = E[f |Fπ] ◦ π−1 ∈ L2(Y, ν)

to represent the function in L2(Y, ν) that f conditions to.

7.3 Factors

We are now ready to introduce factors of transformations:

Definition 7.7. Let T : (X,µ)→ (X,µ) and S : (Y, ν)→ (Y, ν) be a probability-preserving
transformations. Then S is a factor of T when there exists a measurable homomorphism
π : (X,µ) → (Y, ν) such that π(T (x)) = S(π(x)) for almost every x ∈ x (referred to as π
intertwining T and S).

Given a factor map π : (X,µ) → (Y, ν) that intertwines T : (X,µ) → (X,µ) and
S : (Y, ν)→ (Y, ν), there is a canonical inclusion of L2(Y, ν) in L2(X,µ) given by f 7→ f ◦ π.
In fact, the converse of this is true in the following sense:

Theorem 7.8. Let T : (X,µ) → (X,µ) be a transformation and F ⊆ L2(X,µ) be a closed
UT -invariant subspace containing the constants. Then there exists a transformation S :
(Y, ν) → (Y, ν) and a factor map π : (X,µ) → (Y, ν) such that the image L2(Y, ν) under
composition by π is F .

This theorem is often referred to as saying that there always exist “point realizations” of
closed invariant subalgebras. We will defer the proof of this fact to the more general setting
of arbitrary group actions where its necessity becomes much more apparent.

Sometimes it is helpful to refer to factors in the reverse direction:

Definition 7.9. Let T : (X,µ)→ (X,µ) and S : (Y, ν)→ (Y, ν) be a probability-preserving
transformations. Then T is an extension of S when S is a factor of T .
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7.4 Joinings

To state our final equivalent characterization of weak mixing, we first introduce the concept
of a joining of two systems. The theory of joinings has a rich history and is a crucial tool
in the study of ergodic systems, one we will return to in the context of actions of general
groups.

Definition 7.10. Let T : (X,µ)→ (X,µ) and S : (Y, ν)→ (Y, ν) be probability-preserving
transformations. A joining of T and S is a Borel probability measure ρ on X × Y such
that T × S : (X × Y, ρ) → (X × Y, ρ) is a probability-preserving system and such that the
projections of ρ to each coordinate are µ and ν: for any measurable sets A ⊆ X and B ⊆ Y
it holds that ρ(A× Y ) = µ(A) and ρ(X ×B) = ν(B).

Definition 7.11. Let T : (X,µ)→ (X,µ) and S : (Y, ν)→ (Y, ν) be probability-preserving
transformations. The trivial joining of T and S is the product measure µ× ν.

Factors of transformations are also a source of joinings:

Proposition 7.4.1. Let T : (X,µ)→ (X,µ) be a probability-preserving transformation and
let S : (Y, ν)→ (Y, ν) be a factor of T with factor map π : (X,µ)→ (Y, ν). Define the map
id × π : X → X × Y by id × π(x) = (x, π(x)). Then (X × Y, (id × π)∗µ) is a joining of T
and S.

Proof. Let ρ = (id×π)∗µ be the pushforward measure. Then for any measurable set A ⊆ X,

ρ(A× Y ) = µ((id× π)−1(A× Y )) = µ(id−1(A) ∩ π−1(Y )) = µ(A ∩ Y ) = µ(A)

and for any measurable set B ⊆ Y ,

ρ(X ×B) = µ(id−1(X) ∩ π−1(B)) = µ(π−1(B)) = π∗µ(B) = ν(B)

so the projections of ρ are µ and ν. Also, since µ is preserved by T and since π intertwines
T and S, for any measurable sets A ⊆ X and B ⊆ Y ,

ρ((T × S)−1(A×B)) = µ(id−1(T−1(A)) ∩ π−1(S−1(B))) = µ(T−1(A) ∩ T−1(π−1(B)))

= µ(A ∩ π−1(B)) = ρ(A×B)

so ρ is a joining.

One of the main uses of joinings is the theory of disjointness of systems:

Definition 7.12. Two probability-preserving transformations are disjoint when the only
joining of them is the trivial joining.

In fact, one can also construct joinings that are “independent over a factor”:
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Definition 7.13. Let T : (X,µ)→ (X,µ) and S : (Y, ν)→ (Y, ν) be probability-preserving
transformations that have a common factor U : (Z, ζ)→ (Z, ζ) with factor maps π : (X,µ)→
(Z, ζ) and ψ : (Y, ν) → (Z, ζ). The relative independent joining of T and S over U is
the probability measure α on X × Y given by

α(B) =

∫
Z

µz × νz(B) dζ(z)

for all measurable sets B ⊆ X × Y .

Exercise 7.2 Prove that the relative independent joining is a joining.

The two extreme cases of relative independent joinings are when the command factor
is the trivial transformation on the one-point space, in which case we recover the usual
independent joining, and when S is a factor of T and U = S in which case we obtain the
same joining as constructed above from a factor map.

Proposition 7.4.2. Let T : (X,µ)→ (X,µ) and S : (Y, ν)→ (Y, ν) be probability-preserving
transformations that have a common factor U : (Z, ζ)→ (Z, ζ) with factor maps π : (X,µ)→
(Z, ζ) and ψ : (Y, ν)→ (Z, ζ). Let T × S : (X × Y, α) be the relative independent joining of
T and S over U . Then the following diagram of factor maps commutes:

T × S y (X × Y, α)
projX- T y (X,µ)

S y (Y, ν)

projY
? ψ

- U y (Z, ζ)

π
?

where projX(x, y) = x is the projection to X and projY is the projection to Y .

Proof. The only thing to check is commutativity. For α-almost every (x, y) ∈ X×Y it holds
that π(x) = ψ(y) by construction of α. Therefore

π(projX(x, y)) = π(x) = ψ(y) = ψ(projY (x, y))

almost everywhere.

7.5 Weak Mixing and Joinings

Our final characterization of weak mixing is stated in terms of disjointness:

Theorem 7.14. A transformation is weak mixing if and only if it is disjoint from every
transformation with pure point spectrum.

Proof. Assume first that T : (X,µ) → (X,µ) is weak mixing. Let S : (Y, ν) → (Y, ν) be a
transformation with pure point spectrum and let ρ be a joining of T and S. Let f ∈ L2

0(X,µ)

– 57 –



Chapter 7. Factors and Joinings

with ‖f‖ = 1 and let g ∈ L2(Y, ν) be an eigenfunction of S. Consider the space

H = span {Un
T f ⊗ 1 : n ∈ Z} ⊆ L2(X × Y, ρ)

which is a T×S-invariant subspace of L2(ρ) (recall that ρ projects to µ so this is well-defined).
Let P : L2(ρ) → H be the orthogonal projection. Consider the function G = P (1 ⊗ g) and
the spectral measure σG corresponding to it (note that ‖G‖ may not be 1 so this is now a
nonnegative measure but not necessarily a probability measure).

Since H is unitarily equivalent to Hf ⊆ L2(X,µ), which is in turn unitarily equivalent to
L2(S1, σf ), there is a unitary equivalence W : H → L2(σf ) such that WUT×S = MW where
M is the multiplication operator. For any n, observe that∫

zn dσG(z) = σ̂G(n) = 〈Un
T×SG,G〉 = 〈MnW (G),W (G)〉 =

∫
zn
∣∣W (G)(z)

∣∣2 dσf (z)

and therefore σG is absolutely continuous with respect to σf (since the polynomials are
dense).

Write 1⊗ g = G+ g0 where g0 is orthogonal to H. Observe that for any n, using that H
is UT×S-invariant,

σ̂g(n) = 〈Un
T×SG,G〉+ 〈Un

T×Sg0, G〉+ 〈Un
T×SG, g0〉+ 〈Un

T×Sg0, g0〉
= σ̂Pg(n) + 0 + 0 + σ̂g0(n)

and therefore σg = σG + σg0 . Hence σG is absolutely continuous with respect to σg.

Since T is weak mixing, σf has no atoms. Since g is an eigenfunction for S, σg is
entirely point mass (at the powers of the eigenvalue). Since σG is absolutely continuous with
respect to both, then σG = 0 so P (1 ⊗ g) = 0. Therefore every eigenfunction of S is in the
orthogonal complement of L2(X,µ) ⊗ 1 ⊆ L2(X × Y, ρ). Since S has pure point spectrum,
the eigenfunctions are dense and therefore 1⊗ L2(Y, η) is orthogonal to L2(X,µ)⊗ 1 which
is precisely the statement that ρ = µ× ν.

Conversely, assume that T : (X,µ) → (X,µ) has the property that every joining with
a system with pure point spectrum is trivial. Let f ∈ L2(X,µ) be an eigenfunction for T .
Then the space Hf is a UT -invariant subspace of L2(X,µ). A basic fact, which we will prove
later in the context of more general group actions, is that such an invariant space always
has a “point realization” as a “factor” of the original action – there exists a transformation
S : (Y, ν) → (Y, ν) and a measurable map π : X → Y such that π∗µ = ν (meaning
that µ(π−1(B)) = ν(B) for all measurable B ⊆ Y ) and such that π(T (x)) = S(π(x))
almost everywhere. Define the map Θ : X → X × Y by Θ(x) = (x, π(x)). and note that
Θ(T (x)) = (T × S)(Θ(x)). Define the Borel probability measure ρ on X × Y by

ρ(E) = Θ∗µ(E) = µ(Θ−1(E)).
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Then

ρ((T × S)−1(E)) = µ(Θ−1((T × S)−1(E))) = µ(T−1(Θ−1(E))) = µ(Θ−1(E)) = ρ(E)

and ρ(A×Y ) = µ(Θ−1(A×Y )) = µ(A) and ρ(X×B) = µ(Θ−1(X×B)) = µ(π−1(B)) = ν(B).
Hence ρ is a joining. Since f is an eigenfunction, S has pure point spectrum (the powers of
the eigenvalues). By hypothesis then ρ = µ× ν.

Let B ⊆ Y be a measurable set. Then

µ(Θ−1(π−1(B)×B)) = µ({x ∈ π−1(B) : π(x) ∈ B}) = µ(π−1(B)) = ν(B)

but also

µ(Θ−1(π−1(B)×B)) = ρ(π−1(B)×B) = µ(π−1(B))ν(B) = (ν(B))2.

Therefore every measurable set is either measure zero or measure one meaning (Y, η) is
trivial. This means that f is constant. Therefore every eigenfunction for T is constant so T
is weak mixing.

7.6 Ergodic Extensions

Many properties of transformations can be extended to relative versions over factors. The
notion of an ergodic extension is one of the most important:

Definition 7.15. Let π : (X,B, µ) → (Y, C, ν) be an extension of S : (Y C, , ν) → (Y C, , ν)
to T : (X,B, µ) → (X,B, µ). Then π is an ergodic extension when the only T -invariant
sets in X are the pullbacks of S-invariant sets of Y : write

IX = {B ∈ B : µ(B4T−1(B)) = 0} and IY = {A ∈ C : ν(A4S−1(A)) = 0}

and then π being an ergodic extension is the statement that

IX = π−1(IY ).

Clearly T is ergodic if and only if it is an ergodic extension of the trivial one-point system.

Proposition 7.6.1. Let π : (X,µ) → (Y, ν) and ψ : (Y, ν) → (Z, ζ) be extensions of
U : (Z, ζ)→ (Z, ζ) to S : (Y, ν)→ (Y, ν) and of S to T : (X,µ)→ (X,µ). Then ψ ◦ π is an
ergodic extension of U to T if and only if π and ψ are both ergodic extensions.

Proof. Assume ψ ◦ π : (X,µ)→ (Z, ζ) is an ergodic extension. Let A ∈ IY . Then π−1(A) ∈
IX so π−1(A) = π−1(ψ−1(B)) for some B ∈ IZ . So A = ψ−1(B). Therefore ψ is an ergodic
extension. Let A ∈ IX . Then A = π−1(ψ−1(B)) for some B ∈ IZ and ψ−1(A) ∈ IY .
Therefore π is an ergodic extension.
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Conversely, assume π and ψ are ergodic extensions. Let A ∈ IX . Then A = π−1(B) for
some B ∈ IY and B = ψ−1(C) for some C ∈ IZ . So A = π−1(ψ−1(C)) and therefore ψ ◦ π
is an ergodic extension.

Proposition 7.6.2. Let π : (X,B, µ)→ (Y, C, ν) be an extension of S : (Y C, , ν)→ (Y C, , ν)
to T : (X,B, µ) → (X,B, µ). Then π is an ergodic extension if and only if for all f ∈
L2(X,µ),

lim
N→∞

1

N

N−1∑
n=0

Un
T f = E

[
lim
N→∞

1

N

N−1∑
n=0

Un
T f
∣∣∣π−1(C)

]
.

Proof. Assume π is an ergodic extension. By the Mean Ergodic Theorem,

lim
N→∞

1

N

N−1∑
n=0

Un
T f = E[f |IX ] = E[f |π−1(IY )]

and so

E
[

lim
N→∞

1

N

N−1∑
n=0

Un
T f
∣∣∣π−1(C)

]
= E

[
E[f |π−1(IY )]

∣∣∣π−1(C)
]

= E[f |π−1(IY )].

Conversely, if B ∈ IX then applying the equality to the indicator function 1B,

1B = lim
N→∞

1

N

N−1∑
n=0

Un
T1B = E

[
lim
N→∞

1

N

N−1∑
n=0

Un
T1B

∣∣∣π−1(C)
]

= E[1B

∣∣∣π−1(C)]

meaning that B ∈ π−1(C) ∩ IX = π−1(IY ) so π is an ergodic extension.

Proposition 7.6.3. Let π : (X,µ) → (Y, ν) be an ergodic extension of S : (Y, ν) → (Y, ν)
to T : (X,µ)→ (X,µ). Then for any f ∈ L2(X,µ) such that Eπ[f ] = 0,

lim
N→∞

1

N

N−1∑
n=0

Un
T f = 0.

Proof. Since π is ergodic and π−1(IY ) ⊆ π−1(C) where C are the measurable sets in Y ,

lim
N→∞

1

N

N−1∑
n=0

Un
T f = E[f |π−1(IY )] = E[E[f |π−1(C)]|π−1(IY )] = E[0|π−1(IY )] = 0.

7.7 Weak Mixing Extensions

The most natural characterization of weak mixing to extend to the relative setting is that
of the product being ergodic:
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Definition 7.16. Let π : (X,µ) → (Y, ν) be an extension of S : (Y, ν) → (Y, ν) to T :
(X,µ) → (X,µ). Let (X × X,α) be the relative independent joining of T with itself over
S. Then π is a weak mixing extension when the factor map proj : (X ×X,α)→ (X,µ)
given by the natural projection (to either coordinate) is an ergodic extension of T to T × T .

Proposition 7.7.1. Let π : (X,µ)→ (Y, ν) be a weak mixing extension of S : (Y, ν)→ (Y, ν)
to T : (X,µ)→ (X,µ). Then π is an ergodic extension.

Proof. Let B ∈ IX be a T -invariant set. Then π−1(π(B))× B is a T × T -invariant set and
since π is weak mixing there exists a T -invariant set D such that

α(π−1(π(B))×B ∩ proj−1(D)) = α(π−1(π(B))×B) = α(proj−1(D))

but proj−1(D) = D ×X so

µ(D) = α(D ×X) = α(π−1(π(B))×B ∩D ×X) = α((π−1(π(B)) ∩D)×B)

≤ α((π−1(π(B)) ∩D)×X) = µ(π−1(π(B)) ∩D) ≤ µ(D)

and therefore µ(π−1(π(B))4D) = 0. Now

α(π−1(π(B))×B) =

∫
Y

µy(π
−1(π(B)))µy(B) dν(y) =

∫
Y

1µy(B)>0µy(B) dν(y) = µ(B)

and therefore
µ(B) = µ(D) = µ(π−1(π(B)))

so we conclude that µ(B4π−1(π(B))) = 0 meaning that B is in fact the preimage of an
S-invariant set in Y .

Exercise 7.3 Let π : (X,µ) → (Y, ν) be a weak mixing extension of S : (Y, ν) → (Y, ν) to
T : (X,µ)→ (X,µ). Show that for any f, g ∈ L2(X,µ),

lim
N→∞

1

N

N−1∑
n=0

∣∣∣ ∫ E[Un
T f g|Fπ]− E[f |Fπ]E[g|Fπ dµ]

∣∣∣2 = 0
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Chapter 8

Structure Theory and Multiple

Recurrence

Our final topic in the theory of transformations will be the structure theory developed by
Furstenberg and Zimmer and the resulting multiple recurrence theorems which ultimately
lead, via Furstenberg correspondence, to a proof of Szemeredi’s Theorem.

8.1 Multiple Recurrence

The question of multiple recurrence for general transformations, those not necessarily weak
mixing or even ergodic, turns out to be very involved. The essential question being asked
is: given a probability-preserving transformation T : (X,µ) → (X,µ) and f0, . . . , fk ∈
L∞(X,µ), what can be said about the limiting behavior of the averages

1

N

N−1∑
n=0

f0(x)f1(T n(x))f2(T 2n(x)) · · · fk−1(T (k−1)n(x))fk(T
kn(x))?

We will focus on the mean convergence and norm convergence of these averages, as the
pointwise questions turn out to be incredibly difficult and in most cases nothing is known
about them.

For weak mixing transformations, we have already seen that these averages converge
in norm to a constant function and therefore: if T : (X,µ) → (X,µ) is weak mixing and
f0, f1, . . . , fk ∈ L∞(X,µ) then

lim
N→∞

∫
1

N

N−1∑
n=0

f0(x)f1(T n(x)) · · · fk(T kn(x)) dµ(x) =

∫
f0 dµ · · ·

∫
fk dµ

and we can then say that weak mixing transformation satisfy multiple recurrence (in the
mean).

The goal of this chapter is to address the question for general transformations and in order
to do this, we must explore the structure theory of probability-preserving transformations
initiated by Furstenberg and Zimmer and then expanded upon in a crucial way by Host and
Kra.

8.2 Ergodic Decomposition

Recall that if T : (X,µ) → (X,µ) is a probability-preserving transformation then one can
consider the space of UT -invariant functions in L2(X,µ) and “decompose” (X,µ) over these
“ergodic components”. Specifically, let Z0 be the σ-algebra of measurable sets B such that
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µ(T−1(B)4B) = 0 and then, in an appropriate sense, (X,µ) decomposes over Z0 into
transformations that are ergodic. The mean ergodic theorem asserts recurrence in the mean
for a general transformation in the sense that:

Theorem 8.1 (Mean Ergodic Theorem). Let T : (X,µ)→ (X,µ) be a probability-preserving
transformation and f, g ∈ L∞(X,µ). Let Z0 be the σ-algebra of T -invariant measurable sets.
Then

lim
N→∞

∥∥∥ 1

N

N−1∑
n=0

f(T n(x))−
∫

E[f |Z0]
∥∥∥ = 0

and therefore

lim
N→∞

∫
1

N

N−1∑
n=0

f(T n(x))g(x) dµ(x) =

∫
E[f |Z0](x)g(x) dµ(x).

Rephrasing this in terms of disintegration makes clear why the phrase “ergodic decom-
position” is used:

Theorem 8.2. Let T : (X,µ)→ (X,µ) be a probability-preserving transformation and I the
σ-algebra of T -invariant measurable sets. Let S : (Y, ν) → (Y, ν) be the point realization of
I and π : (X,µ)→ (Y, ν) the associated factor map. Then the fibers (π−1(y), µy) are ergodic
for almost every y ∈ Y .

8.3 Characteristic Factors

We can interpret the mean ergodic theorem as saying that the only “obstruction” to the
ergodic averages converging to the average value of f are the ergodic components or non-
constant invariant functions. This point of view is the most useful when considering the
multiple ergodic averages involved in multiple recurrence since the method we will use to
prove multiple recurrence involves identifying similar “obstructions” to the convergence to
the average values.

In general, the term characteristic factor refers to a sub-σ-algebra that captures all of the
potential obstructions to the convergence of some form of (multiple) ergodic average. In this
sense, the ergodic components Z0 is the simplest characteristic factor and precisely captures
the obstruction to the convergence of the usual ergodic averages to the “correct” value.

However, the identification of Z0, and more importantly, the realization that we can
condition a function on that algebra, leads to the ability to prove the existence of the limit
of the ergodic averages and to determining the actual value of that limit.

We have already seen that weak mixing transformations not only satisfy multiple recur-
rence in the sense of the limit of the multiple ergodic averages converging, but in fact weak
mixing transformations always have convergence to the mean values of the functions. This
leads to attempting to consider the functions which are “not weak mixing” and trying to
condition on those in a similar fashion.
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This approach ultimately leads to building a structure theory for transformations that
we will outline in the next few sections.

8.4 The Kronecker Factor

The first step in a structure theory of transformations is the identification of a specific factor
that encapsulates all of the “non-mixing” or “compact” behavior of a transformation.

Definition 8.3. Let T : (X,µ)→ (X,µ) be an invertible probability-preserving transforma-
tion and let f ∈ L2(X,µ). Then f is weakly mixing for T when 1

N

∑N−1
n=0 |〈Un

T f, f〉| → 0

and f is almost periodic for T when {Un
T f : n ∈ Z} is compact.

Theorem 8.4 (Koopman-von Neumann Decomposition). Let T : (X,µ) → (X,µ) be an
invertible probability-preserving transformation. Define the closed UT -invariant subspaces

Hc = {f ∈ L2(X,µ) : f is almost periodic for T }
Hwm = {f ∈ L2(X,µ) : f is weak mixing for T }.

Then Hc and Hwm are orthogonal and L2(X,µ) = Hc ⊕Hwm.

Proof. First, observe that if f ∈ L2(X,µ) is an eigenfunction for T with eigenvalue λ then
{Un

T f : n ∈ Z} is a closed subgroup of S1 hence is compact so the eigenfunctions are in Hc.
As Hc is clearly closed, ⊕

λ∈spec(T )

{f ∈ L2(X,µ) : UTf = λf} ⊆ Hc.

Conversely, if f ∈ Hc then UT restricted to span {Un
T f : n ∈ Z} is a compact operator and

hence by the spectral theorem there exists an orthonormal basis of eigenvectors for UT
restricted to that space. As f is in the closure of these eigenvectors,⊕

λ∈spec(T )

span {f ∈ L2(X,µ) : UTf = λf} = Hc.

Clearly, by definition,

{f ∈ L2(X,µ) : ∀g ∈ L2(X,µ) lim
N→∞

1

N

N∑
n=1

|〈Un
T f, g〉| = 0} ⊆ Hwm.

Let f ∈ Hwm. We will show that f is in the set on the left. Let g ∈ L2(X,µ). Then, as
in the proof of the characterization of weak mixing, 1

N

∑N
n=1 |〈Un

T f, g〉| → 0 if and only if
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1
N

∑N
n=1 |〈Un

T f, g〉|2 → 0. Now

1

N

N∑
n=1

|〈Un
T f, g〉|2 =

1

N

N∑
n=1

〈Un
T f, g〉〈g, Un

T f〉 =
〈 1

N

N∑
n=1

〈g, Un
T f〉Un

T f, g
〉

and therefore to show that 1
N

∑N
n=1〈g, Un

T f〉Un
T f → 0 in norm. Define the functions

un = 〈g, Un
T f〉Un

T f

and observe that for any h ∈ N,

〈un, un+h〉 = 〈〈g, Un
T f〉Un

T f, 〈g, Un+h
T f〉Un+h

T f〉
= 〈g, Un+h

T f〉〈Un
T f, g〉〈Un+h

T f, Un
T f〉 = 〈g, Un+h

T f〉〈Un
T f, g〉〈Uh

Tf, f〉.

Therefore, for any H,N ∈ N,

∣∣∣ 1

H

H∑
h=1

1

N

N∑
n=1

〈un, un+h〉
∣∣∣ ≤ 1

H

H∑
h=1

1

N

N∑
n=1

‖g‖‖f‖‖f‖‖g‖|〈Uh
Tf, f〉|

= ‖f‖2‖g‖2 1

H

H∑
h=1

|〈Uh
Tf, f〉|

which tends to zero as H →∞ since f ∈ Hwm. Therefore

Hwm = {f ∈ L2(X,µ) : ∀g ∈ L2(X,µ) lim
N→∞

1

N

N∑
n=1

|〈Un
T f, g〉| = 0}.

Now let f ∈ Hwm and g an eigenfunction for T with eigenvalue λ. Then

1

N

N∑
n=1

|〈Un
T f, g〉| =

1

N

N∑
n=1

|〈f, U−nT g〉| = 1

N

N∑
n=1

|λ−n||〈f, g〉| = |〈f, g〉|

and so 〈f, g〉 = 0. This shows that Hwm ⊆ H⊥c .

So, now let f ∈ H⊥c . Consider the peraotors SN : L2(X,µ)→ L2(X,µ) given by

SNg =
1

N

N∑
n=1

〈g, Un
T f〉Un

T f.

Recall that an operator S is Hilbert-Schmidt when there exists an orthonormal basis {xj}
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∑
j ‖Sxj‖2 <∞. The SN are Hilbert-Schmidt since

∑
j

‖SNxj‖2 ≤
∑
j

1

N

N∑
n=1

〈xj, Un
T f〉〈Un

T f, xj〉〈Un
T f, U

n
T f〉

=
1

N

N∑
n=1

∑
j

|〈xj, Un
T f〉|2‖f‖2

=
1

N

N∑
n=1

∑
j

〈xj ⊗ xj, Un
T×Tf ⊗ f〉‖f‖2

≤ ‖f ⊗ f‖‖f‖2 = ‖f‖4.

Consider the operator S = limN SN . We will show the following properties of S: that it is
a well-defined linear operator, that it is a compact operator, that it commutes with UT and
that the image of S is contained in Hc. Provided these are true, then 〈Sf, f〉 = 0 since f is
orthogonal to Hc which precisely says that f ∈ Hwm completing the proof.

To see that S is well-defined, let g, h ∈ L2(X,µ) and observe that

〈h, SNg〉 =
1

N

N∑
n=1

〈g, Un
T f〉〈h, Un

T f〉 =
1

N

N∑
n=1

〈g ⊗ h, Un
T×Tf ⊗ f〉

and so the limit limN〈h, SNg〉 exists by the Mean Ergodic Theorem. The Riesz Representa-
tion Theorem then implies the existence of a unique linear operator S that realizes this limit.
To see that S is compact, observe that ‖SN‖ ≤ ‖f‖2 and so the SN are a uniformly norm-
bounded sequence of Hilbert-Schmidt operators hence the limit S is also Hilbert-Schmidt
and hence compact. That S and UT commute follows from the fact that

SNUTg − UTSNg =
1

N

N∑
n=1

〈UTg, Un
T f〉Un

T f −
1

N

N∑
n=1

〈g, Un
T f〉UTUn

T f

=
1

N

N−1∑
n=0

〈g, Un
T f〉Un+1

T f − 1

N

N∑
n=1

〈g, Un
T f〉Un+1

T f

=
1

N

(
〈g, f〉UTf − 〈g, UN

T f〉UN+1
T f

)
and therefore

‖SNUTg − UTSNg‖ ≤
2‖g‖‖f‖2

N
→ 0

so ‖SUT − UTS‖ = 0.

Finally, for any g ∈ L2(X,µ), by the compactness of S,

{Un
TSg : n ∈ Z} = {SUn

T g : n ∈ Z} = S({Un
T g : n ∈ Z})
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is precompact (being the image of a bounded set) and therefore the image of S is contained
in Hc.

Exercise 8.1 Show that any convergent uniformly norm-bounded sequence of Hilbert-
Schmidt operators converges to a Hilbert-Schmidt operator (in any of the topologies norm,
strong and weak).

Exercise 8.2 Show that any Hilbert-Schmidt operator is compact.

Definition 8.5. Let T : (X,µ)→ (X,µ) be an invertible probability-preserving transforma-
tion. Let Z1 be the σ-algebra of measurable sets whose indicator functions are in Hc. Then
Z1 (and its point realizations) is the Kronecker factor of T .

Notice that T is weak mixing if and only if the Kronecker factor is trivial.

8.5 Double Recurrence

We have already seen that for weak mixing transformations, the question of double re-
currence, and of multiple recurrence in general, is relatively straightforward. By double
recurrence, we mean the L2-limiting behavior of 1

N

∑N−1
n=0 U

n
T fU

2n
T f for f ∈ L∞(X,µ), and

in the case that T is weak mixing we have already seen that 1
N

∑N−1
n=0 U

n
T fU

2n
T f → (

∫
f dµ)2

in L2-norm. The general case, when T is not weak mixing, turns out to be much more com-
plicated, in a large part due to the fact that while the limit does exist, it is not, in general,
equal to the average values of the functions.

Let T : (X,µ)→ (X,µ) be a transformation that is not weak mixing and let f ∈ L2(X,µ)
be a nonconstant eigenfunction with eigenvalue λ and assume that f ∈ L∞(X,µ) (i.e. T is
an irrational rotation and f(x) = e2πinx). Set g(x) = f(x)2. Then for any n ∈ N,

f(x)g(T n(x))f(T 2n(x)) = f(x)(λ−nf(x))2λ2nf(x) = |f(x)|4

and therefore ∫
1

N

N−1∑
n=0

f(x)g(T n(x))f(T 2n(x)) dµ(x) = ‖f‖4
4

is constant and not equal to
∫
f dµ

∫
g dµ

∫
f dµ = 0. So, for eigenfunctions, the double

recurrence limit exists but is not equal to the average values of the functions.
The key idea in proving double recurrence, due to Furstenberg, is to condition the func-

tions involved on the Kronecker factor much in the same way as conditioning on Z0 “fixed”
the issue of convergence of the ergodic averages.

Theorem 8.6 (Furstenberg Double Recurrence). Let T : (X,µ) → (X,µ) be an invertible
ergodic probability-preserving transformation and let f, g, h ∈ L∞(X,µ). Then

lim
N→∞

∫
1

N

N−1∑
n=0

f(x)g(T n(x))h(T 2n(x)) dµ(x) =

∫
E[f |Z1](x)E[g|Z1](z)E[h|Z1](x) dµ(x).
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We first establish a simple case of the theorem, then use this to obtain the full result:

Proposition 8.5.1. Let T : (X,µ) → (X,µ) be an ergodic probability-preserving transfor-
mation and let f, g ∈ L∞(X,µ). If one of f, g is weak mixing for T then

lim
Nto∞

∥∥∥ 1

N

N−1∑
n=0

Un
T fU

2n
T g
∥∥∥ = 0.

Proof. For each n ∈ N, define un = Un
T fU

2n
T g ∈ L2(X,µ). Then for n, h ∈ N,

〈un, un+h〉 =

∫
f(T n(x))g(T 2n(x))f(T n+h(x))g(T 2(n+h)(x)) dµ(x)

=

∫
f(x)g(T n(x))f(T h(x))g(T n+2h(x)) dµ(x)

=

∫ (
f(x)f(T h(x))

)(
g(T n(x))g(T 2h(T n(x)))

)
dµ(x)

= 〈fUh
Tf, U

n
T (gU2h

T g〉

and so for each h ∈ N,

lim
N→∞

1

N

N−1∑
n=0

〈un, un+h〉 = 〈fUh
Tf, lim

N→∞

1

N

N−1∑
n=0

Un
T (gU2h

T g)〉

=
(∫

f(x)f(T h(x)) dµ(x)
)(∫

g(x)g(T 2h(x)) dµ(x)
)

using the mean ergodic theorem.

Consider first the case when f is weak mixing for T . Then

∣∣∣ lim
N→∞

1

N

N−1∑
n=0

〈un, un+h〉
∣∣∣ ≤ ∣∣〈f, Uh

Tf〉
∣∣‖g‖2

and since f is weak mixing for T then

lim
H→∞

∣∣∣ 1

H

H∑
h=1

lim
N→∞

1

N

N−1∑
n=0

〈un, un+h〉
∣∣∣ ≤ lim

H→∞

1

H

H∑
h=1

∣∣〈f, Uh
Tf〉
∣∣‖g‖2 = 0.

By the van der Corput trick, then 1
N

∑N−1
n=0 un → 0 in norm as claimed.

The case when g is weak mixing follows from the obvious modification and the fact that
if T is weak mixing then so is T 2.

Proposition 8.5.2. Let T : (X,µ) → (X,µ) be an invertible ergodic probability-preserving
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transformation and let f, g, h ∈ L∞(X,µ). If one of f, g, h is weak mixing for T then

lim
Nto∞

∫
1

N

N−1∑
n=0

f(x)g(T n(x))h(T 2n(x)) dµ(x) = 0.

Proof. The previous proposition gives the result when g or h is weak mixing. Since∫
1

N

N−1∑
n=0

f(x)g(T n(x))h(T 2n(x)) dµ(x) =

∫
1

N

N−1∑
n=0

f(T−2n(x))g(T−n(x))h(x) dµ(x)

and obviously f is weak mixing for T if and only if it is for T−1, the same holds when f is
weak mixing.

Proof of Theorem 8.6. Let f, g, h ∈ L∞(X,µ). By the Koopman-von Neumann decompo-
sition, write f = fc + fwm, g = gc + gwm and h = hc + hwm where fc, gc, hc ∈ Hc and
fwm, gwm, hwm ∈ Hwm. Then∫

1

N

N−1∑
n=0

f(x)g(T n(x))h(T 2n(x)) dµ(x) =

∫
1

N

N−1∑
n=0

fc(x)gc(T
n(x))hc(T

2n(x)) dµ(x) +Q

where Q consists of 7 terms, each involving at least one weak mixing function for T . The
previous proposition then gives that Q = 0. Since fc = E[f |Z1] by definition (and likewise
for g, h), the claim follows.

In essence, the Kronecker factor completely captures all of the potential obstructions to
the double ergodic average converging to the average value of the functions.

8.6 Structure Theory

To state the Furstenberg-Zimmer structure theorem, we make use of the notion of weak mix-
ing extension defined in the previous chapter and a notion of compact extension generalizing
the ideas behind the Kronecker factor. To extend the notion of a compact system (one with
pure point spectrum, the eigenfunctions generate a dense subspace of L2), we introduce the
following definition:

Definition 8.7. Let π : (X,µ) → (Y, ν) be an extension of S : (Y, ν) → (Y, ν) to T :
(X,µ)→ (X,µ). A function f ∈2 (X,µ) is almost periodic with respect to π when for
every ε > 0 there exists F1, . . . , Fk ∈ L2(Y, ν) such that for every n ∈ N it holds that

inf
1≤j≤k

‖Un
T f − Fj ◦ π‖L2(µy) < ε

for ν-almost every y ∈ Y .
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Definition 8.8. Let π : (X,µ) → (Y, ν) be an extension of S : (Y, ν) → (Y, ν) to T :
(X,µ) → (X,µ). Then π is a compact extension when the set of functions that are
almost periodic with respect to π is dense in L2(X,µ).

Note that if T : (X,µ) → (X,µ) is a compact extension of the trivial one-point system
then this says that for every ε > 0 there exists constants c1, . . . , ck such that

∫
1≤j≤k ‖U

n
T f −

cj‖ < ε for all n ∈ N. This then implies that {Un
T f : n ∈ N} is compact.

Theorem 8.9 (Furstenberg-Zimmer Structure Theorem I). Let π : (X,µ) → (Y, ν) be an
extension of S : (Y, ν) → (Y, ν) to T : (X,µ) → (X,µ). If π is not weak mixing then there
exists a nontrivial intermediate factor U : (Z, ζ) → (Z, ζ) – meaning there are factor maps
ψ : (X,µ)→ (Z, zη) and φ : (Z, ζ)→ (Y, ν) such that φ ◦ψ = π and such that neither ψ nor
φ are isomorphisms– such that (Z, ζ)→ (Y, ν) is a compact extension.

Proof. We will omit the details as this is actually a generalization of the proof of the
Koopman-von Neumann Decomposition to the relative case. The key idea is that one can
consider the functions which are weak mixing for T relative to S versus those that are almost
periodic relative to S. Being weak mixing relative to S is defined as saying that

lim
N→∞

1

N

N−1∑
n=0

∣∣∣〈Un
T f, g〉 − 〈E[f |Fπ], g〉

∣∣∣→ 0

for all g ∈ L2(X,µ). Clearly a weak mixing extension is characterized by every function being
relatively weak mixing and a compact extension by every function being relatively almost
periodic. The same argument in the Koopman-von Neumann decomposition relativized over
(Y, ν) then leads to the existence of a nontrivial “Kronecker extension” whenever π is not
weak mixing.

Corollary 8.10 (Furstenberg-ZImmer Structure Theorem II). Let T : (X,µ) → (X,µ) be
a probability-preserving transformation. Then there exists a countable ordinal α and factors
Sβ : (Yβ, νβ)→ (Yβ, νβ) for all ordinals β ≤ α such that

• S1 : (Y1, ν1)→ (Y1, ν1) is the Kronecker factor of (X, ν), hence is compact;

• S0 : (Y0, ν0)→ (Y0, ν0) is the ergodic components of (X, ν);

• for every successor ordinal β + 1 ≤ α, Sβ+1 is a compact extension of Sβ;

• for every limit ordinal β ≤ α, (Yβ, νβ) is the inverse limit of (Yγ, νγ) for γ < β (in the
sense that L2(Yβ, νβ) is the closure of the union of the L2(Yγ, νγ)); and

• (X,µ) is a weak mixing extension of (Yα, να).

Proof. By the Koopman-von Neumann Decomposition there is a factor map (X,µ) →
(Z0, ζ0). Inductively apply the above theorem to build a tower of extensions, take limits
as necessary, and terminate the process when the only remaining extension is weak mix-
ing. This process must terminate at a countable ordinal since (X,µ) is a separable Borel
space.
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8.7 Uniform Multiple Recurrence

The question of multiple recurrence for more than two sets proves to be much more com-
plicated than double recurrence. The main difficulty being that it is not at all clear what
the corresponding characteristic factor ought to be. Before discussing just what the correct
objects are, we will consider Furstenberg and Katznelson’s Uniform Multiple Recurrence
Theorem establishing not that multiple ergodic averages converge but merely that the limit
infimum is nonzero:

Theorem 8.11 (Furstenberg-Katznelson). Let T : (X,µ)→ (X,µ) be an invertible ergodic
probability-preserving transformation and let f ∈ L∞(X,µ) be a nonnegative, not identically
zero, function. Then for all k ∈ N,

lim inf
N→∞

∫
1

N

N−1∑
n=0

f(x)f(T n(x))f(T 2n(x)) · · · f(T kn(x)) dµ(x) > 0.

This theorem clearly implies the Furstenberg Multiple Recurrence:

Theorem 8.12 (Multiple Recurrence). Let T : (X,µ) → (X,µ) be an invertible ergodic
probability-preserving transformation and B a positive measure set. Then for any positive
integer k there exists infinitely many positive integers n such that

µ(B ∩ T−n(B) ∩ T−2n(B) ∩ · · · ∩ T−kn(B)) > 0.

By the Furstenberg-Zimmer Structure Theorem, it is enough to show that uniform mul-
tiple recurrence holds for compact systems, is preserved by compact extensions; is preserved
by weak mixing extensions, and is preserved under inverse limits. We will prove here that it
holds for compact systems, and omit the remainder of the proof.

Proposition 8.7.1. Let T : (X,µ) → (X,µ) be an invertible ergodic probability-preserving
transformation and let f ∈ L∞(X,µ) be a nonnegative, not identically zero, function. If T
is a compact system then for all k ∈ N,

lim inf
N→∞

∫
1

N

N−1∑
n=0

f(x)f(T n(x))f(T 2n(x)) · · · f(T kn(x)) dµ(x) > 0.

Proof. Fix k ∈ N. Note that f is almost periodic. Let ε > 0 such that
∫
f(x)k+1 dµ(x)−k2ε =

δ > 0. Consider the set
A = {n ∈ N : ‖Un

T f − f‖ < ε}.

Since {Un
T f : n ∈ Z} is compact, A has positive (lower) density: lim infN N

−1|A ∩ [N ]| =
δ2 > 0. Now for n ∈ A and 0 ≤ j ≤ k, observe that

‖U jn
T f − f‖ ≤

j−1∑
i=0

‖U (i+1)n
T f − U in

T f‖ = j‖Un
T f − f‖ < jε < kε
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Therefore for n ∈ A,∣∣∣ ∫ f(x)f(T n(x))f(T 2n(x)) · · · f(T kn(x)) dµ(x)−
∫
fk+1 dµ

∣∣∣ ≤ k2ε.

So, using that f is nonnegative,

lim inf
N→∞

∫
1

N

N−1∑
n=0

f(x)f(T n(x))f(T 2n(x)) · · · f(T kn(x)) dµ(x)

≥ lim inf
N→∞

1

N

∑
n∈A∩[N ]

∫
f(x)f(T n(x))f(T 2n(x)) · · · f(T kn(x)) dµ(x)

≥ lim inf
N→∞

1

N

∑
n∈A∩[N ]

(∫
f(x)k+1 dµ(x)− k2ε

)
≥ lim inf

N→∞

1

N
|A ∩ [N ]|

(∫
f(x)k+1 dµ(x)− k2ε

)
≥ δ2δ > 0.

8.8 Ergodic Ramsey Theory

Ramsey theory is the field of combinatorics that considers questions of structure. The
prototypical result is van der Waerden’s Theorem: if the natural numbers are colored with
a finite number of colors then at least one color must contain arbitrarily long arithmetic
progressions. Furstenberg initiated the field that is now called Ergodic Ramsey Theory by
presenting a new proof of Szemeredi’s Theorem – any sequence with positive upper density
contains arbitrarily long arithmetic progressions – as a consequence of multiple recurrence.
Szemeredi’s original proof, completed in 1975, was heavily combinatorial and involved a deep
study of regularity. Furstenberg’s proof, which appeared in 1977, instead recasts the question
as a statement about transformations via what is now called the Furstenberg Correspondence
principle.

Definition 8.13. Let S ⊆ N be a sequence. Then S has positive upper density when

lim sup
N→∞

1

N
|S ∩ [N ]| > 0.

We will now explain how one can deduce Szemeredi’s Theorem from the multiple recur-
rence theorem. If upper density defined a true probability measure on the space of sequences,
this would be immediate by simply considering the action of +1 on the integers. However,
this is not the case, and in fact there is no shift-invariant probability measure on sequences.

Nevertheless, we can do the following. Let A ⊆ N have positive upper density, that is to
say, lim supN N

−1|A ∩ [N ]| > 0. Let Y = 2Z and let T : Y → Y be the shift. Treat A as a
point in the system and let X be the closure of the orbit of A under T . For each N , let µN
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assign mass (2N + 1)−1 to each point T n(A) for −N ≤ n ≤ N and no mass to the rest of
X. Let E = {B ∈ X : 0 ∈ B}. Since A has positive upper density,

µN(E) =
1

2N + 1
|A ∩ {−N, . . . , N}|

is uniformly bounded above zero along a subsequence of N . Along a further subsequence,
the µN must converge in the weak topology (by the compactness of X) to some probability
measure µ. Then µ(E) > 0 and µ is clearly T -invariant.

Now suppose that A does not contain arbitrarily long arithmetic progressions. Then
there is some k such that for all r, A∩A+ r∩A+ 2r∩ · · · ∩A+ kr = ∅. This precisely says
that E ∩ T−r(E) ∩ · · · ∩ T−kr(E) = ∅. But µ(E) > 0 so this contradicts multiple recurrence
for the system T : (X,µ)→ (X,µ) and the set E. Therefore we have proved:

Theorem 8.14 (Szemeredi’s Theorem). Let S be a sequence with positive upper density.
Then S contains arbitrarily long arithmetic progressions.

We will not go into the details, but more general multiple recurrence results lead to more
general combinatorial number theory results. For example, if one proves a multiple recur-
rence theorem for commuting transformations then one obtains via the correspondence the
multidimensional Szemeredi theorem (in fact, this was the first proof of the multidimensional
version).

8.9 Multiple Ergodic Average Convergence

The question of improving the lower bound being nonzero to the actual convergence of the
multiple averages is due to Host and Kra:

Theorem 8.15 (Host-Kra 2005). Let T : (X,µ) → (X,µ) be an invertible probability-
preserving transformation. For any k ∈ N and any f0, . . . , fk ∈ L∞(X,µ),

lim
N→∞

∫
1

N

N−1∑
n=0

f0(x)f1(T n(x))f2(T 2n(x)) · · · fk(T kn(c)) dµ(x)

exists.

They, in fact, identify the limit in terms of characteristic factors the same way that the
Kronecker factor “controls” the double recurrence average.

Consider now the characteristic factors Z0 and Z1. The form that Z0 can take, as a
probability-preserving transformation in its own right, is rather simple: it always has the
form of a probability space with the trivial (identity) transformation. Now Z1, the Kronecker
factor, also has a reasonably nice description of its form. Specifically, one can show that the
Kronecker factor is always an inverse limit of factors with pure point spectrum. Recall
now that any transformation with pure point spectrum is always a “compact abelian group
rotation” in the sense that any transformation with pure point spectrum is isomorphic to
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a transformation given by a single element of a compact abelian group acting on the group
(with the normalized Haar measure). Therefore, the Kronecker factor is always the inverse
limit of compact abelian group rotations.

One can view the Kronecker factor also as representing the maximum amount of com-
plexity that can be resolved by one application of the van der Corput trick. The key idea
in the higher-order case is that one has to iteratively apply the van der Corput trick (and
not in the obvious fashion, one replaces the k-averages by a type of averaging over cubes);
the characteristic factors then represent the maximal complexity that can be resolved by k
applications of the van der Corput trick. Host and Kra established the existence of these
factors and characterized them, leading to the proof of the multiple ergodic theorem.

The higher-order characteristics factors Zk are always isomorphic to inverse limits of
actions of elements of k-step nilpotent compact Lie groups. Since a 1-step nilpotent compact
Lie group is a compact abelian group, the Kronecker factor Z1 is of this form. Once the
structure of these factors is identified, checking that multiple convergence happens becomes
possible and the general theorem follows.
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List of Exercises

Exercise 2.1 (Page 9)
Adapt the proof sketch in the case of Hamiltonian dynamics to give a proof of the abstract
formulation of Poincaré Recurrence.

Exercise 3.1 (Page 12)
Prove that the third condition above is equivalent to ergodicity. Hint: first consider indi-
cator functions and then consider the class of invariant functions as a subset of measurable
functions.

Exercise 3.2 (Page 14)
Prove that the two versions of the mean ergodic theorem are equivalent. Hint: considering
indicator functions, one direction is easy; for the other, consider the definition of Lebesgue
integration in terms of simple functions.

Exercise 4.1 (Page 20)
Show that the point spectrum of a probability-preserving transformation is a countable
subset of the unit circle.

Exercise 4.2 (Page 20)
Let Tα : [0, 1) → [0, 1) be an irrational rotation. Show that the point spectrum of Tα is
{e2πinα : n ∈ Z} and conclude that irrational rotations are nonisomorphic for distinct values
of α.

Exercise 4.3 (Page 23)
Let T : (X,µ)→ (X,µ) be a transformation and λ ∈ S1. Show that λ ∈ spec(T ) if and only
if for every ε > 0 there exists f ∈ L2(X,µ) with ‖f‖ = 1 such that ‖UTf − λf‖ < ε.

Exercise 5.1 (Page 31)
Prove that rank-one transformations are ergodic.

Exercise 5.2 (Page 32)
Prove that a transformation is ergodic if and only if every induced transformation from it is
ergodic.

Exercise 6.1 (Page 35)
Prove that the p-adic odometer – the rank-one transformation with cut sequence {rn = p}
and no spacers where p is prime and constant – has the property that T j is ergodic for
0 < j < p but that T p is not ergodic.
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Exercise 6.2 (Page 40)
Prove that the intersection of a finite number of density one sequences is a density one
sequence. Give an example to show that the countable intersection of density one sequences
need not be density one.

Exercise 6.3 (Page 43)
Show that if T is a rank-one transformation then the collection of functions

F = {
n∑
j=1

cn1Aj
: n ∈ N, cj ∈ C, Aj a level }

is dense in L2. Use this to complete the proof that Chacon’s transformation is weak mixing.

Exercise 6.4 (Page 44)
Show that the Bernoulli shift preserves µ.

Exercise 6.5 (Page 45)
Show that any two invertible probability-preserving transformations with countable Lebesgue
spectrum (the property just shown for Bernoulli shifts) are spectrally isomorphic.

Exercise 7.1 (Page 55)
Let π : (X,µ) → (Y, ν) be a measurable homomorphism. For f ∈ L1(X,µ), define the
function F on Y by

F (y) =

∫
X

f(x) dµy(x) =

∫
π−1(y)

f(x) dµy(x).

Show that F ∈ L1(Y, ν) and that F = E[f |F ] where F is the sub-σ-algebra of measurable
sets on X that are pullbacks of the measurable sets on Y .

Exercise 7.2 (Page 57)
Prove that the relative independent joining is a joining.

Exercise 7.3 (Page 61)
Let π : (X,µ) → (Y, ν) be a weak mixing extension of S : (Y, ν) → (Y, ν) to T : (X,µ) →
(X,µ). Show that for any f, g ∈ L2(X,µ),

lim
N→∞

1

N

N−1∑
n=0

∣∣∣ ∫ E[Un
T f g|Fπ]− E[f |Fπ]E[g|Fπ dµ]

∣∣∣2 = 0

Exercise 8.1 (Page 68)
Show that any convergent uniformly norm-bounded sequence of Hilbert-Schmidt operators
converges to a Hilbert-Schmidt operator (in any of the topologies norm, strong and weak).
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Exercise 8.2 (Page 68)
Show that any Hilbert-Schmidt operator is compact.
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Chapter 9

Group Actions on Metric Spaces

Dynamics refers to the study of groups acting on spaces with analytic structure. This ranges
from the notion of a differential equation describing the behavior of a physical system over
time to the more abstract setting of groups (for example symmetries) acting on metric spaces.
Dynamics is characterized by relating the asymptotic behavior of the system to the structure
of the space, the structure of the acting group and the nature of the action.

The ergodic theory of group actions is the study of group actions on measure spaces,
particularly on probability spaces. The reader unfamiliar with the aspects of group theory
we make use of in this and the following chapters should consult Appendix A: Group Theory
for definitions of group theoretic notions, in particular ideas about topological groups and
measurable groups.

9.1 Metric Spaces

Modern analysis is characterized by the study of metric and measure spaces. We recall
the basic definitions of metric spaces and group actions on them and the motivations and
methods for placing a measure on a metric space. Most of the material presented here will
be used implicitly in the sequel, particularly the relationship between the action of a group
on a metric space and the corresponding actions on continuous functions and probability
measures on that space.

Definition 9.1. A metric space is a set of points X and a metric d : X ×X → [0,∞]
that is symmetric (d(x, y) = d(y, x)), proper (d(x, y) = 0 if and only if x = y), complete
(d(xn, xm) → 0 implies the existence of x such that d(xn, x) → 0) and satisfies the triangle
inequality (d(x, y) ≤ d(x, z) + d(z, y)).

Metric spaces have the natural topology that xn → x when d(xn, x)→ 0. The Borel sets
(see below) of this topology are denoted by B(X). Often we will omit d when the context
makes clear which metric is being used.

Definition 9.2. A group G acts on a metric space X, written G y X, when there is a
map: G×X → X written gx such that g(hx) = (gh)x.

9.2 Continuous Actions

The natural setting for studying group actions on metric spaces is to have a group G acting
on a metric space (X, d) continuously:

Definition 9.3. Let G be a group acting on a metric space X. The action is continuous
when if xn → x in X and gn → g in G then gnxn → gx, that is, the group action map
G×X → X is jointly continuous.
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It is a classical fact that for a locally compact group G acting on a metric space X that if
G×X → X is separately continuous in each of G and X then it is in fact jointly continuous
and hence the action is continuous.

In general there is no invariant metric for G y X since the usual technique to obtain
invariant metrics requires the map G×X → X ×X by (g, x) 7→ (gx, x) be proper (meaning
the preimage of compact sets is compact) which can only occur when G itself is compact.

9.3 Borel Sets

The most important aspect of metric topology for us will be the algebra of Borel sets.

Definition 9.4. Let X be a metric space. The Borel sets of X is the smallest σ-algebra of
sets in X that contains the open sets. That is, B(X), the Borel sets, is the smallest collection
of sets such that

• B ∈ B(X) =⇒ X \B ∈ B(X) (closed under complements);

• B1, B2, · · · ∈ B(X) =⇒
⋃
nBn ∈ B(X) (closed under countable unions); and

• Ux0,ε = {x ∈ X : d(x, x0) < ε} ∈ B(X) (contains the open sets)

The most general natural setting for studies of Borel sets and group actions is that of
Polish groups acting on Polish spaces and the reader is referred to Becker and Kechris [BK96]
and to Kechris [Kec00] (among other sources) for a detailed exposition. We will not go into
details here as our interest is primarily in placing a measure on the space but we will make
use of facts about Borel sets in metric spaces at times.

9.4 Borel Actions

Often continuity of a group action is too much to require and we relax the condition to be
the map being merely Borel. Of course, requiring any less than a Borel action in effect says
that the group action does not respect the topology (hence the metric) at all and therefore
the action is not “really” that of a group on a metric space.

Definition 9.5. A group action on a metric space Gy X is a Borel action when the map
G×X → X for the action is a Borel map (the preimage of Borel sets is Borel).

This definition, like that of continuity of an action, involves the topology of the group.
When G is discrete and countable (has no topology in effect) the action is Borel precisely
when each group element represents a Borel map X → X. As with continuous actions, there
is generally no invariant metric on X for the group action.

9.5 Continuous Functions

The space of continuous functions on a metric space plays a key role in dynamics.
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Definition 9.6. Let X be a metric space. A function f : X → R is continuous when for
every x ∈ X and ε > 0 there exists δ > 0 such that if d(x, y) < δ then |f(x)− f(y)| < ε.

Definition 9.7. Let X be a metric space. The space of continuous functions on X will
be written C(X).

Assume now that X is compact. The space of continuous functions is endowed the
supremum metric topology, that is: for f ∈ C(X) define

‖f‖ = sup
x∈X
|f(x)|

Then define D(f1, f2) = ‖f1−f2‖. This is a metric on C(X) called the supremum metric.
Moreover C(X) is separable (with this metric) when X is compact. Note that this means
that fn → f precisely when ‖fn − f‖ → 0.

Note that C(X) separates points in the sense that if x 6= y ∈ X then there is some
f ∈ C(X) such that f(x) 6= f(y). This is an easy consequence of the fact that there are
disjoint open sets containing x and y (take balls of diameter less than half the distance
between the two points x and y).

The reader is referred to any general analysis and topology book for more information
on continuous functions. We remark only that the ε-δ definition given is equivalent, in our
case, to the usual open set definition: a function is continuous if and only if the preimage of
any open set is open.

9.6 The Action on Functions

Given a group action on a metric space G y X and f : X → Y a function on the metric
space (to some other space), one can “compose” the function with the group action by setting

g · f(x) = f(g−1x)

for x ∈ X and g ∈ G. Now

g · (h · f)(x) = h · f(g−1x) = f(h−1g−1x) = (gh) · f(x)

so this in fact defines an action of the group on the space of functions.

Proposition 9.6.1. If G y X continuously and X is a compact metric space then G y
C(X) continuously (with the supremum metric).

Proof. Observe that if g ∈ G and f ∈ C(X) then the action g · f(x) = f(g−1x) is an action
since h · g · f(x) = g · f(h−1x) = f(g−1h−1x) = f((hg)−1x) = hg · f(x) and that clearly
g · f ∈ C(X) when f ∈ C(X) by the continuity of the G-action on X. Then if gn → g in
G and f ∈ C(X) is fixed then, by compactness, ‖gn · f − g · f‖ = supx |f(g−1

n x)− f(g−1x)|
is attained by some xn ∈ X. Suppose that ‖gn · f − g · f‖ ≥ δ > 0 infinitely often. Take a
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further subsequence of that subsequence, {nj}, such that xnj
→ x∞ for some x∞ ∈ X (again

possible by compactness). Then

|f(g−1
nj
xnj

)− f(g−1xnj
)| ≥ δ

but by the (joint) continuity of the G-action, g−1
nj
xnj
→ g−1x∞ and g−1xnj

→ g−1x∞ hence

|f(g−1
nj
xnj

)− f(g−1xnj
)| → |f(g−1x∞)− f(g−1x∞)| = 0

contradicting that δ > 0.

9.7 From Metric to Measure

A key idea in the early development of dynamics was the ergodic hypothesis: if one samples
a system repeatedly and averages the results this should reflect the average behavior of the
system as a whole. Concretely, one would like to say that if T : X → X describes the
evolution of a system over time then for any measurement on the system f : X → R and
any given point x0 ∈ X (the initial configuration of the system) the average of the values
f(T n(x0)) should converge to the “average value” of the measurement. Specifically we would
like to say that

1

N

N−1∑
n=0

f(T n(x0))→ A(f)

where A represents the average value of f on the system. To make sense of this, the intro-
duction of a measure on X is necessary.

9.8 Probability Measures

Definition 9.8. A (Borel) probability measure on a metric space X is a set function
ν : B(X)→ [0, 1] satisfying:

• ν(X) = 1;

• ν(X \B) = 1− ν(B) for all B ∈ B; and

• ν(
⋃
j Bj) =

∑
j ν(Bj) for all countable collections of disjoint Bj ∈ B

The notion of integration is defined as usual: first for characteristic functions, then linear
combinations of them and then for general Borel functions by approximation. Integration
will be written

∫
· dν. We will also use the shorthand

ν(f) =

∫
X

f(x) dν(x)

when thinking of a probability measure as a functional on functions.
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The ergodic theorem asserts the desired result: if there are no nontrivial invariant sets
then for ν-almost every x ∈ X

1

N

N−1∑
n=0

f(T n(x))→
∫
f dν

where ν is any Borel probability measure such that ν(T−1(B)) = ν(B) for all Borel sets B
(that is, ν is T -invariant).

9.9 The Space of Probability Measures

As we will see later, in general there need not exist invariant measures for a given group
action on a metric space. Therefore we will have the need to study the space of (Borel)
probability measures as a topological space.

Definition 9.9. The space of Borel probability measures(Borel) probability measures
on a metric space X will be written P (X).

There are a few natural topologies on the Borel probability measures. It will be more
convenient to define these topologies in terms of convergent sequences rather than open sets
(though the reader should be able to easily translate to the open set versions):

Definition 9.10. Let X be a metric space. The total variation metric on P (X) is given
by, for µ, ν ∈ P (X),

dTV (µ, ν) = ‖µ− ν‖ = sup{|µ(B)− ν(B)| : B is a Borel subset of X }.

Definition 9.11. Let X be a metric space. The weak-* topology on P (X) is defined by
νn → ν when νn(f)→ ν(f) for every f ∈ C(X).

We will exclusively use the weak-* topology on P (X) in what follows. This is the more
natural topology in our setting since it corresponds to treating P (X) as the (continuous)
dual of C(X) which is itself the (continuous) dual of X.

Proposition 9.9.1. Let X be a metric space. Then P (X) is itself a metric space under the
weak-* topology and will be compact when X is.

The compactness of P (X) is a consequence of the Banach-Alaoglu Theorem since P (X)
is the set of positive norm one elements of C(X)∗ and C(X) is a separable Banach space
when X is compact.

9.10 The Support of a Measure

The support of a measure is the smallest closed set on which the measure “lives” in the sense
that any smaller closed set has measure strictly less than one.
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Definition 9.12. Let X be a metric space and ν ∈ P (X) be a probability measure on X
(or more generally any measure on X). The support of ν is the minimal closed set C such
that ν(C) = 1. The support is written as supp ν.

The support is well-defined since the collection {C ⊆ X closed : ν(C) = 1} is nonempty
(ν(X) = 1 and X is closed) and since if ν(Cn) = 1 for n ∈ N then ν(∩Cn) = 1 also and
so Zorn’s Lemma implies there is a unique minimal element in that collection which will
necessarily be the support of ν by definition.

9.11 The Action on Functions and Measures

Let Gy X be a group acting continuously on a metric space. For f ∈ C(X) or f ∈ L∞(X, ν)
(for some measure ν) define gf by (gf)(x) = f(g−1x). This defined an action of G on
functions which is continuous when the G action on X is.

Likewise, for ν ∈ P (X) define gν by∫
f dgν =

∫
g−1f dν =

∫
f(gx) dν(x)

and this defines an action Gy P (X) which will be continuous when Gy X is continuous.
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Amenability

From the point of view of the ergodic theory of group actions (and the point of view of
group theory in general), the classes of amenable groups versus nonamenable groups exhibit
vastly different behavior. There are many equivalent definitions of amenability, the one most
telling for our purposes is:

Definition 10.1. Let Γ be a countable discrete group. If there exists an increasing sequence
of finite sets Fn ⊆ Γ such that ∪nFn = Γ and such that for each fixed γ ∈ Γ,

lim
n→∞

|γFn4Fn|
|Fn|

= 0

where γFn = {γf : f ∈ Fn} and | · | is cardinality then Γ is amenable. Such a sequence
{Fn} are called Følner sets for Γ.

10.1 Invariant Measures

The reason we adopt this as the definition is that Følner sets are exactly what is required to
do the sort of averaging along powers that was at the heart of the theory of transformations.
For example, recall that if T : X → X is a continuous map on a compact metric space then
we can construct an invariant measure on X for T as follows: let µ0 ∈ P (X) be any Borel
probability measure on X and define the probability measures µN by

µN(B) =
1

N

N−1∑
n=0

µ0(T−n(B))

for every Borel set B. Since P (X) is compact, there exists a weak* cluster point µ = limj µNj
.

Then µ is also a probability measure since µ(X) = limµNj
(X) = 1 and

∣∣µ(T−1(B))− µ(B)
∣∣ = lim

j

1

Nj

∣∣µ(T−Nj(B))− µ(B)
∣∣ ≤ lim

j

2

Nj

= 0

so µ is T -invariant.

The reason for definition of amenability is the right one for our purposes is illustrated by
the following fact:

Proposition 10.1.1. Let Γ be a countable discrete amenable group and Γ y X a (Borel)
action on a compact metric space X. Then there exists an invariant probability measure
µ ∈ P (X) for the Γ-action: γµ = µ for all γ.
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Proof. Let {Fn} be a sequence of Følner sets for Γ. Take µ0 ∈ P (X) to be an arbitrary
Borel probability measure on X and define the probability measures µn by

µn =
1

|Fn|
∑
f∈Fn

fµ0.

For each fixed γ ∈ Γ,

‖γµn − µn‖ =
∥∥∥ 1

|Fn|
∑
f∈Fn

γfµ0 − fµ0

∣∣∣ ≤ 1

|Fn|
∑

g∈γFn4Fn

‖gµ0‖ =
|γFn4Fn|
|Fn|

which tends to zero as n→∞ since the {Fn} are a Følner sequence. Since P (X) is compact,
there is a weak* cluster point µ that is clearly a probability measure. Moreover, for each
fixed γ ∈ Γ, it holds that γµ = µ from the above.

This indicates that we may use Følner sets as a replacement for the 1
N

∑N−1
n=0 average used

for transformations and largely expect (and obtain) the same results; in fact, even results
such as the mean and pointwise ergodic theorems hold in this setting.

10.2 Invariant Measures Need Not Exist

Not every group is amenable, in fact the free group on two generators F2 is not amenable.
This presents an immediate issue when attempting an ergodic theoretic study of actions of
the free group in that there need not always exist invariant probability measures.

Consider the action of F2 = 〈a, b〉 on the space X of all finite and infinite words in
the letters a, a−1, b, b−1 with cancellation. Then X is a compact metric space with the word
metric (the distance between two words is 2−n where the nth letter is their first disagreement;
the compactness follows from including the infinite words). Clearly F2 y X by the action
of left multiplication with cancellation.

Suppose that there exists an invariant probability measure ν ∈ P (X) for the F2-action.
For any finite word w, let Bw be the Borel set of all words in X that begin with w. Then

ν(Ba) + ν(Ba−1) + ν(Bb) + ν(Bb−1) + ν({e}) = ν(X) = 1.

Now also, Ba = a(Be \Ba−1) since multiplying any word not starting with a−1 by a yields a
word starting with a. Since ν is invariant then

ν(Ba) = ν(a(Be \Ba−1)) = ν(Be \Ba−1) = ν(Be)− ν(Ba−1) = 1− ν(Ba−1).

By symmetry, then ν(Ba) = ν(Ba−1) = 1/2. The same must hold with b so ν(Bb) = ν(Bb−1) =
1/2 but this leads to a contradiction since then

1 = ν(Ba) + ν(Ba−1) + ν(Bb) + ν(Bb−1) + ν({e}) = 2 + ν({e}).

– 92 –



Chapter 10. Amenability

Therefore there are no invariant probability measures on X for the F2-action. We will return
to this issue later, but point out for now that a group being amenable makes the study of
its action on metric spaces far more reasonable.

10.3 Characterizations of Amenability

Amenability was first defined by von Neumann and the name amenable was introduced by
Day. There are many equivalent characterizations of amenability, the one we will use most
frequently is the existence of Følner sets but we will also make use of some of the others.
The more common definition of amenable is in terms of the existence of an invariant mean
(hence the deliberate mispronunciation of the word amenable).

Definition 10.2. Let Γ be a countable discrete group. A mean on Γ is a finitely additive
probability measure m : 2Γ → [0, 1] such that m(Γ) = 1 and m(∪kj=1Bj =

∑k
j=1 m(Bk) for

any finite collection of disjoint subsets B1, . . . , Bk ⊆ Γ. A mean is an invariant mean when,
in addition, m(γB) = m(B) for all γ ∈ Γ and B ⊆ Γ.

An invariant mean essentially provides an answer to the question “what is the probability
that a random element belongs to a given subset?”. An easy example can be seen in the
case of the integers: let m be defined on subsets of Z as the upper density:

m(B) = lim sup
N→∞

1

2N + 1
|B ∩ {−N, . . . , N}|

for B ⊆ Z. Then m(Z) = 1 and for any disjoint collection B1, . . . , Bk ⊆ Z, it is clear that

m(
k⋃
j=1

Bj) =
k∑
j=1

m(Bk)

since ∣∣∣ k⋃
j=1

Bj ∩ {−N, . . . , N}
∣∣∣ =

k∑
j=1

|Bj ∩ {−N, . . . , N}|.

For any t ∈ Z and B ⊆ Z, writing B + t = {b+ t : b ∈ B},

|(B + t) ∩ {−N, . . . , N}| = |B ∩ {−N − t, . . . , N − t}| = |B ∩ {−N − t, . . . , N + t}| ± 2t

and therefore

m(B + t) = lim sup
N→∞

1

2N + 1
|(B + t) ∩ {−N, . . . , N}|

= lim sup
N→∞

2N + 1 + 2t

2N + 1

( 1

2(N + t) + 1
|B ∩ {−N − t, . . . , N + t}|

)
± 2t

2N + 1

= m(B)
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since t is fixed and N → ∞. Therefore m is an invariant mean and so the integers are
amenable.

For discrete groups the following are equivalent to amenability:

Theorem 10.3. Let Γ be a countable discrete group. The following are equivalent:

• Γ admits an invariant mean

• there exists Følner sets, Fn ⊆ Γ (Følner)

• there exists a sequence of probability measures µn ∈ P (Γ) such that ‖γµn − µn‖ → 0
for each γ ∈ Γ (Day)

• there exists a sequence of unit vectors xn ∈ `2(Γ) such that ‖γxn − xn‖ → 0 for each
γ ∈ Γ (Dixmier)

• if µ ∈ P (Γ) is symmetric then convolution by µ is a norm one operator (Kesten)

• if Γ acts isometrically on a separable Banach space with a weakly closed convex invari-
ant subset of the unit ball then Γ has a fixed point in that set

We will omit the proofs of the equivalences above since they will not be particularly
relevant to us.

10.4 Locally Compact Groups

For locally compact groups, some, but not all, of the characterizations carry over. The reader
not familiar with locally compact groups, and topological groups in general, can consult the
appendix. When the group is locally compact the definition becomes more intricate:

Definition 10.4. Let G be a locally compact group and Haar some Haar measure on G. A
linear functional m : L∞(G,Haar) → R is a mean when m(1) = 1 (here 1 is the identity
function which is constantly one) and when m(f) ≥ 0 for all f ≥ 0 (meaning f(x) ≥ 0
almost everywhere).

Definition 10.5. A mean m on a group G is left-invariant when the left action of G
on L∞(G,Haar) preserves m: for g ∈ G let Lg : L∞(G,Haar) → L∞(G,Haar) by Lgf(x) =
f(gx) and then m is left-invariant when m(Lgf) = m(f) for all f . Right-invariance is defined
similarly.

Definition 10.6. A locally compact group G is amenable when there is a left-invariant
(equivalently, right-invariant) mean on G.

Many of the above conditions carry over to the locally compact case when modified
appropriately. We mention the ones we will make use of:

Theorem 10.7. Let G be a locally compact second countable group. The following are
equivalent:
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• G is amenable

• there exists compact subsets, Følner sets, Kn ⊆ G with open interior Un such that
Haar(gKn4Kn)/Haar(Kn)→ 0 uniformly over compact sets in G and such that ∪nUn = G

• if G acts isometrically and continuously on a separable Banach space with a weakly
closed convex invariant subset of the unit ball then G has a fixed point in that set

10.5 Examples

Some examples of amenable groups are

• the integers Z (use Følner sets Fn = {−n, . . . , n})

• finite groups (use the counting measure normalized to total mass one)

• compact groups

• solvable groups

• direct products of amenable groups

• subgroups of amenable groups

• finitely generated groups of subexponential growth

Some examples of nonamenable groups are

• nonabelian free groups with two or more generators

• any group containing a free subgroup on two or more generators

• SLn(Z) for n ≥ 2

• SLn(R) for n ≥ 2

• more generally, any finitely generated linear group is either solvable or nonamenable
(Tits alternative)

Exercise 10.1 Show that any (closed) subgroup of an amenable group is also amenable.
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10.6 Ergodic Theorems

The existence of Følner sequences for a group allow most of the results about transformations
to be formulated and proved. As in the proof that there always exist invariant probability
measures, averaging over the Følner sets, generally speaking, leads to the same results as
for transformations and as a result ergodic theory of amenable groups closely follows that
of transformations. In fact, for amenable groups, analogues of even the pointwise ergodic
theorem holds:

Theorem 10.8 (The Pointwise Ergodic Theorem for Amenable Groups - Lindenstrauss
2001 [Lin01]). Let Γ be a countable discrete amenable group and Γ y X an ergodic action
on a compact metric space with µ ∈ P (X) an invariant measure. Let {Fn} be a tempered
Følner sequence for Γ. Then for every f ∈ L∞(X,µ),

lim
n

1

|Fn|
∑
γ∈Fn

f(γx) =

∫
f dµ

for µ-almost every x ∈ X.

Ergodicity for a group action, which we will define precisely later, simply means that
every invariant set is null or conull: if µ(γ−1(B)4B) = 0 for all γ ∈ Γ then µ(B) = 0 or
µ(B) = 1.

The notion of a tempered Følner sequence, due to Shulman, is the requirement that,
in addition to being a Følner sequence, we also require that | ∪k≤n F−1

k Fn+1| ≤ C|Fn+1|
for some constant C. Shulman also showed that every amenable group admits a tempered
Følner sequence. The necessity of the temperedness requirement is clear: Fn = {n2, . . . , n2 +
2n}∪{−n2, . . . ,−n2−2n} is a Følner sequence for Z but is known that the pointwise ergodic
theorem along {Fn} fails for every ergodic transformation.

Due to the fact that amenable groups admit averaging operations arising from Følner
sequences, much of the rest of our study will focus on groups that are nonamenable, where
the ability to average is not available and the methods become much more intricate.

10.7 Actions on Compact Metric Spaces

Amenability is also equivalent to the following statement, which will be used quite often in
what follows:

Theorem 10.9. Let Γ be a countable discrete group. Then Γ is amenable if and only if
for every compact metric space X such that Γ y X continuously, there exists a Γ-invariant
probability measure in P (X).

Proof. The if direction has already been shown. Assume now that for every compact metric
space X on which Γ y X continuously that there exists a Γ-invariant probability measure.
Let βΓ be the Stone-Cech compactification of Γ. Since Γ y βΓ continuously by extending
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the left multiplication action, there exists a Γ-invariant probability measure µ ∈ P (βΓ). For
B ⊆ Γ, define m(B) = µ(B). Then m(Γ) = 1 and

m(γB) = µ(γB) = µ(γB) = µ(B) = m(B).

If B1, . . . , Bk ⊆ Γ are disjoint then ∩jBj = ∅ since the image of Γ is homeomorphic to its
image in βΓ. Therefore m is an invariant mean.

The same holds for locally compact second countable groups and the proof is similar.
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Quasi-Invariant Actions

Amenable groups acting on compact metric spaces always admit invariant measures and as
a result one can proceed with ergodic theory in the same fashion as with transformations.
However, nonamenable groups, such as the nonabelian free groups, do not always admit such
invariant measures. As we have seen, the issue is essentially one of averaging: to obtain an
invariant measure (and anything resembling an ergodic theorem), we need a way to average
over the group; amenable groups admit Følner sets which play the averaging role, but for
nonamenable groups we need another tool.

11.1 Measures on Groups

The next natural step after introducing topology to groups is to introduce measures and
therefore be able to reason analytically.

11.1.1 Borel Measures

Let G be a locally compact topological group. The σ-algebra generated by the open sets of
G is called the Borel sets of G.

Definition 11.1. A regular Borel measure on a locally compact group is a countably
additive measure on the Borel sets of the group such that the measure of any compact set is
finite and the Borel sets are all (inner and outer) regular.

11.1.2 Haar Measure

A key fact about locally compact groups is the existence of a translation invariant σ-finite
measure on them.

Theorem 11.2 (Haar). Let G be a locally compact group. There exists a regular Borel mea-
sure Haar on G that is unique up to a multiplicative constant which is translation invariant:
Haar(gB) = Haar(B) for all Borel sets B in G and all g ∈ G. This measure is called a (the)
Haar measure on G.

We remark that integration against Haar measure can be defined exactly as integration
against the Lebesgue measure is defined.

11.1.3 Probability Measures on Groups

Definition 11.3. The space of probability measures on G, written P (G), consists of
all regular Borel measures on G that assign G a total measure of one.
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When G is countable and discrete the probability measures on G are just the `1(G)
functions µ : G→ [0, 1] such that

∑
g µ(g) = 1.

Definition 11.4. For a measure µ on a countable discrete group Γ, the integral is defined,
for any f : Γ→ C, as ∫

Γ

f(γ) dµ(γ) =
∑
γ

f(γ)µ(γ)

provided this sum converges absolutely.
For a measure µ on a locally compact group G the integral is defined as∫

G

f(g) dµ(g)

for any Borel function f on G analogously to integration for Lebesgue measure.

Definition 11.5. Let G be a locally compact group and µ1, µ2 ∈ P (G) be probability
measures on G. The convolution of µ1 and µ2, written µ1 ∗ µ2, is defined as∫

G

f dµ1 ∗ µ2 =

∫
G

∫
G

f(gh) dµ2(h) dµ1(g)

and µ1 ∗ µ2 ∈ P (G) when µ1, µ2|inP (G) so ∗ : P (G)× P (G)→ P (G) is a binary operation.

Proposition 11.1.1. Let G be a countable discrete group and µ1, µ2 ∈ P (G). Then

µ1 ∗ µ2(g) =
∑
h∈G

µ2(hg)µ1(h)

Proposition 11.1.2. The space of probability measures P (G) on a locally compact group is
a convex space with a binary operation (convolution).

Definition 11.6. A probability measure µ ∈ P (G) on a locally compact group G is admis-
sible when the support of µ generates G algebraically and some convolution power of µ is
nonsingular with respect to Haar measure.

11.1.4 Symmetric Measures

Probability measures on groups generally cannot be invariant under translation. In fact, a
translation invariant measure on a group is a Haar measure and as such a translation invariant
probability measure on a group can only exist when the group is finite (or compact).

That said, even though we cannot ask for a measure that is invariant under group multi-
plication (i.e. translation), we can still ask for measures which are invariant under the inverse
map of the group.

Definition 11.7. Let G be a group and µ ∈ P (G) a probability measure on it. The
symmetric opposite of µ is written µ̌ and defined by

µ̌(B) = µ{g−1 : g ∈ B}
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for all measurable B ⊆ G. When G is discrete this simply means that

µ(g−1) = µ(g)

for all g ∈ G.

Definition 11.8. Let G be a group. A (probability) measure µ ∈ P (G) on G is symmetric
when µ̌ = µ.

Note that if µ is a symmetric measure on G then for any function f : G → R we have
that ∫

G

f(g) dµ(g) =

∫
G

f(g−1) dµ(g)

which is most commonly how we will make use of the symmetry of a measure.

11.1.5 Moments

The moments of a measure are a way of quantifying how much of the measure is concentrated
on the elements with small word length. Moments of probability measures on Euclidean space
play a key role in probability theory and similar ideas can be used in ergodic theory.

Definition 11.9. Let Γ be a countable discrete finitely generated group and S a generating
set. Let µ ∈ P (Γ) be a probability measure on Γ. The first moment of µ relative to word
length from S is

M1(S, µ) =
∑
γ∈Γ

|γ|Sµ(γ)

The second moment (higher order moments being defined similarly) is

M2(S, µ) =
∑
γ∈Γ

|γ|2Sµ(γ)

Let S1 and S2 be finite generating sets for the same finitely generated group Γ. Write

C1,2 = max
s1∈S1

|s1|S2

to be the maximum word length of the elements of S1 relative to S2. Observe that

|γ|S1 ≤ C1,2|γ|S2

and by symmetry
|γ|S2 ≤ C2,1|γ|S1

and therefore
Mk(S1, µ) ≤ Ck

1,2Mk(S2, µ) ≤ (C1,2C2,1)kMk(S1, µ)

which means that either they are both finite or both infinite.
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Definition 11.10. Let Γ be a finitely generated group and µ ∈ P (Γ). Then µ has finite first
moment relative to word length when for some (equivalently for any) finite generating
set S we have M1(S, µ) < ∞. Likewise µ has finite second moment relative to word
length when the same holds for M2.

11.2 Stationary Measures

Definition 11.11. Let Gy X be a continuous action of a locally compact second countable
group on a compact metric space. Let µ ∈ P (G) be a probability measure onG and ν ∈ P (X)
be a probability measure onX. The convolution of ν by µ is the probability measure ‖mu∗ν
given by

µ ∗ ν =

∫
G

gν dµ(g)

in the sense that for any f ∈ C(X),

µ ∗ ν(f) =

∫
G

∫
X

f(gx) dν(x) dµ(g).

The existence of invariant measures for amenable groups can be rephrased in terms of
convolution: let {Fn} be a Følner sequence for Γ and define µn ∈ P (Γ) by

µn =
1

|Fn|
∑
f∈Fn

δf .

Then for any ν0 ∈ P (X) and γ ∈ Γ, we have that ‖γµn ∗ ν0−µn ∗ ν0‖ → 0 and so any weak*
cluster point of µn ∗ ν0 is an invariant measure on X.

For nonamenable groups, this is the key idea to replace averaging. Let G y X be a
continuous action on a compact metric space. Let µ ∈ P (G) be an admissible probability
measure on G (in particular, the support of µ generates G). Let ν0 ∈ P (X) be arbitrary and
define νN ∈ P (X) by

νN =
1

N

N−1∑
n=0

n times︷ ︸︸ ︷
µ ∗ µ ∗ · · · ∗ µ ∗ν0.

Let ν ∈ P (X) be any weak* cluster point of the νN . The existence is guaranteed by the
compactness of P (X) and clearly such a µ is a probability measure. Now ν will not be
invariant in general, however:

‖µ ∗ νN − νN‖ =
1

N
‖

N times︷ ︸︸ ︷
µ ∗ µ ∗ · · · ∗ µ ∗ν0 − ν0‖ ≤

2

N

and therefore µ ∗ ν = ν.

Definition 11.12. Let G y X be a continuous action of a group on a compact metric
space, µ ∈ P (G) and ν ∈ P (X). Then ν is µ-stationary when µ ∗ ν = ν.
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The discussion above leads to the closest analogue of the existence of invariant measure
that can be obtained for nonamenable groups:

Proposition 11.2.1. Let Gy X be a continuous action of a locally compact second count-
able group on a compact metric space and let µ ∈ P (G) be a probability measure on G. Then
there exists ν ∈ P (X) that is µ-stationary.

11.3 Quasi-Invariant Actions

Let Γ be a countable discrete group and Γ y X be a continuous action on a compact metric
space. Let µ ∈ P (G) be an admissible probability measure on G and let ν ∈ P (X) be a
µ-stationary probability measure on X. For γ ∈ Γ and B ⊆ X a Borel set, observe that

ν(γB) =

∫
1γB(x) dν(x) =

∫
1B(γ−1x) dν(x) =

∫
1B(x) dγ−1ν(x) = γ−1ν(B).

For γ ∈ suppµ, then

ν(γB) = γ−1ν(B) = γ−1µ ∗ ν(B) = γ−1
∑
g∈Γ

µ(g)gν(B) ≥ µ(γ)γ−1γν(B) = µ(γ)ν(B)

and since µ(γ) > 0 (as γ is in the support µ), this means that for every Borel set B with
ν(B) > 0, it holds that ν(γB) > 0. Of course the same holds for convolution powers of µ
and therefore, since µ is admissible, for every γ ∈ Γ and Borel set B with ν(B) > 0, it holds
that ν(γB) > 0.

Definition 11.13. Let Gy X be a continuous action of a locally compact second countable
group on a compact metric space. Then ν ∈ P (X) is G-quasi-invariant when the action
of G preserves the ideal of null sets for ν: for any Borel set B ⊆ X with ν(B) > 0 and any
g ∈ G, it holds that ν(gB) > 0.

The discussion above, combined with the fact that stationary measures always exist,
shows that:

Proposition 11.3.1. Let Gy X be a continuous action of a locally compact second count-
able group on a compact metric space. Then there exists a quasi-invariant probability measure
ν ∈ P (X) for the G-action.

We actually have only shown this for countable discrete groups; the locally compact
second countable case follows in a similar fashion but replacing the individual elements with
compact sets in G. We omit the details but remark that the above statement is still true for
the same reasons.

11.4 G-Spaces

The primary objects of study in the ergodic theory of group actions (especially that of
nonamenable groups) are:
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Definition 11.14. Let G be a locally compact second countable group and (X, ν) be a
standard Borel probability space such that the G-action on the measurable sets makes ν
quasi-invariant. Then Gy (X, ν) is a G-space.

Having placed the measure ν on the standard Borel space X, we generally are only
concerned with the measurable behavior of the group action. That is, we are interested in
phenomena that can be seen in the algebra of measurable sets modulo null sets. As a result,
often one considers actions on the algebra of Borel sets directly: a continuous action of a
locally compact second countable groupG on the Borel algebra B(X) of some compact metric
space X is called a continuous action when it is continuous with respect to the topology on
B(X) obtained by treating each Borel set as the indicator function of itself in the space of
Borel functions L∞(X) = C(X)∗∗.

Mackey proves that such an action at the level of the σ-algebra can always be realized
as a Borel action on a compact metric space:

Theorem 11.15 (Mackey). Let (X, ν) be a standard Borel probability space. Write B(X)
to denote the Borel sets. Assume that there is a continuous action of a (locally compact
second countable) group G on B(X) preserving the boolean operations: union, complement
and intersection.

Then there exists a standard Borel probability space (Y, η) where G acts on Y in a Borel
fashion and η is a quasi-invariant probability measure, that is (Y, η) is a G-space, and there
exists a Borel measure-class-preserving surjective map φ : X0 → Y0 defined on conull Borel
sets X0 ⊆ X and Y0 ⊆ Y such that φ∗ : B(Y ) → B(X), given by φ∗(B) = φ−1(B), is a
homeomorphic G-equivariant map (meaning that φ(gx) = gφ(x) for all g ∈ G and x ∈ X0).

Having decided to focus on the measurable aspects of the group actions, we now turn to
the notion of when two actions are isomorphic.

Definition 11.16. Let Gy (X, ν) and Gy (Y, η) be G-spaces. Then (X, ν) and (Y, η) are
G-isomorphic when there is a measure space isomorphism π : (X, ν)→ (Y, η) such that for
all g ∈ G, it holds that π(gx) = gπ(x) almost everywhere.

A map such that π(gx) = gπ(x) is called a G-equivariant map. We remark that
the above definition appears to allow for each element of G to have a null set where the
equivariance fails but it is a well-known result of Mackey that in such a case, there actually
exists a single null set that works for all elements; when G is countable this is straightforward,
the locally compact second countable case follows from the point realization theorem above.

11.5 Continuous Compact Models

Definition 11.17. Let (X, ν) be a (measurable) G-space. A compact metric space X0 and
fully supported Borel probability measure ν0 ∈ P (X0) is a continuous compact model
of (X, ν) when G acts continuously on X0 and there exists a G-equivariant measure space
isomorphism (X, ν)→ (X0, ν0).
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Theorem 11.18 (Varadarajan [Var63]). Let G be a locally compact second countable group
and Gy (X, ν) a G-space. Then there exists a continuous compact model for Gy (X, ν).

We defer the proof of this theorem to later when we will prove it in the more general
setup of factor maps (see Theorem 14.5).

11.6 L1-Continuity

Let G be a locally compact second countable group and X a compact metric space such
that Gy X in a Borel fashion. Then G acts on the space of Borel sets B(X) and preserves
the boolean operations of union, complement and intersection. Since the G-action on X is
Borel, the G-action on B(X) is continuous (recall the topology on the space of Borel sets is
inherited from the weak topology on L∞(X)). Therefore

Theorem 11.19. Let G y (X, ν) be an action of a locally compact second countable group
on a G-space. Then the G-action on L1(X, ν) is weakly continuous.

The reader is referred to the Appendix of Zimmer [Zim84] for details on the continuity of
actions of locally compact second countable groups. In the case when G is discrete, the above
statement can be proven as an easy consequence of Lusin’s Theorem since the topology on
G is discrete so it is enough to show that the statement holds for each fixed g ∈ G.

11.7 (G, µ)-Spaces

In the context of stationary actions, the tools of classical ergodic theory can also come into
play (albeit in a highly limited fashion as we will see in the next chapter on ergodicity).

Definition 11.20. Let G be a locally compact second countable group, µ ∈ P (G) an
admissible probability measure on G and (X, ν) a G-space such that µ ∗ ν = ν. Then
Gy (X, ν) is a (G, µ)-space.

Proposition 11.7.1. Let G be a locally countable second countable group and µ ∈ P (G) an
admissible probability measure on G. Let (G, µ) y (X, ν) be a (G, µ)-space. Then for each
g ∈ G there exists constants cg, Cg > 0 such that the Radon-Nikodym derivative satisfies
cg ≤ dgν/dν ≤ Cg.

Proof. First consider the case when G is countable discrete. Let g ∈ G. Since µ is admissible,
there is some convolution power µ(n) = µ ∗ · · · ∗ µ of µ such that µ(n)(g−1) > 0. Now

gν = gµ ∗ ν = gµ(n) ∗ ν =
∑
h∈G

µ(n)(h)(ghν) ≥ µ(n)(g−1)(gg−1ν) = µ(n)(g−1)ν

and therefore dgν/dν ≥ µ(n)(g−1). Now observe that

dν

dgν
(x) =

dgν

dν
(gx) ≥ µ(n)(g−1)
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and therefore dgν/dν ≤ µ(n)(g−1)−1.
Now consider when G is locally compact second countable. Let g ∈ G. By the L1-

continuity, there is some open set U in G containing g such that gν is approximated by
uν for all u ∈ U . Since µ is admissible there is some convolution power µ(n) such that
µ(n)(U) > 0 (this follows since some power is nonsingular with respect to Haar measure
and Haar measure is positive on open sets). A similar argument as above then gives the
result.

11.8 Approximation by Dense Subgroups

For invariant measures, it is enough to check invariance on a dense set:

Proposition 11.8.1. Let G y (X, ν) be an action of a locally compact second countable
group on a G-space. If G0 ⊆ G is a countable dense subset of G such that gν = ν for all
g ∈ G0 then ν is G-invariant.

Proof. Let B ⊆ X be a Borel set. Then 1B ∈ L1(X, ν). Let g ∈ G. Since G0 is dense
there exists gn ∈ G0 such that gn → g in G. By the L1-continuity then gn1B → g1B weakly.
So ν(g−1

n B) → ν(g−1B). Since G0 preserves ν, ν(g−1
n B) = gnν(B) = ν(B) and therefore

ν(g−1B) = ν(B) as needed.

However, for quasi-invariance this need not be the case. Without writing down a concrete
example, we simply remark that there is nothing preventing a situation where gn → g in G
and ν(g−1

n B) = n−1 for all n in which case on a countable dense set one has quasi-invariance
but it does not hold in the limit.

In particular, if G is a locally compact second countable group and Gy X is a continuous
action on a compact metric space and if Λ < G is a countable dense subgroup then for any
ν ∈ P (X) which is Λ-invariant, ν is automatically G-invariant; however if ν is only Λ-quasi-
invariant then ν need not be G-quasi-invariant.

11.9 The Koopman Representation

Just as with transformations, it is often useful to consider the group action at the level of
the L2 space.

Definition 11.21. Let Gy (X, ν) be an action of a locally compact second countable group
on a G-space. Let π : G→ U(L2(X, ν)) be given by

(π(g)f)(x) = f(g−1x)

√
dgν

dν
(x)

Then π is the Koopman representation of G on L2(X, ν).

Since G y (X, ν) is quasi-invariant, gν and ν are in the same measure class (have the
same null sets) for every g and therefore the Radon-Nikodym derivative dgν/dν exists and is
unique.
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Theorem 11.22. The Koopman representation is a strongly continuous unitary representa-
tion of G.

Proof. To see that π(g) is a unitary operator, using that the Radon-Nikodym derivative is
real-valued,

‖π(g)f‖2 =

∫
f(g−1x)

√
dgν

dν
(x)f(g−1x)

√
dgν

dν
(x) dν(x)

=

∫
|f(g−1x)|2 dgν(x) =

∫
|f(g−1gx)|2 dν(x) = ‖f‖2.

The continuity (in the strong operator topology) follows from the L1-continuity of the G-
action.

Unlike the case of transformations, it is not, in general, useful to consider the spectral
behavior of π(g) as individual operators (though we remark that for each g, the transforma-
tion Tg : X → X by x 7→ gx can be studied spectrally). It is more useful to consider the
representation π as a whole. The representation theory of groups is a rich subject with a
long history, but we will make minimal use of it in what follows.
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Ergodicity

Having established the ability to study group actions on probability spaces in a very general
framework, we now turn to applying the ideas from the classical theory. The first step is to
define what it means for a system to be ergodic, we will see later that the ergodic systems
are exactly the indecomposable objects just as they were in the classical theory.

Definition 12.1. Let Gy (X, ν) be an action of a locally compact second countable group
on a G-space. Then (X, ν) is an ergodic G-space when for every measurable B ⊆ X, if
ν(B4gB) = 0 for all g ∈ G then ν(B) = 0 or ν(B) = 1.

Proposition 12.0.1. Let (X, ν) be a G-space. Then G y (X, ν) is ergodic if and only if
the only G-invariant functions in L2(X, ν) are the constants.

Proof. Assume (X, ν) is G-ergodic. Let f ∈ L2(X, ν) such that f(gx) = f(x) almost every-
where. For c ∈ R, consider the set Bc = {x ∈ X : |f(x)| ≥ c}. For x ∈ Bc and g ∈ G, it
holds that gx ∈ Bc since f is invariant. Therefore Bc is a G-invariant set so ν(Bc) = 0 or
ν(Bc) = 1. Let c0 = inf{c ∈ R : ν(Bc) = 1}. Then |f(x) ≥ c0 almost everywhere and for any
c > c0, the set Ac = {x ∈ X : c0 ≤ |f(x)| < c} has the property that ν(Ac) = ν(Bc0\Bc) = 0.
So |f(x)| < c almost everywhere for every c > c0. Therefore |f(x)| = c0 almost everywhere.
Writing f(x) = |f(x)|e2πia(x) for some a : X → [0, 1], a similar argument shows that a is
also constant almost everywhere. So f is constant. The converse is obvious: consider the
characteristic function of any invariant set.

12.1 Ergodicity and Dense Subgroups

When G is countable this amounts to saying that for each g ∈ G, the transformation Tg :
(X, ν) → (X, ν) (which is quasi-invariant though not necessarily measure-preserving) is
ergodic. When G is locally compact second countable, it is actually enough to check the
ergodicity on a countable dense subset of G:

Proposition 12.1.1. Let G y (X, ν) be an action of a locally compact second countable
group on a G-space and let G0 ⊆ G be a countable dense subset. Then (X, ν) is G-ergodic
if and only if for every measurable set B ⊆ X such that ν(B4gB) = 0 for all g ∈ G0, it
holds that ν(B) = 0 or ν(B) = 1.

Proof. Clearly ergodicity implies ergodicity for any (Borel) subset of G. Let B be a measur-
able set such that ν(B4gB) = 0 for all g ∈ G0. Observe that for any g ∈ G

ν(B ∩ gB) =

∫
B

(g1B)(x) dν(x).
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Take gn ∈ G0 such that gn → g in G. Then, by the L1-continuity,

ν(B ∩ gnB)→ ν(B ∩ gB)

Since gn ∈ G0, then ν(B∩gnB) = ν(B) and so ν(B∩gB) = ν(B) meaning that ν(B\gB) = 0.
Similarly, ν(gB) = lim ν(gnB) = ν(B) and therefore ν(B \ gB) = 0.

12.2 Mean Ergodicity for Amenable Groups

As mentioned previously, for amenable groups the ability to average over Følner sets allows
us to follow the same methods as for transformations. The first result is then:

Theorem 12.2 (The Mean Ergodic Theorem for Amenable Groups). Let Γ be a countable
discrete amenable group and {Fn} a Følner sequence for Γ. Let Γ y (X, ν) be an ergodic
measure-preserving G-space. Then for any f ∈ L2

0(X, ν),

lim
n→∞

∥∥∥ 1

|Fn|
∑
γ∈F−1

n

π(γ)f
∥∥∥ = 0

where π is the Koopman representation.

Proof. Consider first functions h ∈ L2(X, ν) of the form h = f − π(γ0)f for f ∈ L2(X, ν)
and γ0 ∈ Γ. For such a function h, observe that∥∥∥ 1

|Fn|
∑
γ∈F−1

n

π(γ)h
∥∥∥ =

∥∥∥ 1

|Fn|
∑
γ∈F−1

n

π(γγ0)f − 1

|Fn|
∑
γ∈F−1

n

π(γ)f
∥∥∥

=
∥∥∥ 1

|Fn|
∑

γ∈(γ0Fn)−1

π(γ)f − 1

|Fn|
∑
γ∈F−1

n

π(γ)f
∥∥∥

≤ 1

|Fn|
|γ0Fn4Fn|‖f‖ → 0

and therefore the result holds for the space of all such functions h and hence for the closure
of the span of such functions.

Now let h be orthogonal to the closure of the span of such functions. Then for all
f ∈ L2(X, ν) and all γ ∈ Γ, it holds that 〈h, f − π(γ)f〉 = 0. Therefore 〈h− π(γ−1)h, f〉 = 0
for all f ∈ L2(X, ν). So h − π(γ)h = 0 for all γ ∈ Γ meaning that h is Γ-invariant hence
constant.

12.3 The Random Ergodic Theorem

For nonamenable groups, the lack of Følner sequences prevents anything like the mean
ergodic theorem from being possible in any direct fashion. However, as we have seen already,
by introducing a measure on the group, we can always obtain stationary measures. The ideas
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from the classical theory of transformations applied to the convolution operator in place of
the Koopman operator then lead to the following ergodic theorem:

Theorem 12.3 (The Random Ergodic Theorem). Let G be a locally compact second count-
able group and µ ∈ P (G) a symmetric admissible probability measure on G. Let (X, ν) be
an ergodic (G, µ)-space. Let f ∈ L2

0(X, ν). Then for µN-almost every ω = (ω1, ω2, . . .) ∈ GN,

lim
N→∞

1

N

N−1∑
n=1

f(ωnωn−1 · · ·ω1x) = 0

where the convergence is both pointwise and in L1 with respect to ν.

Before proving the random ergodic theorem, we prove the closest analogue of the state-
ment that every invariant function is constant:

Theorem 12.4. Let G be a locally compact second countable group and µ ∈ P (G) a symmet-
ric admissible probability measure on G. Let (X, ν) be a (G, µ)-space. Consider the operator
Pµ : L2(X, ν)→ L2(X, ν) given by

(Pµf)(x) =

∫
G

f(g−1x) dµ(g).

Then (X, ν) is G-ergodic if and only if the only Pµ-invariant functions are constant.

Proof. Assume (X, ν) is G-ergodic. Let f ∈ L2(X, ν) be a Pµ-invariant function: Pµf = f .
Then

|f(x)| =
∣∣ ∫ f(g−1x) dµ(g)

∣∣ ≤ ∫ |f(g−1x)| dµ(x) = (Pµ|f |)(x)

with equality if and only if f(g−1x) are all the same sign. So Pµ|f | − |f | is a nonnegative
function. Now ∫

X

(Pµ|f | − |f |) dν =

∫
X

|f | dµ ∗ ν −
∫
X

|f | dν = 0

since µ ∗ ν = ν and therefore Pµ|f | = |f |. Therefore the set {x ∈ X : f(x) ≥ 0} is invariant
under the support of µ (since for almost every x, the f(g−1x) all have the same sign). Since
µ is admissible, then {x ∈ X : f(x) ≥ 0} is G-invariant hence measure zero or measure one.
Replacing f by fc(x) = f(x) − c for any constant c, we obtain that {x ∈ X : f(x) ≥ c} is
always measure zero or measure one. Therefore f(x) is a constant. So the only Pµ-invariant
functions are the constants.

Conversely, if B is a G-invariant Borel set then 1B is a G-invariant function in L2 hence
is Pµ-invariant. Therefore if every Pµ-invariant function is constant then every G-invariant
set is null or conull.

Proof of the Random Ergodic Theorem. Consider the space Y = GN × X and the measure
η ∈ P (Y ) given by η = µN × ν. Then (Y, η) is a probability space. Let θ : GN → GN be the
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shift map: θ(ω1, ω2, ω3, . . .) = (ω2, ω3, . . .). Define the map T : Y → Y by

T (ω, x) = (θ(ω), ω1x) that is T (ω1, ω2, ω3, . . . , x) = (ω2, ω3, . . . , ω1x).

Then
T∗η = T∗(µ

N × ν) = µN × (µ ∗ ν) = µN × ν = η

so T : (Y, η)→ (Y, η) is a (non-invertible) probability-preserving transformation. The point-
wise ergodic theorem applied to T then gives the pointwise result and an application of
Dominated Convergence yields the L1 result.

We remark that the order of the ωj terms in the random ergodic theorem is far from
arbitrary. In fact, while

lim
N→∞

1

N

N−1∑
n=1

f(ωnωn−1 · · ·ω1x) = 0,

if we reverse the order to
1

N

N−1∑
n=1

f(ω1ω2 · · ·ωnx)

we will observe far far different behavior (this will be explained in more detail when we
discuss Poisson boundaries).

12.4 Ergodic Decomposition

As with transformations, it is possible to decompose an arbitrary quasi-invariant G-space
into ergodic components, each of which is an ergodic G-space. We will return to this in more
detail when studying the analogue of factors, called G-maps, in a later chapter.

We remark now that the mean ergodic theorem for amenable groups can be formulated
for non-ergodic actions:

Theorem 12.5 (The Mean Ergodic Theorem for Amenable Groups). Let Γ be a countable
discrete amenable group and {Fn} a Følner sequence for Γ. Let Γ y (X, ν) be a G-space.
Let I be the subspace of π(Γ)-invariant functions in L2(X, ν):

I = {f ∈ L2(X, ν) : π(γ)f = f for all γ ∈ Γ }.

Then for any f ∈ L2(X, ν),

lim
n→∞

∥∥∥ 1

|Fn|
∑
γ∈F−1

n

π(γ)f − E[f |I]
∥∥∥ = 0

where π is the Koopman representation.

The proof is identical to that in the case when the action is ergodic; the only point
in the proof where ergodicity was used was to conclude that any invariant function was
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constant. We remark, however, that the space of invariant functions is a bit subtle here
due to the presence of the Radon-Nikodym derivative. In the case when ν is invariant,
π(γ)f(x) = f(g−1x) and so the notion of a Γ-invariant function coincides with that of a
π(Γ)-invariant function. In the case of quasi-invariance, being π(Γ)-invariant means that

f(x) = (π(γ)f)(x) = f(g−1x)

√
dgν

dν
(x)

almost everywhere. In the case of quasi-invariant actions, I is merely a closed subspace of
L2 and does not necessarily correspond to a subalgebra or factor.
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Mixing Properties

Thinking of the mean ergodic theorem for transformations as saying that ergodicity is mixing
on the average led to the study of weak and strong mixing for transformations. Similar
notions can be defined for group actions and we explore them now. As usual, for amenable
groups, the intuition from the classical theory generally carries over, but for nonamenable
groups many of the definitions and results are quite different.

In particular, when discussing quasi-invariant, but not invariant, measures, the definitions
all must be formulated at the spectral level in terms of the Koopman representation and not
at the level of functions. For example, to say that a quasi-invariant action G y (X, ν) is
mixing, one must consider the behavior of∫

f(g−1x)

√
dgν

dν
(x)h(x) dν(x)

as “g →∞”.

13.1 Compact Actions

To define weak mixing for group actions requires a bit more than the straightforward lack of
eigenvalues that was used as the definition of weak mixing for transformations. Rather than
considering just one Koopman operator, we must consider the entire Koopman representa-
tion. The analogue of an eigenfunction in the context of group actions is:

Definition 13.1. Let Gy (X, ν) be an action of a locally compact second countable group.
A function f ∈ L2(X, ν) is precompact for Gy (X, ν) when {π(g)f : g ∈ G} is a compact
set in L2(X, ν) (here π is the Koopman representation).

Definition 13.2. Let G be a locally compact second countable group. Then Gy (X, ν) is
a compact action when every f ∈ L2(X, ν) is precompact for Gy (X, ν).

Proposition 13.1.1. Gy (X, ν) is a compact action if and only if π(G) ⊆ U(L2(X, ν)) is
precompact in the strong operator topology.

Proof. Assume first that π(G) is precompact in the strong operator topology. Set K = π(G)
which is then compact. For any f ∈ L2(X, ν), π(G)f = Kf is compact since it is the
continuous image of the compact set K.

Assume now that every f ∈ L2(X, ν) is precompact for G y (X, ν). By Zorn’s Lemma,
there is some (at most) countable collection {f1, f2, . . .} in L2(X, ν) such that

L2(X, ν) =
∞⊕
n=1

span π(G)fn.
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Since π(G)fn is compact, so is the group of isometries of it (with respect to the distance
induced by the L2-norm). Then π(G) embeds into the product of those isometry groups,
which is compact, and as this embedding is continuous, π(G) must be precompact.

One of the main tools in the study of compact actions and precompact functions is the
Peter-Weyl Theorem:

Theorem 13.3 (Peter-Weyl Theorem). Let G be a compact group and π : G → U(H) be
a strongly continuous representation of G on a Hilbert space H. Then H decomposes as a
direct sum of π(G)-invariant finite-dimensional subspaces.

Proof. Let m be the Haar probability measure on G. By Zorn’s Lemma, there is some (at
most) countable collection {f1, f2, . . .} in H such that

H =
∞⊕
n=1

span π(G)fn.

Define the operator K on L2(X, ν) by, for f, h ∈ H

〈Kf, h〉 =
∞∑
n=1

∫
G

〈π(g)f, fn〉〈fn, π(g)h〉 dm(g).

Then

〈π(g−1)Kπ(g)f, h〉 = 〈Kπ(g)f, π(g)h〉 =
∞∑
n=1

∫
G

〈π(q)π(g)f, fn〉〈fn, π(q)π(g)h〉 dm(q)

=
∞∑
n=1

∫
G

〈π(q)f, fn〉〈fn, π(q)h〉 dm(q) = 〈Kf, h〉

by the invariance of the Haar measure. So K is conjugation-invariant.
Now 〈Kf, f〉 =

∫
|〈π(g)f, f〉|2 dm(g) ≥ 0 so K is a positive operator and for any hn ∈ H

such that hm → 0 weakly,

‖Khm‖2 =
∑
n

∫
〈π(g)hm, fn〉〈fn, π(g)Khn〉 dm(g)

=
∑
n,t

∫ ∫
〈π(g)hm, fn〉〈fn, π(q)hm〉〈π(q)π(g−1)fn, fn〉 dm(q) dm(g)

which then tends to zero. Therefore K is a compact positive operator so by the spectral
theorem, H decomposes as a direct sum of eigenspaces for K, which are necessarily finite-
dimensional by compactness, and are π(G)-invariant because K is conjugation-invariant.

Corollary 13.4. Let G y (X, ν) be a compact action. Then L2(X, ν) decomposes as a
direct sum of finite-dimensional π(G)-invariant subspaces.
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Proof. Let K = π(G) be the compact subgroup of the unitary group of L2(X, ν). Then the
identity map is a strongly continuous unitary representation and the result follows by the
Peter-Weyl Theorem.

13.2 Weak Mixing

With the replacement for eigenfunctions established we can now define weak mixing:

Definition 13.5. Let Gy (X, ν) be an action of a locally compact second countable group.
Then the action is weak mixing when the only precompact functions in L2(X, ν) for the
G-action are the constants.

Proposition 13.2.1. Let G y (X, ν) be an action of a locally compact second countable
group. Then G y (X, ν) is weak mixing if and only if there are no finite-dimensional
subspaces of L2

0(X, ν) that are invariant under the Koopman representation.

Proof. Assume G y (X, ν) is weak mixing. Let L be a finite-dimensional subspace of
L2(X, ν) that is invariant under the Koopman representation. Then any f ∈ L is precompact
hence constant.

Conversely, if G y (X, ν) is not weak mixing then there is a nonconstant precompact
function. Since the space of precompact functions is invariant under the Koopman rep-
resentation, there is then a representation of G on that subspace (via the restriction of
the Koopman representation) that is compact and so by the Peter-Weyl theorem there are
finite-dimensional invariant subspaces.

For completeness, we mention another characterization of weak mixing, but we omit the
proof:

Theorem 13.6. Let G y (X, ν) be an action of a locally compact second countable group.
Then G y (X, ν) is weak mixing if and only if for every finite set F ⊆ L2

0(X, ν) and every
ε > 0 there exists g ∈ G such that |〈π(g)f, h〉| < ε for all f, h ∈ F .

When the group is amenable, there is also the analogue of the “density one sequence”
characterization that appeared for transformations:

Theorem 13.7. Let Γ be a countable discrete amenable group and {Fn} a Følner sequence
for Γ and Γ y (X, ν) be a Γ-space. Then Γ y (X, ν) is weak mixing if and only if for all
f, h ∈ L2

0(X, ν),

lim
n→∞

1

|Fn|
∑
γ∈F−1

n

∣∣〈π(γ)f, h〉
∣∣2 = 0

where π is the Koopman representation.

Just as with transformations, it is possible to decompose an action into a “compact part”
and a “weak mixing part”:
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Theorem 13.8. Let G y (X, ν) be a quasi-invariant action of a locally compact second
countable group and let π be the Koopman representation. Then there exists a π(G)-invariant
closed subspace K ⊆ L2(X, ν) such that π restricted to K is compact and π restricted to K⊥
has no precompact functions.

Proof. Clearly when the action is weak mixing the statement is true with K = C. So
assume the action is not weak mixing. Let Z be the collection of all orthonormal sets
F ⊆ L2(X, ν) such that span {π(g)f : g ∈ G} is finite-dimensional for all f ∈ F and such
that span {π(g)f : g ∈ G} are mutually orthogonal for f ∈ F . Then Z is partially ordered
by inclusion and any increasing chain in Z has union also in Z. As the action is not weak
mixing, Z is nonempty. By Zorn’s Lemma there is then a maximal element J ∈ Z. Let
K = ⊕f∈J span {π(g)f : g ∈ G}. Then π restricted to K is compact since each element of J
generates a finite-dimensional representation. By maximality of J , K⊥ cannot contain any
precompact functions.

13.3 Strong Mixing

Mixing for quasi-invariant actions of groups is also formulated at the level of the Koopman
representation:

Definition 13.9. Let G be a locally compact second countable group and (X, ν) a G-space.
Then the action is mixing when for all f, h ∈ L2

0(X, ν),

lim
g→∞
〈π(g)f, h〉 = 0

where π is the Koopman representation and g → ∞ means along every sequence of g ∈ G
that is unbounded (is not contained in any compact set).

In the measure-preserving case, this can be stated as ν(gA ∩B)→ ν(A)ν(B) as g →∞
for all measurable sets A,B ⊆ X.

Definition 13.10. Let G be a locally compact second countable group. Then G has the
Howe-Moore property when every measure-preserving G-space is mixing.

Theorem 13.11 (Schmidt 1984 [Sch84]). Let G be a locally compact second countable group.
Then G has the Howe-Moore property if and only if every strongly continuous irreducible
representation of G on a Hilbert space is mixing.

In fact, the usual definition of the Howe-Moore property is in terms of representations,
but in our context (and due to the above theorem), we adopt the definition in terms of
measure-preserving actions.

Examples of groups having the Howe-Moore property are simple Lie groups (real and
p-adic) and automorphism groups of trees. It is an open question as to the existence of a
countable group with the Howe-Moore property.
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G-Maps, Compact Models and Factors

We now turn to the topic of factors and extensions for group actions. In addition, in this
chapter we will make concrete the relationship between the measurable action of the group
on the measure algebra of Borel sets and the action of a group on a compact metric space
with a Borel probability measure.

14.1 G-Maps

Recall that a map π : (X, ν) → (Y, η) is a measurable homomorphism when π : X →
Y is a measurable map and π∗ν = η (where the pushforward measure π∗ν is defined by
π∗ν(B) = ν(π−1(B)) for B ⊆ Y measurable).

Definition 14.1. Let G be a locally compact second countable group. Let Gy (X, ν) and
Gy (Y, η) be G-spaces. A measurable homomorphism π : (X, ν)→ (Y, η) is G-equivariant
when π(gx) = gπ(x) almost everywhere for each g ∈ G. Such a map is called a G-map.

When G is countable, the equivariance of a G-map is clearly equivalent to saying that
π(gx) = gπ(x) for all g ∈ G and all x is a conull set. The same is true for locally compact
second countable groups, a result of Mackey, which can also be seen from the results below
on the existence of compact models. For this reason, we will be somewhat informal in the
use of the implied quantifiers in the almost everywhere statement of equivariance.

When the measurable homomorphism is actually an isomorphism the map is then a
G-isomorphism.

Definition 14.2. Let G be a locally compact second countable group. If π : (X, ν)→ (Y, η)
is a G-map of G-spaces then (Y, ν) is a G-factor or G-quotient (or simply factor if G is
clear from context) of (X, ν) and (X, ν) is a G-extension (or simply extension) of (Y, ν).

14.2 Continuous Compact Models

We now turn to the question of the existence of compact models for measurable group actions
on probability spaces. This result does not appear explicitly in the literature until [CS14]
but the proof is essentially contained in [Zim84] and the ideas go back to [Var63].

Definition 14.3. Let (X, ν) be a (measurable) G-space. A compact metric space X0 and
fully supported Borel probability measure ν0 ∈ P (X0) is a continuous compact model
of (X, ν) when G acts continuously on X0 and there exists a G-equivariant measure space
isomorphism (X, ν)→ (X0, ν0).

Definition 14.4. Let π : (X, ν)→ (Y, η) be a measurable G-map of (measurable) G-spaces.
Let X0 and Y0 be compact metric spaces on which G acts continuously and let π0 : X0 → Y0
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be a continuous G-equivariant map. Let ν0 ∈ P (X0) and η0 ∈ P (Y0) be fully supported Borel
probability measures such that (π0)∗ν0 = η0. The map and spaces π0 : (X0, ν0)→ (Y0, η0) is
a continuous compact model for the G-map π and G-spaces (X, ν) and (Y, η) when there
exist G-equivariant measure space isomorphisms Φ : (X, ν) → (X0, ν0) and Ψ : (Y, η) →
(Y0, η0) such that the resulting diagram commutes: π = Ψ−1 ◦ π0 ◦ Φ.

Theorem 14.5 (Varadarjan [Var63]). Let G be a locally compact second countable group
and π : (X, ν)→ (Y, η) a G-map of G-spaces. Then there exists a continuous compact model
for π.

Proof. Let X be a countable collection of functions in L∞(X, ν) that separates points and let
Y be a countable collection in L∞(Y, η) that separates points. Let F = X ∪{f ◦ π : f ∈ Y}.
Let B be the unit ball in L∞(G,Haar) which is a compact metric space in the weak* topology
(as the dual of L1).

Define X00 =
∏

f∈F B and Y00 =
∏

f∈Y B, both of which are compact metric spaces using
the product topology. Define π00 : X00 → Y00 to be the restriction map: for f ∈ Y take the
f th coordinate of π00(x00) to be the (f ◦ π)th coordinate of x00. Then π00 is continuous.

Define the map Φ : X → X00 by Φ(x) = (ϕf (x))f∈F where (ϕf (x))(g) = f(gx). Then
Φ is an injective map (since F separates points). Observe that (ϕf (hx))(g) = f(ghx) =
(ϕf (x))(gh). Consider the G-action on X00 given by the right action on each coordinate.
Then G acts on X00 continuously (and likewise on Y00 continuously) and Φ is G-equivariant.
Similarly, define Ψ : Y → Y00 by Ψ(y) = (ψf (y))f∈Y where (ψf (y))(g) = f(gy).

Let X0 = Φ(X), let ν0 = Φ∗ν, let Y0 = Ψ(Y ), let η0 = Ψ∗η and let π0 be the restriction of
π00 to X0. Then Φ : (X, ν)→ (X0, ν0) and Ψ : (Y, η)→ (Y0, η0) are G-isomorphisms. Since
(ψf (π(x)))(g) = f(gπ(x)) = f ◦π(gx) = (ϕf◦π(x))(g), π0(X0) = Y0 and Ψ−1 ◦π0 ◦Φ = π.

Corollary 14.6. Let G be a locally compact second countable group and (X, ν) a G-space.
Then there exists a continuous compact model for Gy (X, ν).

Proof. Apply the above to (X, ν)→ 0 where 0 is the trivial one-point system.

Exercise 14.1 Show that the disintegration maps are (module null sets) independent of the
choice of compact model.

14.3 Point Realizations

A related notion to the existence of continuous compact models is that of point realizations
of closed invariant subalgebras:

Definition 14.7. Let G be a locally compact second countable group and Gy (X, ν) be a
G-space. Let F ⊆ L∞(X, ν) be a closed subalgebra that is G-invariant: if f ∈ F and g ∈ G
then g · f ∈ F where (g · f)(x) = f(g−1x) (equivalently, let S be closed sub-σ-algebra of the
measurable sets that is G-invariant). A point realization of F (or S) is a G-space (Y, η)
and a G-map π : (X, ν) → (Y, η) such that L∞(Y, η) ◦ π = F (equivalently such that the
pullbacks via π of the measurable sets of (Y, η) are S).
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Theorem 14.8 (Mackey 1962 [Mac62]). Let G be a locally compact second countable group
and Gy (X, ν) be a G-space. Let F be a closed G-invariant subalgebra of L∞(X, ν). Then
there exists a point realization for F .

The details are similar to the proof of the existence of compact models: replace Y in the
proof above with a countable dense collection of functions in F (with the norm inherited
from L∞(X, ν)) and the proof goes through with minor changes.

Our next observation is that quotients of G-spaces correspond to G-invariant sub-σ-
algebras:

Proposition 14.3.1. Let (X, ν) be a G-space. If π : (X, ν)→ (Y, η) is a G-map of G-spaces
then the pullback of η-measurable sets on Y to X is a sub-σ-algebra of the ν-measurable sets
on X which is invariant under G.

Conversely, if F is a sub-σ-algebra of ν-measurable sets that is G-invariant (that is, for
B ∈ F and g ∈ G also gB ∈ F) then there is a G-quotient (Y, η) with pullback of measurable
sets being F .

Proof. Write B to denote the Borel sets. We can and will assume that π is a Borel map and
that X and Y are compact Borel models of the actions.

Given π : (X, ν)→ (Y, η) define F = {π−1(B) : B ∈ B(Y )}. Observe that if A ∈ F then
A = π−1(B) for some Borel set B ⊆ Y . Then

X \ A = X \ π−1(B) = {x ∈ X : x /∈ π−1(B)}
= {x ∈ X : π(x) /∈ B} = {x ∈ X : π(x) ∈ Y \B} = π−1(Y \B)

so F is closed under complements (as the Borel sets are). If An ∈ F for n ∈ N then, writing
An = π−1(Bn), ⋃

n

An =
⋃
n

π−1(Bn) = {x ∈ X : ∃n π(x) ∈ Bn}

= {x ∈ X : π(x) ∈
⋃
n

Bn} = π−1(
⋃
n

Bn)

so F is closed under countable union as well. Hence F is a sub-σ-algebra. Finally, if A ∈ F
and g ∈ G then, since π(gx) = gπ(x),

gA = gπ−1(B) = {x ∈ X : g−1x ∈ π−1(B)} = {x ∈ X : π(g−1x) ∈ B}
= {x ∈ X : g−1π(x) ∈ B} = {x ∈ X : π(x) ∈ gB} = π−1(gB)

and since Gy Y in a Borel manner, gB is Borel so gA is also.
For the converse, observe that (X,F , ν) is a measure algebra with a quasi-invariant G-

action and therefore there is a compact model realizing this algebra as its Borel sets and the
G-map is given by conditional expectation (the point realization).

The following standard fact is also useful to keep in mind:
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Proposition 14.3.2. Let (X, ν) and (Y, η) be G-spaces. Then (Y, η) is a G-factor of (X, ν)
if and only if there is an equivariant unital weak-* continuous map from L∞(Y, η) onto a
weak-* closed *-subalgebra of L∞(X, ν).

Proof. If Y is a factor then there is an equivariant map π : X → Y and for f ∈ L∞(Y, η)
the function f ◦ π is in L∞(X, ν) and this mapping has the desired properties.

Conversely, the fact that the map is unital weak-* continuous and equivariant means it
takes characteristic functions to characteristic functions in an equivariant way. Since the
image is closed, the image of characteristic functions is also and therefore defines a sub-σ-
algebra which is G-invariant so the claim follows by the previous proposition.

14.4 The Disintegration Map

Given a G-map between G-spaces π : (X, ν) → (Y, η) the key notion in understanding the
map is the disintegration of ν over η:

Proposition 14.4.1. Let π : (X, ν) → (Y, η) be a G-map of G-spaces. For almost every y
there exists a unique measure Dπ(y) supported on π−1(y) and such that∫

Y

Dπ(y) dη(y) = ν.

Proof. Let F be any G-invariant sub-σ-algebra of the Borel sets of X (assuming X is a Borel
model for (X, ν)). We will in fact take F = {π−1(B) : B ∈ B(Y )} in what follows. For
f ∈ L∞(X, ν) and A ∈ F define

ηf (A) =

∫
A

f dν

Then ηf is a probability measure on X whose measurable sets are F . Clearly ηf is absolutely
continuous with respect to ν since if ν(A) = 0 then ηf (A) =

∫
A
f dν = 0. Therefore the

Radon-Nikodym derivative dηf/dν exists and is in L1(X, ν). Now dηf/dν is F -measurable by
construction so when F is the pullbacks of the Borel sets of Y over π we know that dηf/dν is
π-invariant. Hence it descends to an L1(Y, η) function:

Ff (y) =
dηf
dν

(π−1(y))

is well-defined since the derivative is constant on fibers over y. Define the map Dπ : Y →
P (X) by

Dπ(y)(f) = Ff (y)

This indeed defines a measure since if fn → f in C(X) then∣∣ηfn(A)− ηf (A)
∣∣ ≤ ∫

A

∣∣fn(x)− f(x)
∣∣ dν(x) ≤ ‖fn − f‖ → 0

so Ffn → Ff pointwise and therefore Dπ(y) is a continuous functional on C(X). Now for
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positive fn ∈ C(X) we have that, by Fubini,

η∑ fn(A) =

∫
A

∑
n

fn dν =
∑
n

∫
A

fn dν =
∑
n

ηfn(A)

and therefore
Dπ(y)(

∑
n

fn) =
∑
n

Dπ(y)(fn)

hence Dπ(y) is a measure. Now for f ≥ 0 clearly

ηf (A) =

∫
A

f dν ≥ 0

so Dπ(y) is positive and also Dπ(y)(1) = F1(y) = dη1/dν(y) = 1 so Dπ(y) ∈ P (X).
Observe that for f ∈ C(X) and y ∈ Y such that f(x) = 0 for all x such that π(x) = y

and for B ⊆ π−1(y) measurable

ηf (B) =

∫
B

f dν = 0

since f = 0 on B. Hence ηf
∣∣
π−1(y)

= 0 so

Dπ(y)(f) = Ff (y) =
dηf
dν

(x) = 0

for x such that π(x) = y. Therefore Dπ(y) is supported on π−1(y). We also have that∫
Y

Dπ(y)(f) dη(y) =

∫
X

Ff (π(x)) dν(x) =

∫
X

dηf
dν

(x) dν(x)

=

∫
X

dηf = ηf (X) =

∫
X

f dν = ν(f)

meaning that
∫
Y
Dπ(y) dη(y) = ν as required.

For uniqueness, observe that the Radon-Nikodym derivative can be defined from the
disintegration map by reversing the previous construction and therefore the uniqueness of
Radon-Nikodym derivatives implies the uniqueness of disintegration.

Definition 14.9. The measures Dπ(y) above are the disintegration measures. The map
Dπ : Y → P (X) which is defined η-almost everywhere is the disintegration of ν over η.
Dπ is also referred to as the disintegration map.

Definition 14.10. Let π : (X, ν) → (Y, ρ) be a G-map of G-spaces. Fix y ∈ Y . The
fiber of π over y is simply the set π−1(y) = {x ∈ X : π(x) = y} (where we are of course
implicitly referring to specific compact models of X and Y ). The barycenter equation
for disintegration is the fact that

∫
Y
Dπ(y) dρ(y) = ν.
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The disintegration map “disintegrates” ν over η by splitting ν into measures on each fiber
whose “average” is ν. In essence, this means that Dπ(y) is the “value” of ν on the points
mapping to y.

14.4.1 Disintegration of Composition Maps

The disintegration map of a composition of G-maps can, of course, be written in terms of
the disintegrations of its pieces. Specifically:

Proposition 14.4.2. Let π : (X, ν) → (Y, η) and φ : (Y, η) → (Z, ρ) be G-maps. Then the
composition φ ◦ π : (X, ν)→ (Z, ρ) is also a G-map and for ρ-almost every z

Dφ(z) = π∗Dφ◦π(z)

(where π∗ : P (X)→ P (Y ) is given by π∗α(B) = α(π−1(B))) and

Dφ◦π(z) =

∫
Y

Dπ(y) dDφ(z)(y)

Proof. Observe that since Dφ◦π(z) is supported on (a subset of) the set (φ ◦ π)−1(z) =
π−1(φ−1(z)) we have that π∗Dφ◦π(z) is supported on π(π−1(φ−1(z))) = φ−1(z). Also∫

Z

π∗Dφ◦π(z) dρ(z) = π∗

∫
Z

Dφ◦π(z) dρ(z) = π∗ν = η

from the barycenter equation for Dφ◦π and that G-maps push measures to one another. This
then means that π∗Dφ◦π(z) satisfies both conditions for being the disintegration of φ and so
by uniqueness the first claim is proven.

Similarly, since Dπ(y) is supported on a subset of π−1(y) the measure
∫
Y
Dπ(y) dDφ(z)(y)

is supported on a subset of ∪y∈φ−1(z)π
−1(y) = (φ ◦ π)−1(z) and we have that∫

Z

∫
Y

Dπ(y) dDφ(z)(y) dρ(z) =

∫
Y

Dπ(y) dη(y) = ν

from the barycenter equations for Dφ and Dπ. Then by uniqueness of disintegration the
second claim holds as well.

14.4.2 Disintegration is Measurable

We point out now the fairly obvious fact that the disintegration map is a measurable property
and does not depend on the compact models for the spaces or map.

Proposition 14.4.3. Let π : (X, ν) → (Y, η) be a G-map. Let (X ′, ν ′) and (Y ′, η′) be
compact models for (X, ν) and (Y, η) and let π′ : X ′ → Y ′ be a Borel representative of π
for these models. Then Dπ = Dπ′ almost surely (identifying Y and Y ′ over the measurable
isomorphism).
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Proof. Let φ : X → X ′ be the measurable G-isomorphism (so φ is a G-map defined ν-almost
everywhere and ν ′(φ(B)) = ν(B) for every measurable set B) and ρ : Y → Y ′ the other
measurable G-isomorphism. Then φ−1 : X ′ → X and ρ−1 : Y ′ → Y are also G-isomorphisms.
Of course the diagram of G-maps

(X, ν)
φ
-

�
φ−1

(X ′, ν ′)

(Y, η)

π
? ρ

-
�
ρ−1

(Y ′, η′)

π′
?

commutes and therefore π′(φ(x)) = ρ(π(x)), that is π′φ = ρπ. Therefore, by the properties
of disintegration of composition, for (almost every) y′ ∈ Y ′

Dπ′(y
′) = φ∗Dπ′φ(y′) = φ∗Dρπ(y′)(y′) = φ∗

∫
Y

Dπ(y) dDρ(y
′)(y)

Now φ is an isomorphism so φ∗ is also an isomorphism and ρ is an isomorphism so Dρ(y
′) =

δρ−1(y′) is the point mass at the preimage of y′. So

Dπ′(y
′) = φ∗Dπ(ρ−1(y′))

meaning they are isomorphic, i.e. equal, almost everywhere as claimed.

14.4.3 Conditional Expectation

Given a G-map π : (X, ν) → (Y, η) between G-spaces, let F be the pullback of the Borel
sets of Y over π, that is F = {π−1(B) : B ∈ B(Y )}. The conditional expectation is defined
as follows: let f be a Borel function on X. Then the conditional expectation of f over F ,
written E[f |F ], is the unique F -measurable function such that ν(E[f |F ]) = ν(f).

The connection between conditional expectation and disintegration is fairly clear. Specif-
ically, given f ∈ L∞(X, ν) define

F (y) = Dπ(y)(f)

and observe that F ◦ π is an F -measurable function on X and that

ν(F ◦ π) = π∗ν(F ) = η(F ) =

∫
Y

Dπ(y)(f) dη(y) = ν(f)

by the definition of disintegration. Hence F ◦π is the conditional expectation (by uniqueness
of conditional expectation). That is

Dπ(π(x))(f) = E[f |F ](x)
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14.5 Ergodic Decomposition

A crucial use of the point realization is the ergodic decomposition:

Definition 14.11. Let G y (X, ν) be a G-space where G is a locally compact second
countable group. The ergodic decomposition of G y (X, ν) is the G-map π : (X, ν) →
(Y, η) where (Y, η) is a point realization of the subalgebra of G-invariant measurable sets in
X. The individual fibers (π−1(y), Dπ(y)) (here Dπ is the disintegration of ν over η via π)
are referred to as the ergodic components and (Y, η) as the space of ergodic components.

Exercise 14.2 Prove that the G-action on the space of ergodic components is the trivial
action.

Exercise 14.3 Prove that for η-almost every y ∈ Y , the ergodic component (π−1(y), Dπ(y))
is an ergodic G-space.

Proposition 14.5.1. The ergodic decomposition is a functor on G-spaces and G-maps: if
π : (X, ν)→ (Y, η) is a G-map of G-spaces and eX : (X, ν)→ (Xerg, νerg) and eY : (Y, η)→
(Yerg, ηerg) are the ergodic decompositions then there exists a G-map πerg : (Xerg, νerg) →
(Yerg, ηerg) such that the following diagram commutes:

(X, ν)
π
- (Y, η)

(Xerg, νerg)

eX
? πerg- (Yerg, ηerg)

eY
?

Proof. Let FX = L∞(X, ν). Since (Xerg, νerg) is the space of ergodic components,

FX,erg = {f ◦ eX : f ∈ L∞(Xerg, νerg)} = {f ∈ FX : g · f = f for all g ∈ G }.

Let FY = {f ◦ π : f ∈ L∞(Y, η)} ⊆ FX . Then

FY,erg = {f ◦ eY ◦ π : f ∈ L∞(Yerg, ηerg)} = {f ∈ FY : g · f = f for all g ∈ G }.

Clearly FY,erg = FY ∩FX,erg. At the level of these inclusions it is clear that πerg = π. Taking
point realizations then gives the result.

14.6 Relatively Ergodic Extensions

Certain properties of G-maps merit special focus, specifically, it is possible to “relativize”
many properties of G-spaces to G-maps in a fiber-wise fashion. The first type of extension
we focus on is ergodic extensions:

Definition 14.12. Let π : (X, ν) → (Y, η) be a G-map of G-spaces. Then π is relatively
ergodic or an ergodic extension when every G-invariant measurable set in (X, ν) is the
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pullback over π of a G-invariant measurable set in (Y, η): specifically, if for some measurable
set B ⊆ X it holds that ν(B4gB) = 0 for all g ∈ G then ν(B4π−1(π(B))) = 0.

Clearly G y (X, ν) is ergodic if and only if it is an ergodic extension of the trivial
one-point system.

Proposition 14.6.1. Let π : (X,µ)→ (Y, ν) and ψ : (Y, ν)→ (Z, ζ) be G-maps of G-spaces.
Then ψ ◦ π is an ergodic extension if and only if π and ψ are both ergodic extensions.

The proof of the above proposition is essentially identical to that for transformations and
we leave it to the reader. Likewise, we make the following easy observation:

Proposition 14.6.2. Let π : (X, ν)→ (Y, η) be a G-map of G-spaces. Then π is relatively
ergodic if and only if the ergodic decompositions of (X, ν) and (Y, η) are G-isomorphic.

14.7 Common Factors

Given two G-spaces, it is possible that they share a common G-space as a factor:

Definition 14.13. A G-space (Z, ζ) is a common factor of two G-spaces (X, ν) and (Y, η)
when there exists G-maps π : (X, ν)→ (Z, ζ) and φ : (Y, η)→ (Z, ζ).

Given two G-factors of the same G-space, one can ask to what extent they “share”
something in common.

Definition 14.14. Let (X, ν) be a G-space and let π : (X, ν) → (Y, η) and φ : (X, ν) →
(Z, ζ) be G-maps of G-spaces. The maximal common factor of (Y, η) and (Z, ζ) below
(X, ν) is the (any) point realization of the algebra

F = L∞(Y, η) ◦ π ∩ L∞(Z, ζ) ◦ φ

where L∞(Y, η) ◦ π = {f ◦ π : f ∈ L∞(Y, η)} ⊆ L∞(X, ν) and likewise for L∞(Z, ζ) ◦ φ.

14.8 Joinings

As with transformations, one can formulate the notion of a joining which is the opposite of
a common factor:

Definition 14.15. Let (X, ν) and (Y, η) be G-spaces. A joining of (X, ν) and (Y, η) is a
probability measure α ∈ P (X × Y ) that is quasi-invariant under the diagonal G-action and
with projections to X and Y being ν and η respectively.

Definition 14.16. The independent joining of two G-spaces (X, ν) and (Y, η) is the
product measure.
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Definition 14.17. Let (X, ν) and (Y, η) be G-spaces with a common factor (Z, ζ). The
relatively independent joining of (X, ν) and (Y, η) over (Z, ζ) is

α =

∫
Z

Dπ(z)×Dφ(z) dζ(z)

where π : (X, ν) → (Z, ζ) and φ : (Y, η) → (Z, ζ) are the G-maps making (Z, ζ) a factor of
each.

We will not spend more time on the study of joinings of G-spaces here as we will not
make much use of them in what follows. Most of the theory of joinings of transformations
carries over to the case of group actions with minor modifications and they play a role in
many of the structural results on quasi-invariant actions.
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Measure-Preserving Extensions

The second class of extensions we will discuss has no analogue for transformations, since
in the case of transformations we focused exclusively on the measure-preserving case. For
general quasi-invariant actions, one can ask to what extent G-maps reduce the “amount”
of quasi-invariance. For example, if one has a quasi-invariant G-space (X, ν) that is not
measure-preserving and a measure-preserving G-space (Y, η) then clearly the projection map
(X × Y, ν × η)→ (Y, η) is a G-map where ν × η is “less” measure-preserving than η is. To
formalize this notion, we relativize measure-preserving to G-maps:

Definition 15.1. A G-map π : (X, ν) → (Y, ρ) is called relatively measure-preserving
when G commutes with Dπ: for all g ∈ G and almost every y ∈ Y we have gDπ(y) = Dπ(gy).

This will also be stated as saying that (X, ν) is a measure-preserving extension of
(Y, η) or that (Y, η) is a measure-preserving factor of (X, ν).

Even in the case of nonamenable groups, measure-preserving actions can be studied using
many of the techniques of the classical ergodic theory of transformations. For instance,
notions of weak mixing and compactness can be formulated appropriately and a structure
theory of actions can be formed. Moreover, by focusing on a single group element, one
can study the resulting transformation given by that element using the classical techniques.
While the relativized version of measure-preserving is far more technical, in principle the
same idea holds and in this sense the measure-preserving extensions are understood from a
structural point of view.

In this chapter we will study some of the basic properties of measure-preserving ex-
tensions, with an aim towards forming a more general structure theory for quasi-invariant
actions.

15.1 Measure-Preserving Extensions of a Point

A basic fact about relatively measure-preserving extensions is that a system is measure-
preserving if and only if it is a measure-preserving extension of a point, which in some sense
justifies the terminology.

Proposition 15.1.1. A G-space is measure-preserving if and only if the canonical G-map
from it to a point is relatively measure-preserving.

Proof. The map π : (X, ν) → ({p}, δ) given by π(x) = p clearly has Dπ(p) = ν. Thus
gDπ(p) = gν and Dπ(gp) = Dπ(p) = ν. So gDπ(p) = Dπ(gp) if and only if gν = ν.
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15.2 Composing Measure-Preserving Extensions

The most useful structural fact about measure-preserving extensions is that they are extremal
in the space of possible maps in the following sense:

Proposition 15.2.1. Let π : (X, ν) → (Y, ρ) and φ : (Y, ρ) → (Z, γ) be G-maps between
G-spaces. Then φ◦π is relatively measure-preserving if and only if both π and φ are relatively
measure-preserving.

Proof. Observe by Proposition 14.4.2 that

Dφ(z) = π∗Dφ◦π(z)

and also that

Dφ◦π(z) =

∫
Y

Dπ(y) dDφ(z)(y)

Assume now that φ ◦ π is relatively measure-preserving. For z ∈ Z and g ∈ G we then have

gDφ(z) = gπ∗Dφ◦π(z) = π∗gDφ◦π(z) = π∗Dφ◦π(gz) = Dφ(gz)

so φ is relatively measure-preserving. Then for z ∈ Z and y ∈ Y such that φ(y) = z and any
g ∈ G ∫

Y

Dπ(gy) dDφ(z)(y) =

∫
Y

Dπ(y) dgDφ(z)(y) =

∫
Y

Dπ(y) dDφ(gz)(y)

= Dφ◦π(gz) = gDφ◦π(z) =

∫
Y

gDπ(y) dDφ(z)(y)

meaning that Dπ(gy) = gDπ(y) for Dφ(z)-almost every y. Hence π is relatively measure-
preserving also.

Conversely, if π and φ are relatively measure-preserving then

gDφ◦π(z) =

∫
Y

gDπ(y) dDφ(z)(y) =

∫
Y

Dπ(gy) dDφ(z)(y)

=

∫
Y

Dπ(y) dgDφ(z)(y) =

∫
Y

Dπ(y) dDφ(gz)(y) = Dφ◦π(gz)

so φ ◦ π is relatively measure-preserving.

15.3 The Maximal Measure-Preserving Factor

Let (X, ν) be a G-space and let π : (X, ν) → (Y, η) and φ : (X, ν) → (Z, ζ) be relatively
measure-preserving G-maps between G-spaces. Let (W, ρ) be the maximal common factor
of (Y, η) and (Z, ζ) below (X, ν) (the point realization of the intersection of the embeddings
of L∞(Y, η) and L∞(Z, ζ) in L∞(X, ν)).
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We can rephrase our results above on relatively measure-preserving factors by saying
that:

Theorem 15.2. Let (X, ν), (Y, η), (W, ρ) be G-spaces and π : (X, ν) → (Y, η) and φ :
(Y, η) → (W, ρ) and define the composition map φ ◦ π : (X, ν) → (W, ρ) by composition.
That is, form the commutative diagram:

(X, ν)

(Y, η)

-

(W, ρ)
?�

Then the morphism on the left is relatively measure-preserving if and only if both on the
right are.

Therefore, to show the existence of a (unique) maximal measure-preserving factor, the
first step is, given the diagram

(X, ν)

(Y, η)

π

�
(Z, ζ)

φ
-

(W, ρ)
? π′
�

φ′ -

such that π and φ are relatively measure-preserving, to show that π′ (equivalently φ′) is
also relatively measure-preserving. We will defer this for a moment. Then in fact all the
morphisms in the above diagram are relatively measure-preserving by the preceding theorem
so in particular (W, ρ) is a relatively measure-preserving factor of (X, ν).

Since then any two relatively measure-preserving factors have a common factor which is
also measure-preserving, there is necessarily, by abstract considerations, a maximal measure-
preserving factor in the sense that it is a relatively measure-preserving factor of all the
measure-preserving factors of (X, ν) (including (X, ν) itself). Precisely speaking, this is a
type of direct limit construction:

Theorem 15.3. Let (X, ν) be a G-space. There exists a G-factor (Y, η) such that (Y, η) is a
relatively measure-preserving factor of (X, ν) and such that any relatively measure-preserving
factor (Z, ζ) of (X, ν) necessarily has (Y, η) as a relatively measure-preserving factor.

Proof. Let (Zq, ζq) be an enumeration of all the relatively measure-preserving G-factors of
(X, ν) (where q ranges over some ordinal). We will omit the measures for the rest of the
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proof in the interests of clarity. Note that since the measure algebra for X can be realized
as the Borel sets of a compact metric space there is a set-theoretic bound on the number of
such factors since each factor corresponds to an invariant sub-σ-algebra and since a compact
metric space is second countable there is a countable collection of open sets which generate
the Borel sets.

This set is naturally partially ordered by saying that Zq ≤ Zq′ when Zq is a G-factor
of Zq′ . Since the Zq are all relatively measure-preserving factors of (X, ν) the factor map
Zq′ → Zq is relatively measure-preserving as well. Now let Zqn be a chain in this set (that is
Zqn → Zqn+1 ranging over n in some ordinal). Let Fqn be the corresponding invariant algebra
and observe that

⋂
nFnq is then an invariant sub-σ-algebra which corresponds to some Zq

(by the previous work Zq exists since the composition of all these maps is still measure-
preserving). Therefore by Zorn’s Lemma there is a maximal element in the partially ordered
set.

It remains only to show that φ′ is relatively measure-preserving: observe that Dφ′ is G-
equivariant (that is g−1Dφ′(gw) = Dφ′(w) for all g) if and only if the conditional expectation
is G-equivariant, that is for f an F(Y )-measurable function on X we require that

E[g · f |F(W )](gx) = E[f |F(W )](x)

Since f is already F(Y )-measurable we know that

E[f |F(Z)] = E[f |F ]

and since φ is relatively measure-preserving we know that

E[g · f |F(Z)](gx) = E[f |F(Z)](x)

but this just means that

E[g · f |F(W )](gx) = E[f |F(W )](x)

that is, φ′ is relatively measure-preserving (of course this is not surprising as it is simply the
restriction of φ to an invariant sub-algebra).

15.4 The Radon-Nikodym Factor

An ingredient of any potential structure theory forG-spaces is the idea of a maximal measure-
preserving factor, that is, for any G-space (X, ν) a factor (Y, η) such that (X, ν) is a relatively
measure-preserving extension of (Y, η) and such that every relatively measure-preserving
factor is “between” them.

Definition 15.4 (Kaimanovich-Vershik [KV83]). Let (X, ν) be a G-space. The Radon-
Nikodym factor of this space is obtained by shrinking the measure algebra as follows: let
RN be the smallest σ-algebra (contained in that of (X, ν)) such that all the Radon-Nikodym
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derivatives dgν/dν are measurable. The Radon-Nikodym factor is then (X,RN , ν) and the
factor map is conditional expectation. The Radon-Nikodyn factor will be denoted RN(X, ν).

Note that the Radon-Nikodym factor is a G-space since RN is necessarily G-invariant
(due to its minimality).

Theorem 15.5 (Kaimanovich-Vershik [KV83]). Let (X, ν) be a G-space. The (X,RN , ν),
defined by taking RN to be the σ-algebra generated by the Radon-Nikodym derivatives dgν/dν
for all g, is the maximal measure-preserving factor of (X, ν) in the sense that if (Y, η) is
a relatively measure-preserving factor of (X, ν) then (X,RN , ν) is a relatively measure-
preserving factor of (Y, η). In particular, the only relatively measure-preserving factor of
(X,RN , ν) is itself.

Proof. We have already shown the existence of a maximal factor. Let π : (X, ν) → (Y, η)
be a relatively measure-preserving G-map of G-spaces. Then for any f ∈ L∞(X, ν) we have
that

gν(f) =

∫
X

f(gx) dν(x) =

∫
Y

∫
X

f(gx) dDπ(y)(x) dη(y)

=

∫
Y

∫
X

f(x) dgDπ(y)(x) dη(y) =

∫
Y

∫
X

f(x) dDπ(gy)(x) dη(y)

=

∫
Y

∫
X

f(x) dDπ(y)(x) dgη(y) =

∫
Y

∫
X

f(x) dDπ(y)(x)
dgη

dη
(y) dη(y)

=

∫
Y

∫
X

f(x)
dgη

dη
(π(x)) dDπ(y)(x) dη(y) =

∫
Y

Dπ(y)(f
dgη

dη
◦ π) dη(y)

and also that

gν(f) = ν(f
dgν

dν
) =

∫
Y

Dπ(y)(f
dgν

dν
) dη(y)

and therefore, since this holds for all f , we have that

dgν

dν
=
dgη

dη
◦ π

for almost every x. In particular this means that dgν/dν is F(Y )-measurable since it is π-
invariant.

Therefore, the Radon-Nikodym derivatives are measurable with respect to any invariant
sub-σ-algebra arising from a relatively measure-preserving map. In particular, they are all
measurable with respect to the maximal measure-preserving factor.

Conversely, define RN to be the σ-algebra generated by the Radon-Nikodym derivatives.
Clearly RN is G-invariant since

g · dhν
dν

=
dghν

dgν
=
dghν

dν

dν

dgν
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and each of the two functions on the right is in RN . Hence RN defines a G-factor of (X, ν).
Let π be the factor map to a compact model (Y, η) for this algebra and observe that

dgν

dν
(x) =

dgη

dη
(π(x))

since the Radon-Nikodym derivatives are measurable. By reversing the above argument we
see that π is relatively measure-preserving and therefore (X,RN , ν) is a relatively measure-
preserving factor of (X, ν).

Since (X,RN , ν) would then be a relatively measure-preserving factor of every relatively
measure-preserving factor, but on the other hand the maximal measure-preserving factor
must map to it, we have shown that the factor corresponding to the algebra of Radon-
Nikodym derivatives is the maximal factor as claimed.

15.5 Structure Theory

The existence of a maximal measure-preserving factor of any G-space is the first hint of a
potential structure theory for general quasi-invariant actions. However, the exact nature of
such a structure theory (or even if it truly exists) is unknown. Since measure-preserving
extensions can be analyzed using the classical techniques, the next logical step in the study
of ergodic theory is to formulate notions which are complementary to measure-preserving in
the hope that perhaps some combination of these ideas leads to a general theory.

The first such notion we will study is referred to as proximality, a notion which only makes
sense in the presence of a stationary measure. This will be the subject of the next chapter
where we will discuss Poisson boundaries of groups. The second such notion is the much
more recent idea of contractive actions, which are the natural opposite of measure-preserving
in the dynamical sense; this will be the focus of the chapter after next.
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The Poisson Boundary

Starting in the 1960s, Furstenberg developed the theory of boundaries as a means for studying
harmonic functions on nonabelian Lie groups. Since then it has developed as a powerful tool
in understanding the dynamics of nonamenable groups.

Furstenberg’s original papers [Fur63], [Fur67], [Fur71] and [Fur73], updated by Furman
[Fur02] and Bader and Shalom [BS05], should provide the interested reader with more in-
formation if desired. Applications of boundary theory appear in those works and also, for
example, Nevo and Zimmer’s structure theorem for actions of semisimple Lie groups [NZ02]
and Raugi’s work [Rau77].

16.1 Boundaries

Furstenberg developed boundary theory in the 1960s in an effort to generalize the classical
Poisson Transform to general Lie groups. Since then boundary theory has been found to
have applications both to Lie groups and to general locally compact groups and has been an
active area for almost fifty years.

Our presentation is based heavily on the development of boundary theory put forth by
Bader and Shalom [BS05] and we incorporate details from Furman [Fur02] and of course from
Furstenberg’s original papers. The reader is referred to those two excellent works for more
information. Of course the majority of the ideas in what follows are due to Furstenberg and
we also mention that Kaimanovich is responsible for a large amount of foundational work in
the theory.

16.1.1 The Classical Poisson Transform

Before embarking on a discussion of general boundary theory we recall the basic idea of the
classical Poisson Transform in complex analysis. Boundary theory generalizes this to Lie
groups and the classical transform is the motivating example for what follows.

Let G be the group of fractional linear transformations of C which preserve the unit disc
(equivalently that preserve the upper half plane if one then applies the standard conformal
mapping technique, i.e. G = PSL2(R)) in the sense that for g ∈ G we require that gD = D
where D = {z ∈ C : |z| < 1}. Let h : D → R be a bounded harmonic function on the disc.
Then the Poisson formula states that h can be written in terms of a bounded function f on
the boundary of the disc:

h(z) =

∫
∂D
f(x)Re

[1 + zx

1− zx

]
dm(x)

where m is the normalized Lebesgue measure on the boundary of the disc ∂D = {z ∈ C :
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|z| = 1}.
Given such a bounded harmonic function h : D → R we can determine a bounded

function on G using the formula h̃(g) = h(g(0)) for g ∈ G. The Poisson formula tells
us that h(0) =

∫
f(x) dm(x): the value of a harmonic function at 0 is the average value

along the boundary of the disc. Now hg(z) = h(g(z)) defines another bounded harmonic
function on the disc and due to the conformal nature of factional linear transformations it
is clear the value of hg at zero is the average along the boundary of the bounded function
fg(x) = f(g(x)) (that is, we can first shift the entire picture by g and take the average then
shift back). Therefore the Poisson formula implies that

h̃(g) =

∫
∂D
f(g(x)) dm(x) =

∫
∂D
f(x) dgm(x) = gm(f)

At this point it should be clear that the Lebesgue measure m is not preserved by the
fractional linear transformations, in fact any measure in the same class as the Lebesgue
measure can be obtained by the action of G on m. However, if K is a compact generating
set for G with open interior that is symmetric (K = K−1)) and we let α ∈ P (G) be the
Haar measure on G restricted to K and normalized to be a probability measure then it is
clear that α ∗m = m. This means that∫

G

h̃(g) dα(g) = α ∗m(f) = m(f) = h̃(0)

and so, in some sense, h̃ is a harmonic function on G. Since g is a fractional linear transfor-
mation that preserves the unit circle, in fact g(0) determines the element g completely and
so there is a one-one correspondence between bounded harmonic functions on the group G
and bounded functions on the unit circle.

The purpose of boundary theory is to generalize the above results on harmonic functions
as functions on the Lie group G to arbitrary Lie groups (and more generally to locally
compact groups) by constructing an appropriate “boundary” such that harmonic functions
on the group are in one-one correspondence, via a “Poisson formula”, to bounded functions
on this boundary.

16.1.2 Harmonic Functions on Groups

In order to make sense of our above discussion we first define what we mean by a harmonic
function on a group. We opt to present the most general approach first and then return to
Lie groups later.

Definition 16.1. A function φ : G→ R is µ-harmonic when for every g′ ∈ G we have that

φ(g′) =

∫
G

φ(g′g) dµ(g)

The space of all bounded (right) µ-harmonic functions on G is denoted Har(G, µ).
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Exercise 16.1 Show that the space of bounded (right) µ-harmonic functions on G is closed
under addition, scalar multiplication, pointwise limits (uniformly over compact sets when G
is locally compact) and under the action of multiplication on the left by G. Therefore, under
the supremum norm, Har(G, µ) is a G-Banach space.

Exercise 16.2 Show that the product of two harmonic functions need not be harmonic.
Therefore Har(G, µ) is not an algebra under the usual operations. However, there does

turn out to be an operation that makes them an algebra and to see this we introduce the
Poisson transform.

16.1.3 The Poisson Transform

Let (X, ν) be a (G, µ)-space. For f ∈ L∞(X, ν) define f̂ : G→ R by

f̂(g) =

∫
X

f(gx) dν(x) = gν(f)

Then ∫
G

f̂(g′g) dµ(g) =

∫
G

∫
X

f(g′gx) dν(x) dµ(g) =

∫
G

∫
X

f(g′x) dgν(x) dµ(g)

=

∫
X

f(g′x) d(µ ∗ ν)(x) =

∫
X

f(g′x) dν(x) = f̂(g′)

so f̂ is µ-harmonic. Moreover, |f̂(g)| ≤ ‖f‖L∞ so f̂ ∈ Har(G, µ).

Definition 16.2. Let G be a group and µ ∈ P (G). Let (X, ν) be a (G, µ)-space. The

mapping L∞(X, ν)→ L∞(G,Haar) by f 7→ f̂ is the Poisson Transform.

16.1.4 The Universal (Poisson) Boundary

The Poisson boundary is the space on which the Poisson Transform just described can be
inverted in a reasonable sense.

Consider the countable product GN with measure µN (the product measure). G acts on
this space by g(w1, w2, . . .) = (gw1, w2, . . .) (multiplication on the left in the first coordinate).

Let T be the map from GN to itself given by T (w1, w2, w3, . . .) = (w1w2, w3, . . .) (the left
shift combining the first two coordinates). We define the Poisson Boundary of G (relative
to µ) to be the space of T -ergodic components of GN with the push forward of the measure
T∗µ

N.

The Poisson boundary will (sometimes) be written PB(G, µ).

Since the G action commutes with T , the action descends to an action on the Poisson
boundary. Moreover, since µ∗ (µ×µ×· · · ) = (µ∗µ)×µ×· · · = T∗µ

N the measure ν on PB
is stationary for µ. It is clear that since G acts continuously on itself (by left multiplication)
the action of G on its Poisson boundary is continuous.
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16.1.5 Harmonic Functions and Boundaries

Let ϕ ∈ Har(G, µ). Define the maps ϕn : GN → R by ϕn(w1, w2, . . .) := ϕ(w1w2 · · ·wn). Let
Fn be the sigma-algebra generated by the first n coordinates of GN. Then

E[ϕn+1|Fn](w1, . . .) =

∫
G

ϕ(w1 · · ·wnwn+1) dµ(wn+1)

= ϕ(w1 · · ·wn) = ϕn(w1, . . .)

and |ϕn| ≤ |ϕ| so the ϕn form a martingale. We can then define ϕ(w1, . . .) := limn ϕn(w1, . . .)
which exists by the martingale convergence theorem for µN almost every path (w1, . . .). Now
ϕ : GN → R is T -invariant so ϕ descends to a function, also denoted ϕ, in L∞(PB(G, µ)).

Moreover, using Dominated Convergence and that ϕ is µ-harmonic,

ϕ̂(g) =

∫
PB(G,µ)

ϕ(gx) dν(x) =

∫
GN

ϕ(gw1, w2, . . .) dµ
N(w1, . . .)

=

∫
GN

lim
n
ϕ(gw1 · · ·wn) dµN(w1, . . .) = lim

n

∫
Gn

ϕ(gw1 · · ·wn) dµn(w1, . . . , wn)

= lim
n
ϕ(g) = ϕ(g)

so in fact the maps Har(G, µ)→ L∞(PB(G, µ))→ Har(G, µ) form an isomorphism.
Taking compact models, we may assume φ : GN → PB(G, µ), the T -ergodic component

map, is continuous. Then for f ∈ C(PB(G, µ)) and ω ∈ GN ,

f ◦ φ(ω) = lim
n
f ◦ φ(ω1, ω2, . . . , ωn, ω

′)

for any ω′ ∈ GN by the definition of continuity. Then

f̂ (ω) = lim
n
f̂(ω1 · · ·ωn) = lim

n

∫
GN

f(ω1 · · ·ωnφ(ω′))dµN(ω′)

= lim
n

∫
GN

f(φ(T n+1(ω1, . . . , ωn, ω
′)))dµN(ω′) = lim

n

∫
GN

f(φ(ω1, . . . , ωn, ω
′))dµN(ω′)

=

∫
GN

lim
n
f(φ(ω1, . . . , ωn, ω

′))dµN(ω′) =

∫
GN

f(ω)dµN(ω′) = f(ω)

by Dominated Convergence. Hence f̂ = f almost surely. As the continuous functions are
dense in L2(PB(G, µ)), the map ϕ 7→ ϕ from Har(G, µ) → L∞(PB(G, µ)) is the inversion
of the Poisson Transform.

16.1.6 Definition of Boundary

The formal definition of a (G, µ) boundary is now clear:

Definition 16.3. Any (G, µ)-space which is a quotient of the Poisson Boundary for (G, µ)
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is called a (G, µ)-boundary. A boundary is also sometimes referred to as a proximal
(G, µ)-space.

Boundaries correspond to G-invariant sub-σ-algebras of L∞(PB(G, µ)) which in turn

correspond to sub-σ-“algebras” of Har(G, µ). Keep note of the fact that f̂1f2 6= f̂1f̂2 but
that for boundaries ϕ1ϕ2 = ϕ1 ϕ2 (in fact this characterizes boundaries).

Exercise 16.3 Show that Har(G, µ) is a G-algebra under the “multiplication” operation ·
given by

(ϕ1 · ϕ2)(g) = ̂ϕ1(g)ϕ2(g).

16.2 The Limit Measures

Let (X, ν) be a (G, µ)-space. For any f ∈ L∞(X, ν) the sequence of numbers w1w2 · · ·wnν(f)
converges for µN-almost every path (w1, . . .). This means that w1 · · ·wnν converge in the
weak-* topology almost surely (take a countable dense subset of C(X); for each function in
that set there is a measure one set of convergence hence there is a measure one set that works
for all functions in the countable dense set which in turn works for all continuous functions
by continuity).

Definition 16.4. The probability measure νω = limnw1 · · ·wnν is the limit measure for
ω (it is also referred to as the conditional measure).

The barycenter equation states that

ν =

∫
GN

νω dµ
N(ω)

or, in other words, that ν is the barycenter of the limit measures. The proof is an easy
consequence of Dominated Convergence and stationarity:∫

GN

νω(f) dµN(ω) =

∫
GN

lim
n
ω1 · · ·ωnν(f) dµN(ω)

= lim
n

∫
GN

ω1 · · ·ωnν(f) dµN(ω) = lim
n
µ(n) ∗ ν(f) = ν(f)

where µ(n) is the n-fold convolution of µ with itself.

16.2.1 Stationary Joinings

An unfortunate truism about stationary systems is that the usual product system will not
be stationary. In fact it is easily checked that if (X, ν) and (Y, η) are (G, µ)-spaces then
(X × Y, ν × η) with the diagonal action of G has

µ ∗ (ν × η) =

∫
G

gν × gη dµ(g)

– 139 –



Chapter 16. The Poisson Boundary

and so µ ∗ (ν × η) = ν × η would imply that∫
G

gν × gη dµ(g) = ν × η =

∫
G×G

gν × hη dµ× µ(g, h)

which does not always happen. In fact, when that is the case for the join of a system with
itself we see that for any f ∈ L∞(X, ν) with ν(f) = 0 we would have that

µ ∗ (ν × ν)(f × f) =

∫
G

∣∣gν(f)
∣∣2 dµ(g) =

∫
G

∣∣f̂(g)
∣∣2 dµ(g)

and that, since ν(f) = 0,

(µ ∗ ν)× ν(f × f) = µ ∗ ν(f)ν(f) = 0

and therefore these being equal would imply that f̂ = 0 for all g hence gν(f) = ν(f) for
all f and therefore (X, ν) is a measure-preserving system. The product system is therefore
not in general stationary (and in fact when it is stationary one of the systems is measure-
preserving).

To rectify this problem, Furstenberg and Glasner have introduced the concept of a joining
of stationary systems:

Definition 16.5. Let (X, ν) and (Y, η) be (G, µ)-spaces. Define the measure λ ∈ P (X ×Y )
by

λ =

∫
GN

νω × ηω dµN(ω)

Then (X × Y, λ) is the (independent) stationary join of (X, ν) and (Y, η).

The join is the closest stationary system to the product system available. Note that it is
stationary:

Proposition 16.2.1. The join of two (G, µ)-spaces is a (G, µ)-space.

Proof. Let (X, ν) and (Y, η) be (G, µ)-spaces. Let λ ∈ P (X ×Y ) be the join measure. Then

µ ∗ λ =

∫
G

gλ dµ(g) =

∫
G

∫
GN

gνω × gηω dµN(ω) dµ(g)

=

∫
G

∫
GN

νgω × ηgω dµN(ω) dµ(g) =

∫
GN

νω × ηω dµ ∗ µN(ω)

where we have used that gνω = νgω which follows from that fact that for f ∈ C(X) we also
have fg(x) = f(gx) is continuous (taking a compact model where the G-action is continuous)
and therefore

gνω(f) = νω(fg) = lim
n
ω1 · · ·ωnν(fg) = lim

n
gω1 · · ·ωnν(f) = νgω(f)
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and therefore, writing T : GN → GN for T (ω1, ω2, ω3, . . .) = (ω1ω2, ω3, . . .),

µ ∗ λ =

∫
GN

νω × ηω dµ ∗ µN(ω)

=

∫
GN

νω × ηω dT∗µN(ω)

=

∫
GN

νT (ω) × ηT (ω) dµ
N(ω)

=

∫
GN

νω × ηω dµN(ω) = λ

since T∗µ
N = µ ∗ µN and νω is T -invariant by construction.

Note that if λ is the join of ν and η then λω = νω × ηω, that is the limit measure of the
join are the products of the limit measures.

We also remark that if (X, ν) is a (G, µ)-space and (Y, η) is a measure-preserving G-space
then the join of (X, ν) with (Y, η) is simply (X × Y, ν × η).

Proposition 16.2.2. The join of two proximal (G, µ)-spaces, i.e. boundaries, is a proximal
(G, µ)-space.

Proof. The limit measures are point masses for each proximal space hence the same holds
for the join. Below we will show that in fact a (G, µ)-space is a boundary if and only if the
limit measures are point masses (Theorem 16.8).

This allows us to define the maximal proximal space by taking the join of all proximal
spaces. This turns out to be an equivalent way to define the Poisson Boundary.

16.2.2 The Boundary Map

Let (X, ν) be a compact model for a (G, µ) space (meaning X is a compact G space and
µ ∗ ν = ν). Consider the map GN → P (X) given by ω 7→ νω. This map is defined µN

almost everywhere (as above). The map is obviously T invariant so it descends to the
boundary map β : PB(G, µ)→ (P (X), η) where η is the pushforward of µN. Clearly this
is a measurable G-map between G spaces.

Theorem 16.6 (Naturality of Limit Measures). Let π : (X, ν) → (Y, η) be a Borel G-map
of G-spaces. Then for µN-a.e. ω: π∗νω = ηω.

Proof. Fix f ∈ C(Y ) and ω such that the limit measures exist. Then

ηω(f) = lim
n
ω1 · · ·ωnη(f) = lim

n

∫
Y

f(ω1 · · ·ωny) dη(y)

= lim
n

∫
X

f(ω1 · · ·ωnπ(x)) dν(x) = lim
n

∫
X

f(π(ω1 · · ·ωnx)) dν(x)

= lim
n
ω1 · · ·ωnν(f ◦ π) = νω(f ◦ π) = π∗νω(f)
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Theorem 16.7. Any group acts amenably (in the sense of Zimmer [Zim84]) on its Poisson
Boundary.

Proof. The boundary map is a G-equivariant measurable map from PB to P (X) for any
G-space X.

16.2.3 Boundary Limit Measures Are Point Masses

Theorem 16.8. Let (X, ν) be a compact model for a (G, µ)-space. Then (X, ν) is a (G, µ)-
boundary if and only if the limit measures νω are point masses µN-almost surely.

Proof. Let π : (GN, µN) → (P (X), α) be the boundary map and φ : (GN, µN) → (X, ν) the
map witnessing that (X, ν) is a boundary.

Take f ∈ L∞(X, ν) and observe that since f̂ = f ◦ φ almost surely

π(ω)(f) = νω(f) = f̂ (ω) = f(φ(ω)) = δφ(ω)(f)

where δ· represents the point mass. Since this is true for every f ∈ L∞(X, ν) and since X is
compact, we have that νω = δφ(ω) almost surely.

In fact, letting δ : (X, ν) → (P (X), δ∗ν) be the map x 7→ δx, we have that π = δ ◦ φ
(measurably) and therefore that (X, ν) is isomorphic to (P (X), π∗µ

N) as (G, µ)-spaces. In
particular,

δ∗ν =

∫
X

δx dν(x) =

∫
X

δx dφ∗µ
N(x) =

∫
GN

δφ(ω) dµ
N(ω) =

∫
GN

π(ω) dµN(ω) = π∗µ
N

Conversely, if almost every limit measure is a point mass then there is a measurable map
ω 7→ x(ω) from GN to X such that νω = δx(ω) (which is obviously a shift-invariant G-map).
Consider the push-forward of µN under this map: call it η. Let f ∈ L∞(X, ν). Then

η(f) =

∫
GN

f(x(ω)) dµN(ω) =

∫
GN

δx(ω)(f) dµN(ω) =

∫
GN

νω(f) dµN(ω) = ν(f)

where the last equality is the barycenter equation. Therefore the push-forward of µN is in
fact ν so the map ω 7→ x(ω) is a (G, µ)-map witnessing that (X, ν) is a (G, µ)-boundary.

This gives the consequence that if any compact model of a (G, µ) space has the property
that almost every limit measure is a point mass then in fact every compact model has that
property. That is to say, having point masses as limit measures is in fact a measurable
property (that does not depend on the model).
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16.2.4 Uniqueness of the Boundary Map

We now show that the boundary map to a (G, µ)-space (X, ν) is the unique T -invariant
G-map from GN to P (X) with barycenter ν.

Let bar : P (P (X))→ P (X) be the barycenter map: bar(α) =
∫
P (X)

p dα(p).

Proposition 16.2.3. The boundary map is essentially unique: if β : GN → P (X) is any
T -invariant G-map such that bar(α∗µ

N) = ν then β is the boundary map (almost surely).

Proof. Let β : GN → P (X) be a T -invariant G-map such that the barycenter bar((β)∗µ
N) =

ν. Write η = β∗µ
N and then (P (X), η) is a (G, µ)-boundary. Now β factors through the

Poisson Boundary (being T -invariant) and so by the naturality of limit measures we have
that

ηω = (β∗µ
N)ω = β∗((µ

N)ω) = β∗δω = δβ(ω)

which agrees with the fact that for a boundary the limit measures are point masses. Now

β(ω) = bar(δβ(ω)) = bar(ηω)

= bar(lim
n
ω1 · · ·ωnη) = lim

n
ω1 · · ·ωnbar(η)

= lim
n
ω1 · · ·ωnν = νω

But this means that β is the boundary map as claimed.

16.2.5 Limit Measures are not Absolutely Continuous

We remark that Furstenberg and Glasner have shown that the limit measures being abso-
lutely continuous can happen only when the action is measure-preserving:

Theorem 16.9 (Furstenberg-Glasner [FG10]). Let (X, ν) be a (G, µ)-space. Then (X, ν) is
a measure-preserving G-space if and only if the limit measures νω are absolutely continuous
with respect to ν for almost every ω ∈ GN.

Therefore if (X, ν) is a stationary dynamical systems which is not measure-preserving
then in fact there is a positive measure set of random paths leading to limit measures which
are not absolutely continuous with respect to ν.

16.3 Amenability and the Poisson Boundary

Amenability is intricately connected with the Poisson Boundary and the corresponding
(non)existence of bounded harmonic functions on a group. We will use this characterization
of amenability in our results in later chapters.

16.3.1 Boundaries of Amenable Groups

A result of Kaimanovich and Vershik [KV83] states that amenability is equivalent to the
existence of a probability measure on the group yielding a trivial Poisson Boundary:
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Theorem 16.10 ([KV83]). Let G be a locally compact second countable or countable discrete
group. Then G is amenable if and only if there exists µ ∈ P (G) with support generating G
such that the Poisson Boundary PB(G, µ) is measurably isomorphic to the one point system.

Proof. The group G is amenable if and only if every compact metric G-space admits a G-
invariant (Borel) probability measure. Assume that there exists µ ∈ P (G) with support
generating G such that PB(G, µ) is the trivial (one point) system. Let X be any compact
metric space on which G acts. Let ν ∈ P (X) such that µ ∗ ν = ν (which we know always
exists). Now the boundary map GN → P (X) maps ω 7→ νω but factors through the Poisson
Boundary (which is a single point) so νω = ν for every ω. But then gν = gνω = νgω = ν so
ν is in fact G-invariant (actually ν is invariant for the support of µ hence for all of G). So
in fact G is amenable.

We will not actually make use of the converse in our work so we refer the reader to
[KV83] Theorem 4.3 for a complete proof that G being amenable implies the existence of
such a measure on G making the Poisson Boundary trivial.

We remark that there are amenable groups that admit nontrivial Poisson boundaries; an
example of this is the lamplighter group (under a somewhat unusual measure). However,

Exercise 16.4 Show that if G is an abelian group and µ ∈ P (G) is a symmetric admissible
probability measure on G then PB(G, µ) is trivial.

More generally this is true for virtually nilpotent groups (a result of Jaworski), or, equiv-
alently, by Gromov’s Theorem, this is true for all groups of polynomial growth.

16.3.2 The \Minimal" Amenable Space

On the one hand, the Poisson Boundary is an amenable space for the group and is therefore
quite large from the point of view of group dynamics. On the other hand, the limit measures
are almost surely point masses so in some sense the Poisson Boundary is quite small in
that there is no “extra room” beyond that which is needed to encompass all of the group
actions. This unique position of the Poisson Boundary as the “minimal” amenable space for
the group makes it quite useful in many contexts.

16.4 Boundaries of Specific Groups

We collect here some results giving explicit descriptions of the Poisson Boundary of certain
classes of groups, including Lie groups, lattices in Lie groups, and almost connected groups.

16.4.1 Boundaries of Lie Groups

The original motivation for Furstenberg’s boundary theory was to generalize the classical
Poisson Transform on the unit disc to Lie groups. Semisimple Lie groups have the most
well-developed and complete boundary theory and appear to be the largest class of groups
where the boundary is (or perhaps can be) well-understood.
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We also remark that boundaries were used by Zimmer as the first examples of amenable
actions of nonamenable groups and by Jaworski as the first examples of contractive spaces
(to be discussed in the following chapter).

Theorem 16.11 (Furstenberg [Fur63]). The Poisson boundary of a semisimple Lie group
G with finite center (relative to an admissible µ) is isomorphic to G/P (with the image of
µ) where P is a minimal parabolic subgroup of G (such subgroups are all conjugate).

In fact, Furstenberg showed that if G is a semisimple Lie group and K is a maximal
compact subgroup of G then for every admissible α ∈ P (G) which is K-invariant (that is,
for any α0 ∈ P (G) take α = mK ∗ α0 ∗ mK where mK is Haar measure restricted to K
and normalized to mK(K) = 1) the Poisson Boundary PB(G,α) is the same. That is, the
parabolic group P above depends only on K and not on the measure.

In particular, the Lie group PSL2(R) has the unit disc as its boundary which shows that in
fact the general construction of boundary theory generalizes the original motivating example
of the classical Poisson formula as was intended.

16.4.2 Boundaries of Lattices in Lie Groups

Shortly after developing the Poisson Transform for Lie groups, Furstenberg studied the
boundaries of lattices in such groups:

Theorem 16.12 (Furstenberg [Fur67]). Let G be a semisimple Lie group and Γ a lattice in
G. Let α ∈ P (G) be a K-invariant admissible measure on G (where K is a maximal compact
subgroup of G). Then there exists µ ∈ P (Γ) such that PB(Γ, µ) = PB(G,α) = G/P .

We will return to the topic of lattices in more detail in a later chapter and the reader is
referred there for precise definitions of lattices in groups.

16.4.3 Boundaries of Almost Connected Groups

While Lie groups are an important class of groups, we should also mention that a key
aspect of Furstenberg’s result has been shown to hold more generally for the class of almost
connected groups.

Definition 16.13. Let G be a locally compact group and G0 the connected component of
G. Then G is almost connected when G/G0 is compact (or finite).

Theorem 16.14 (Raugi [Rau77]). Let G be an almost connected locally compact group and
µ ∈ P (G) an admissible probability measure on G (the support of µ generates G and some
convolution power of µ is nonsingular with respect to Haar measure) with finite first moment.
Then the Poisson Boundary PB(G, µ) is a homogenous G-space (that is, G acts transitively
on it, i.e. it is of the form G/P for some P ).

Jaworski later improved this by removing the moment restriction:
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Theorem 16.15 (Jaworski [Jaw98]). Let G be an almost connected locally compact group and
µ ∈ P (G) an admissible probability measure on G. Then the Poisson Boundary PB(G, µ)
is a homogenous G-space.

Jaworski also showed that in general (the not almost connected case) this can fail: there
are groups where the Poisson Boundary is not a transitive space. The free group is an easy
example of this phenomenon.

16.4.4 The Free Group

Let G = F2 be the free group on two generators. Let X be the space of all finite and infinite
words in a, b, a−1, b−1 with cancellation. Then X is a compact metric space with distance
given by d(x, y) = 2−n where x, y agree on the first n letters but not on the n+1st letter. Let
µ ∈ P (F2) be the probability measure putting one-fourth measure on each of a, b, a−1, b−1.
Let ν0 = δe ∈ P (X).

Consider the map P : GN → X taking a sequence in G to the corresponding word
(performing cancellation). Let ν = P∗µ

N. Then µ ∗ ν = ν so (X, ν) is a (G, µ)-space. In
fact, as P is T -invariant, this makes (X, ν) a µ-boundary. Let f : GN → R be a T -invariant
measurable function. Clearly then f descends to X and so (X, ν) is the Poisson boundary.

It turns out that the measure ν is the unique nonatomic µ-stationary measure on X and
that it is fully supported on the geometric boundary of the regular 4-tree.

A similar argument shows that the free product Z2 ∗ Z3 also has a boundary that is the
geometric boundary of a treelike structure. Since PSL2[Z] is isomorphic to that free product,
this means that the nature of the boundary is intricately tied to the choice of measure: there
exists at least two boundaries of PSL2[Z], one of which is the unit circle (coming from the
fact that it is a lattice in PSL2[R]) and the other of which is the boundary of a treelike
structure.

16.5 Proximal Extensions

As with measure-preserving systems and ergodic systems, we can relativize the idea of being
a boundary to factor maps:

Definition 16.16. Let π : (X, ν)→ (Y, η) be aG-map of (G, µ)-spaces. Then π is relatively
proximal when for µN-almost every ω ∈ GN it holds that the G-map π : (X, νω) → (Y, ηω)
is a G-isomorphism.

In this case we say that (Y, η) is a proximal factor of (X, ν) and that (X, ν) is a
proximal extension of (Y, η).

Rather than state the details, we leave the following as exercises for the reader:

Exercise 16.5 Show that the above definition is well-formulated in the sense that π∗νω = ηω
almost surely.
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Exercise 16.6 Show that the composition of two G-maps is relatively proximal if and only
if the two maps are.

Exercise 16.7 Show that a (G, µ)-space is a boundary if and only if it is a proximal extension
of a point.

A more difficult exercise is the following:

Exercise 16.8 Let π : (X, ν) → (Y, η) be a G-map of (G, µ)-spaces. Show that if π is
relatively measure-preserving and relatively proximal then π is an isomorphism.

As an easy consequence we obtain that he Radon-Nikodym factor of the Poisson boundary
is the Poisson boundary. It is also possible to show the existence of a maximal proximal factor
by mimicking the argument used to show the existence of a maximal measure-preserving
factor; however there is no “nice” characterization of it that is known. One then speculates
that perhaps proximal extensions and measure-preserving extensions together form the basis
for a structure theory of stationary systems, but a precise formulation and proof of this is
currently out of reach. The reader is referred to [Fur02] for more information.
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Contractive Actions

While boundary theory is very useful in understanding quasi-invariant dynamics, it suffers
from two defects: one, it imposes a measure on the group so the results obtained then
generally hold for the group and measure together but (except in the special case of Lie
groups) changing the measure generally changes the boundary; and two, determining whether
a given space is a boundary is not easy to do.

Introduced in the mid-1990s by Jaworski in [Jaw94] (with ideas going back to [Jaw91])
under the name strong approximate transitivity (SAT), contractiveness is a dynamical prop-
erty of a group acting on a measure space (no measure on the group) that is the natural
opposite of measure-preserving. Boundaries are contractive spaces, so such spaces certainly
exist, but contractiveness is defined purely in terms of dynamical (as opposed to algebraic)
properties.

17.1 Contractiveness

The definition of contractiveness makes it clear that it is a dynamical property that is
“opposite” measure-preserving:

Definition 17.1 (Jaworski). Let (X, ν) be a G-space. We say (X, ν) is contractive when
for any measurable B ⊆ X such that ν(B) > 0 and any ε > 0 there exists g ∈ G such that
ν(gB) > 1− ε.

Clearly contractive is equivalent to saying that for every measurable set A with ν(A) < 1
there is a sequence gn ∈ G such that limn ν(gnA) = 0 and we will use the two interchangeably.

Jaworski showed that almost nilpotent groups (equivalently, groups of polynomial growth
by Gromov’s theorem) do not admit nontrivial contractive actions.

17.2 An Example

We present now an example of a contractive action to help the reader gain some intuition.
Necessarily the group involved cannot be the integers or anything like them.

Consider the natural action of PSL2(R) on the unit circle S with the Lebesgue measure.
That is, PSL2(R) is the collection of fractional linear transformations preserving the upper
half-place (and preserving oriented area) and we can then translate (via Riemann Mapping
Theorem) this to PSL2(R) acting on the unit disc preserving area. In particular, PSL2(R)
under this mapping must preserve the unit circle.

However, the Lebesgue measure on the circle is decidedly not invariant under these maps.
In fact, the image of Lebesgue measure under elements of PSL2(R) will correspond to solu-
tions to the Dirichlet problem on boundary values of harmonic functions (details are left to
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the reader; see Chapter 16: Stationary Dynamical Systems). In particular, the action will
be contractive since we will be able to obtain any bounded measurable function on the circle
as the boundary values of a harmonic function.

More generally, the action of a locally compact group on its Poisson Boundary (corre-
sponding to any admissible measure on the group) will be a contractive action:

Theorem 17.2. Let (X, ν) be the Poisson boundary for (G, µ). Then G y (X, ν) is con-
tractive.

Proof. Let B be any positive measure set in X. Write β : GN → P (X) for the boundary
map. Then β(ω) = δx(ω) for some measurable map x : GN → X and clearly x∗µ

N = ν by the
uniqueness of the boundary map. Now∫

GN

νω(B) dµN(ω) =

∫
GN

δx(ω)(B) dµN(ω) =

∫
X

δx(B) dν(x) = ν(B)

and therefore there exists ω ∈ GN such that νω exists and νω(B) = 1. Therefore supg ν(gB) =
1.

17.3 The Isometry Characterization

Theorem 17.3 (Jaworski). Let (X, ν) be a G-space and consider the map L∞(X, ν) →
L∞(G,Haar) given by f 7→ gν(f) (treating gν(f) as a function of g). Then (X, ν) is a
contractive space if and only if this map is an isometry, that is:

sup
g∈G

∣∣gν(f)
∣∣ = ‖f‖L∞(X,ν)

Proof. Clearly it is enough to show this for simple functions f =
∑n

j=1 aj1Bj
where aj are

constants and Bj are disjoint positive measure sets. Choose k such that |ak| = max{|aj| :
1 ≤ j ≤ n} = ‖f‖∞. For ε > 0 choose g ∈ G such that ν(g−1Bk) > 1− ε. Then

|gν(f)−ak| =
∣∣ n∑
j=1

ajν(g−1Bj)−ak
∣∣ ≤∑

j 6=k

|aj|ν(g−1Bj)+|ak||ν(g−1Bk−1| ≤ ‖f‖∞ε+‖f‖∞ε

using that the Bj are disjoint. Therefore the claim holds for simple functions and by density
of them in L∞ the theorem follows.

Conversely, if the map is an isometry then for any measurable B ⊆ X with ν(B) > 0
we have that supg∈G ν(gB) = ‖1B‖L∞(X) = 1 and so for any ε > 0 there exists g such that
ν(gB) > 1− ε.

17.4 The Topological Characterization

Strong approximate transitivity implies strong topological properties of any compact model.

– 150 –



Chapter 17. Contractive Actions

Definition 17.4. Let Gy X be a continuous action of a locally compact second countable
group on a compact metric space and ν ∈ P (X) be a Borel probability measure. Then
G y (X, ν) is contractible when for every x ∈ X there exists gn ∈ G such that gnν → δx
in weak*.

Furstenberg and Glasner recently showed:

Theorem 17.5 (Furstenberg-Glasner 2009). The action of a group G on a measure space
(X, ν) is contractive if and only if every continuous compact model of the action is con-
tractible.

Proof. Assume that Gy (X, ν) is contractive. Take (X0, ν0) to be any continuous compact
model. Fix x ∈ X0. Choose fn ∈ C(X0) such that 0 ≤ fn ≤ 1, ‖fn‖∞ = 1 and fn → 1x
(possible since continuous functions separate points) and such that fn+1 ≤ fn. For each n,
since Gy (X, ν) is contractive, supg gν(fn) = 1. Choose gn ∈ G such that 1−n−1 < gnν(fn).
Then, as fn+1 ≤ fn,

1− (n+ 1)−1 < gn+1ν(fn+1) ≤ gn+1ν(fn)

and so limm→∞ gmν(fn) = 1 for each fixed n.
As P (X) is compact, there exists a limit point η ∈ P (X) such that η = limj gnj

ν along
some subsequence. Clearly η(fn) = 1 from the above. Since fn → 1x is pointwise decreasing,
by bounded convergence, η({x}) = limn η(fn) = 1. Hence η = δx as needed.

The converse is rather technical and we omit the proof as we will not use that direction.
The reader is referred to [FG10] for the proof; we mention only that the crucial fact is
that given a function f ∈ L∞(X, ν) such that f(gx) is continuous in g for each x, there
always exists a continuous compact model on which f is a continuous function. Applying
the contractibility of such a model to appropriate such functions is the heart of the proof.

17.5 The Proximal Characterization

We now prove an easy characterization of contractiveness that makes the connection between
contractive and proximal (boundary) spaces more explicit. Recall that a proximal (G, µ)-
space is defined by saying that almost every “limit measure” is a point mass. We show now
that contractive is characterized by the existence of a limit measure that is a point mass:

Theorem 17.6. Let (X, ν) be a G-space. Then (X, ν) is contractive if and only if for any
compact model there exists a sequence gn ∈ G such that gnν → δx in P (X) (weak-*) for
some topologically generic point x (meaning the orbit is dense).

Proof. The topological characterization makes one direction trivial: if (X, ν) is (a compact
model for) a contractive G-space then for every x ∈ X there exists a sequence gn such that
gnν → δx in weak-* (and contractive implies ergodicity so there is a generic point). Assume
now that for any compact model X there is a sequence gn ∈ G and a topologically generic
point x such that gnν → δx and Gx = X. Take a compact model on which the G-action is
continuous. Fix y ∈ X. Let f ∈ C(X) and ε > 0. Choose h such that |f(hx) − f(y)| < ε
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which exists since y ∈ Gx and f is continuous. Write fh(z) = f(hz) so fh ∈ C(X) and
choose n such that |gnν(fh)− δx(fh)| < ε (possible since gnν → δx). Then

|hgnν(f)− f(y)| = |gnν(fh)− f(y)| ≤ |gnν(fh)− fh(x)|+ |fh(x)− f(y)| < 2ε

and therefore, taking ε → 0, we have that δy ∈ Gν. Therefore (X, ν) is contractive as this
holds for every point y so the model is contractible.

The requirement that the point be topologically generic is necessary to account for ex-
amples such as the source-sink dynamical system on [0, 1] where points flow to the left and
0 is a stable fixed point and 1 an unstable fixed point. The group R contracts Lebesgue
measure on [0, 1] to δ0 under this flow but this is obviously not a contractive action.

17.6 Properties of Contractive Actions

In this section we study the behavior of contractive spaces for locally compact second count-
able groups and their lattices and we mainly establish results that we use in the following
chapters.

17.6.1 Quotients of Contractive Actions

An obvious fact is that constructiveness is inherited by factors:

Lemma 17.6.1. Let G be a group and ϕ : (X, ν) → (Y, η) a G-map between G-spaces. If
(X, ν) is a contractive G-space then so is (Y, η).

Proof. Let A be a measurable subset of Y with η(A) > 0. Then ϕ−1(A) is a measurable
subset of X and ν(ϕ−1(A)) = ϕ∗ν(A) = η(A) > 0. Since (X, ν) is contractive there is a
sequence gn such that ν(gnϕ

−1(A))→ 1. Since ϕ is G-equivariant,

η(gnA) = ϕ∗ν(gnA) = ν(ϕ−1(gnA)) = ν(gnϕ
−1(A))→ 1

and therefore (Y, η) is contractive.

17.6.2 Contractive Implies Ergodic

An easy consequence of contractiveness is ergodicity, this is due to Jaworski:

Lemma 17.6.2 (Jaworski). Let (X, ν) be a contractive G-space. Then the G-action on
(X, ν) is ergodic.

Proof. Let B ⊆ X be a G-invariant Borel set. Suppose that ν(B) > 0. Since the action is
contractive there exists gn ∈ G such that ν(gnB) → 1. But gnB = B since B is invariant
hence ν(B) = 1. Therefore any G-invariant set has measure zero or measure one.
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17.6.3 Contractive as a Measure Class Property

Less obvious, but very useful, is the following fact due to the author and Y. Shalom [CS14]:

Lemma 17.6.3. Contractiveness is a property of the measure class, not the measure: Let
(X, ν) be a G-space and ν ′ a Borel probability measure on X in the same measure class as ν.
Let {gn} be a sequence in G and B ⊆ X a measurable set. If ν(gnB)→ 0 then ν ′(gnB)→ 0.
In particular, if (X, ν) is contractive then so is (X, ν ′).

Proof. Suppose that lim sup ν ′(gnB) = δ > 0. Let {nj} be the sequence attaining this limit.
Then ν(gnj

B)→ 0 and ν ′(gnj
B)→ δ. Pick a further subsequence {njt} such that ν(gnjt

B) <
2−t. Define Bk =

⋃∞
t=k gnjt

B and observe that ν(Bk) ≤
∑∞

t=k ν(gnjt
B) ≤

∑∞
t=k 2−t =

2−k+1 → 0 but ν ′(Bk) ≥ ν ′(gnjk
B) → δ. As the Bk are decreasing, ν(

⋂
k Bk) = 0 but

ν ′(
⋂
k Bk) ≥ δ contradicting that the measures are in the same class.

Note that in the proof we did not actually need that ν ′ was a probability measure, the
proof works for any σ-finite measure in the same class as ν.

17.7 Contractiveness is Geometric

Geometric group theory is concerned with the study of groups “up to finite index”. Con-
tractiveness is a geometric property in the following sense:

Lemma 17.7.1. Let Γ be a group and (X, ν) a contractive Γ-space. Let Γ0 be a finite index
subgroup of Γ. Then (X, ν) is a contractive Γ0-space.

Proof. Let `1, . . . , `m be a system of representatives for Γ/Γ0. Let B ⊆ X be a measurable
set with ν(B) < 1. Then there exists a sequence γn ∈ Γ such that ν(γnB)→ 0 since (X, ν)
is Γ-contractive. For each γn write

γn = `jnγ0,n

where jn ∈ {1, . . . ,m} and γ0,n ∈ Γ0. Since there are only finitely many choices for jn there
exists a subsequence {nt} such that jnt is constant. Along that sequence, γnt = `jγ0,nt so

ν(`jnt
γ0,ntB) = ν(γntB)→ 0

By Lemma 17.7.2 (following the proof), since `jnt
= `j → `j is a convergent sequence, this

means that
ν(`−1

jnt
`jnt

γ0,ntB)→ 0

and therefore ν(γ0,ntB)→ 0 so (X, ν) is Γ0-contractive.

Lemma 17.7.2. Let G be a locally compact second countable group acting on a measure
space (X, ν) quasi-invariantly. Let Aj be a sequence of measurable sets such that ν(Aj)→ 0
and let gj → g∞ be a convergent sequence in G. Then ν(gjAj)→ 0.
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Proof. Choose a subsequence jt such that ν(Ajt) < 2−t. Let Bn =
⋃∞
t=n+1Ajt . Then

ν(Bn) ≤ 2−n and the Bn are a decreasing sequence of sets. Let B = ∩nBn. Then ν(Bn)→ 0
and Bn are decreasing (as sets) so ν(B) = 0.

Let K be any compact neighborhood of g∞ (which exists since G is locally compact).
There there is some J such that gj ∈ K for j ≥ J . Then ν(gjAj) ≤ ν(KBn) for j in the
subsequence {jt} sufficiently large (KBn is the set {kx|k ∈ K, x ∈ Bn}).

Hence lim supt→∞ ν(gjtAjt) ≤ ν(KBn) for all n and therefore,

lim sup
t→∞

ν(gjtAjt) ≤ ν(KB)

but K was an arbitrary compact neighborhood of g∞ and therefore, as K ↓ {g∞}, it holds
that ν(KBn)→ ν(g∞Bn) (by the L1-continuity), and so

lim sup
t→∞

ν(gjtAjt) ≤ ν(
⋂
K

KB) = ν(g∞B)

and ν(B) = 0 so by quasi-invariance ν(gjtAjt) → 0. There is therefore a subsequence of j
where the conclusion holds.

Now suppose that ν(gjAj) ≥ δ for infinitely many j. Applying the above to that sequence
of j’s we obtain a further subsequence where ν(gjAj)→ 0 which is a contradiction.

17.8 Contractiveness and Invariant Measures

An important fact about contractive actions to keep in mind is that it precludes the existence
of invariant measures (even σ-finite measures):

Theorem 17.7 (Jaworski [Jaw94]). If (X, ν) is a contractive G-space and λ is a σ-finite
G-invariant measure on X in the same measure class as ν then (X, ν) is atomic.

Proof. Let B be any measurable set in X with ν(B) < 1. Then there exists {gn} in G such
that ν(gnB) → 0. By Lemma 17.6.3, then σ(gnB) → 0 also since σ is in the same measure
class as ν. However, since σ is G-invariant, σ(gnB) = g−1

n σ(B) = σ(B). Therefore there are
no sets of ν-measure between zero and one.

17.9 Uniqueness of Contractive Maps

We prove now that contractive maps are unique, a result of the author and Y. Shalom [CS14]
that will be crucial to the proof of the “contractive factor theorem” in the next chapter.

Theorem 17.8. Let G be a locally compact second countable group. Let (X, ν) be a contrac-
tive G-space and (Y, η) be a G-space. Let ϕ : (X, ν) → (Y, η) and ϕ′ : (X, ν) → (Y, η′) be
G-maps such that η and η′ are in the same measure class. Then ϕ = ϕ′ almost everywhere.

Proof. Using the existence of continuous compact models, take X and Y to be compact
metric spaces where G acts continuously and such that ϕ, ϕ′ : X → Y are continuous maps.
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Since (X, ν) is a contractive G-space, the model is contractible. Let x0 ∈ X be arbitrary.
Then there exists a sequence gn ∈ G such that gnν → δx0 weakly.

Since ϕ is continuous so is the pushforward map ϕ∗ and therefore ϕ∗(gnν)→ ϕ∗(δx0). By
the G-equivariance of ϕ this means gnη = gn(ϕ∗ν) → ϕ∗(δx0) = δϕ(x0). Of course the same
reasoning gives that gnη

′ → δϕ′(x0).
Let B ⊆ Y be any open set containing ϕ(x0). Then gnη(BC)→ δϕ(x0)(B

C) = 0 since BC

is a continuity set for δϕ(x0) (the Portmanteau Theorem). By Lemma 17.6.3, gnη
′(BC) → 0

also so ϕ′(x0) ∈ B. As this holds for all open sets B containing ϕ(x0), it follows that
ϕ′(x0) = ϕ(x0). Since x0 was arbitrary this means that ϕ = ϕ′ as maps between the
compact models. So ϕ = ϕ′ measurably.
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List of Exercises

Exercise 10.1 (Page 95)
Show that any (closed) subgroup of an amenable group is also amenable.

Exercise 14.1 (Page 120)
Show that the disintegration maps are (module null sets) independent of the choice of com-
pact model.

Exercise 14.2 (Page 126)
Prove that the G-action on the space of ergodic components is the trivial action.

Exercise 14.3 (Page 126)
Prove that for η-almost every y ∈ Y , the ergodic component (π−1(y), Dπ(y)) is an ergodic
G-space.

Exercise 16.1 (Page 137)
Show that the space of bounded (right) µ-harmonic functions on G is closed under addi-
tion, scalar multiplication, pointwise limits (uniformly over compact sets when G is locally
compact) and under the action of multiplication on the left by G. Therefore, under the
supremum norm, Har(G, µ) is a G-Banach space.

Exercise 16.2 (Page 137)
Show that the product of two harmonic functions need not be harmonic.

Exercise 16.3 (Page 139)
Show that Har(G, µ) is a G-algebra under the “multiplication” operation · given by

(ϕ1 · ϕ2)(g) = ̂ϕ1(g)ϕ2(g).

Exercise 16.4 (Page 144)
Show that if G is an abelian group and µ ∈ P (G) is a symmetric admissible probability
measure on G then PB(G, µ) is trivial.

Exercise 16.5 (Page 146)
Show that the above definition is well-formulated in the sense that π∗νω = ηω almost surely.

Exercise 16.6 (Page 147)
Show that the composition of two G-maps is relatively proximal if and only if the two maps
are.
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List of Exercises

Exercise 16.7 (Page 147)
Show that a (G, µ)-space is a boundary if and only if it is a proximal extension of a point.

Exercise 16.8 (Page 147)
Let π : (X, ν) → (Y, η) be a G-map of (G, µ)-spaces. Show that if π is relatively measure-
preserving and relatively proximal then π is an isomorphism.
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Howe-Moore property, 118
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invariant probability measure, 91

joining, 127

Koopman representation, 106
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maximal common factor, 127
Maximal Relatively Measure-Preserving

Factor, 130
mean, 93
Mean Ergodic Theorem for Amenable

Groups, 110
measurable homomorphism, 119
measure-preserving extension, 129
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Chapter 18

Lattices

Rigidity theory is concerned with understanding the extent to which certain countable dis-
crete subgroups in locally compact second countable groups reflect the properties of the
larger group (and vice-versa). The deepest results in rigidity theory focus on lattices in
semisimple Lie groups, the most notable being the Margulis superrigidity theorem [Mar91]
that states that if Γ is a lattice in a semisimple Lie group G of higher-rank and ϕ : Γ→ H
is a homomorphism of Γ into an algebraic group H then either ϕ(Γ) is precompact or ϕ
extends to a continuous homomorphism of G. This means that the lattice Γ is very rigid in
the ambient group G in the sense that Γ “knows” it is a lattice in G among all algebraic
groups.

We introduce now the definitions of lattices and commensurators in the general setting
of locally compact second countable groups, the reader unfamiliar with the primary example
of Lie groups is referred to the appendices for details on that special situation (and for a
definition of higher-rank).

18.1 The Definition

The concept of a lattice in a locally compact second countable groups is a generalization of
the integers sitting inside the real numbers. Often, one would like to “discretize” a topological
group in a similar fashion as taking the reals and embedding a copy of the integers (with
small uniform gaps) to approximate the behavior of, say, functions or transformations.

Definition 18.1. Let G be a locally compact second countable group. Let Γ < G be a
countable subgroup of G. A fundamental domain for G/Γ is a Borel set F ⊆ G such that
FΓ = G and such that F ∩ Γ = {e}.

Definition 18.2. Let G be a locally compact group. A subgroup Γ is a lattice in G when it
is discrete in the topology of G and has finite covolume: there exists a fundamental domain
F for G/Γ that has finite Haar measure: Haar(F ) <∞.

Examples of lattices include Z < R and SLn(Z) < SLn(R). More generally, if G is
an algebraic group over Q then G[Z] is a lattice in G[R]. This result is due to Borel and
Harish-Chandra.

18.2 Irreducibility

Consider the groups Z × Z and Z[
√

2] ' {(a + b
√

2, a − b
√

2) sitting inside R × R. Clearly
both are lattices but Z × Z is a product of lattices and in fact the projection of Z × Z to
either coordinate is just a copy of Z whereas Z[

√
2] cannot be written as a product and in

fact projects densely to each coordinate. In some sense, the “correct” way to study Z×Z is
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as a product of lattices in R while Z[
√

2] has to be treated as “living” in R×R. The general
idea underlying this is:

Definition 18.3. A lattice Γ in a product of locally compact second countable groups
G =

∏n
j=1 Gj is irreducible when the projection of Γ to each Gj is dense. Γ is strongly

irreducible when its projection to every proper subproduct is dense.

For semisimple groups, one can also formulate:

Definition 18.4. A lattice Γ in a semisimple group G is irreducible when its projection
to each noncompact simple factor is dense.

For groups that are not a priori products, the definition can be more difficult to formulate.
The most reasonable appears to be:

Definition 18.5. A lattice Γ in a locally compact group G is (strongly) irreducible when
the projection of Γ to any G/H is dense for any closed noncompact noncocompact normal
subgroup H.

18.3 Cocompactness

The first example of a lattice that we mentioned was Z < R and it is easy to see that R/Z
is of finite Haar measure (on the reals of course Haar measure is simply the usual Lebesgue
measure) and in fact that it has a precompact fundamental domain: Z · [0, 1) = R.

Definition 18.6. Let Γ be a lattice in a locally compact group G. Then Γ is cocompact
or uniform when there is a fundamental domain for G/Γ with compact closure.

On the other hand, SLn(Z) < SLn(R) is also a lattice (a theorem of Borel and Harish-
Chandra) but it is not cocompact. This is easy to see in the case of SL2 using the standard
picture on the plane (there are “cusps” in the fundamental domain that cannot be compact-
ified away).

18.4 Integrability

A more relaxed condition than cocompactness that is often enough to perform analysis in a
similar fashion is integrability (see e.g. [Sha00b]):

Definition 18.7. Let G be a locally compact, second countable topological group and Γ a
finitely generated lattice in G. Then Γ is integrable (this is more precisely 2-integrable but
we will refer to it simply as integrable) when there exists a fundamental domain X for G/Γ
such that ∫

X

|α(g, x)|2 dm(x) <∞

where α : G×X → Γ is given by α(g, x) = γ if and only if gxγ ∈ X and where | · | denotes
the word length in Γ (the choice of generating set will not affect the finiteness of the integral)
and m is the Haar measure on G.
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Clearly if Γ is cocompact (i.e. uniform) then it is integrable. As mentioned in [Sha00b],
lattices in simple Lie groups and Kac-Moody groups are known to always have this property.

Generally speaking, integrability is not necessary when studying the ergodic theory of
lattices but is crucial to the representation theory of lattices.

18.5 Commensurability

The property of being a lattice turns out to be a geometric one in the following sense:

Definition 18.8. Let Γ,Λ < G be subgroups of a locally compact second countable group.
Then Γ and Λ are commensurate when Λ ∩ Γ has finite index in both Λ and Γ.

In particular, any group is commensurate with any of its finite index subgroups.

Definition 18.9. Let Γ,Λ < G be subgroups of a locally compact second countable group.
Then Γ and Λ are commensurable when there exists g ∈ G such that gΛg−1 and Γ are
commensurate.

Exercise 18.1 Let Γ,Λ < G be commensurable. Show that Γ is a lattice if and only if Λ is,
and moreover, that Γ is irreducible if and only if Λ is.

There is also another way of creating lattices from lattices:

Exercise 18.2 Let φ : G → H be a surjective homomorphism of locally compact second
countable groups with compact kernel and let Γ < G be a lattice. Show that φ(Γ) is a lattice
in H. Moreover, if Γ is irreducible then so is φ(Γ).

Exercise 18.3 In particular, show that if Γ < G is a lattice in a real Lie group then for any
c ∈ R, the group cΓ = {cγ : γ ∈ Γ} is also a lattice in G.

18.6 Arithmetic Lattices

As mentioned before, given an algebraic group G, it turns out the integer points G[Z] is
always a lattice in G[R]. This, combined with the commensurability and compact kernel
morphisms leads to the following:

Definition 18.10. A lattice is an arithmetic lattice when it can be obtained from the inte-
ger points of an algebraic group via the operations of commensurability and homomorphism
with compact kernel.

More generally, one can consider G[Z[r1, . . . , rn]] where r1, . . . , rn are the (real) roots
of an irreducible polynomial. In this case, F = Q[r1, . . . , rn] is the splitting field and is
necessarily a Galois extension of Q. Then the “diagonal” embedding of Γ = G[Z[r1, . . . , rn]]
in
∏

σ∈Aut(F/Q) G[R] given by x 7→ (x, σ1(x), . . . , σk(x)) will be a lattice. This turns out to
not actually be more general since one can realize this same group as the integer points of
the larger algebraic group

∏
G “twisted” by the automorphism group.
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Another example of lattices can be found using a similar idea. Consider the group
Γ = PSLn(Z[1/p]) sitting diagonally inside G = PSLn(R) × PSLn(Qp). This turns out to be
an irreducible lattice for the same reasons that the integer points are a lattice in the real
points (this result is due to Borel).

Definition 18.11. Let S be a finite set of primes. The S-integers ZS are the integers adjoin
1/p for all p ∈ S.

Definition 18.12. A lattice is an S-arithmetic lattice when it can be obtained via com-
mensurability and homomorphism with compact kernel from a lattice G(ZS) for some alge-
braic group G and finite set of primes S.

While PSL2(R) admits a variety of cocompact lattices in addition to the arithmetic lat-
tices, for higher-rank semisimple groups it turns out that the arithmetic lattices are the only
ones:

Theorem 18.13 (Margulis Arithmeticity Theorem 1979). Every lattice in a higher-rank
semisimple group is S-arithmetic.
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Rigidity of Lattices

The original motivation for the study of lattices in semisimple groups is to allow for “discrete
approximation” along the lines of how one can use εZd inside Rd to approximate classical
systems. In order to justify this point of view, one needs to be sure that lattices truly reflect
the structure and property of the ambient groups they sit in. Making precise this relationship
has proven to be a very fruitful and deep area of research over the last fifty years.

Rigidity theory refers to the study of exactly how lattices are “rigid” in their ambient
groups and collectively refers to a variety of results. We present here two of the deepest
rigidity results for lattices, first that of Margulis on the so-called superrigidity of lattices in
algebraic groups [Mar91] and second that of the author and J. Peterson on the character
rigidity or operator-algebraic superrigidity of lattices in semisimple groups.

19.1 Margulis Superrigidity

Rather than state Margulis’ theorem in the full generality of algebraic groups, we opt to
present the statement in the case when only semisimple real Lie groups are under consid-
eration as the result becomes much simpler in that framework. The reader is referred to
Zimmer [Zim84] and Margulis [Mar91] for further details and the more general statements.
The reader unfamiliar with Lie groups and algebraic groups is referred to the appendices.

Theorem 19.1 (Margulis Superrigidity 1979). Let G and H be connected semisimple Lie
groups with trivial center and no compact factors such that the real rank of G is at least two.
Let Γ < G and Λ < H be irreducible lattices. If π : Γ→ Λ is an isomorphism then π extends
to a continuous isomorphism π : G→ H.

The more general statement is roughly that given an irreducible lattice Γ in a semisimple
Lie group G with rank at least two and no compact factors, if π : Γ → H is a homomor-
phism into an algebraic group over any local field (including totally disconnected fields) such
that π(Γ) is Zariski dense (algebraically dense) in H then either π extends to a continuous
homomorphism G→ H or else π(Γ) is compact. In particular, if H is defined over a totally
disconnected field then π(Γ) is precompact.

The superridigity theorem can be interpreted as saying that the lattice Γ “knows” which
Lie group G it is a lattice in; and, more generally, the lattice “brings along” the entire group
G into any (noncompact) algebraic group. In this sense, lattices are quite rigid in their
ambient groups.

We will not attempt to present a proof of Margulis’ theorem, the reader is again referred
to Zimmer [Zim84], but we remark that it involves a careful study of both lattices in relation
to ergodic theory and in relation to representation theory.
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19.2 Operator-Algebraic Superrigidity

Another form of rigidity for lattices can be found in a result of the author and J. Peter-
son [CP13], a result which was conjectured by Connes in the late 1970s and is the “non-
commutative” analogue of the superrigidity theorem for algebraic groups.

To state the theorem, we recall some definitions from operator algebra theory:

Definition 19.2. Let H be a Hilbert space and write B(H) for the set of bounded linear
operators on H. Let N < B(H) be a ∗-subalgebra which contains the scalars and is closed
in the weak operator topology. Then N is a von Neumann algebra.

A deep result of von Neumann is that the topological condition of being closed in the
weak operator topology is equivalent to the algebraic condition that N = N ′′ where N ′ =
{x ∈ B(H) : xy = yx for all y ∈ N }. This is the double commutant theorem which forms
the basis of much of the theory.

Definition 19.3. Let N be a von Neumann algebra. An operator p ∈ N is a projection
when p = p2 = p∗ (equivalently, p is the orthogonal projection on some closed subspace of
the underlying Hilbert space).

Two projections p and q are equivalent if there is a partial isometry v ∈ N such that
p = vv∗ and q = v∗v.

A projection p is finite when there is no projection q < p such that q and p are equivalent
(here < refers to the ordering induced by inclusion of closed subspaces).

Definition 19.4. Let N be a von Neumann algebra. Then N is a finite factor when the
center of N is the scalars (this makes N a factor) and when the projection 1 is finite.

Finite factors are precisely those that admit unique faithful finite traces.

An important case of factors arises from countable discrete groups:

Definition 19.5. Let Γ be a countable discrete group. Consider the representation λ : Γ→
`2Γ given by left multiplication. The group von Neumann algebra of Γ is LΓ = λ(Γ)′′

and λ is the left regular representation.

It turns out that LΓ is a finite factor precisely when Γ has infinite conjugacy classes
(every nonidentity element has an infinite conjugacy class).

In many ways, LΓ and Γ are intimately connected and it is a long-standing question to
what extent properties of Γ are reflected in LΓ. On the one hand, for amenable groups the
group von Neumann algebras are all isomorphic; on the other, properties such as property
(T ) are preserved at the level of the group von Neumann algebra.

The operator-algebraic superrigidty theorem is that for lattices in higher-rank semisimple
groups, the group von Neumann algebra is in some sense the “only” factor the lattice can
“know” about:
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Theorem 19.6 (Creutz-Peterson 2013). Let G be a semisimple connected Lie group with
trivial center and no compact factors such that at least one simple factor has higher-rank.
Let H be a noncompact totally disconnected semisimple algebraic group over a local field
with trivial center and no compact factors. Let Γ < G × H be an irreducible lattice. If
π : Γ→ U(N) is a representation into the unitary group of a finite factor such that π(Γ)′′ = N
then either N is finite-dimensional (a matrix algebra) or else π extends to an isomorphism
LΓ→ N .

So, just as with Margulis superrgidity, such lattices “know” which finite factor they live
in.

19.3 Lattices and Poisson Boundaries

A key aspect of Furstenberg’s boundary theory is that lattices “inherit” boundaries of the
ambient group they sit inside. This is another form of the rigidity of lattices, and one which
holds in the more general setting of arbitrary locally compact groups.

Recall that:

Definition 19.7. Let G be a group (either countable discrete or locally compact and metriz-
able). A probability measure µ on G is admissible when the support of µ generates G
(generates as a group) and when some convolution power of µ is not singular with respect
to the Haar measure on G.

Theorem 19.8 (Furstenberg, [Mar91]). Let G be a locally compact second countable group
and α an admissible probability measure on it. Let Γ be a lattice. Then there exists a
probability measure µ on Γ with full support such that for any closed convex subset of a
Banach space V on which G acts isometrically and any v ∈ V such that α ∗ v = v it
holds that µ ∗ v = v. In particular, if ν is an α-stationary measure on a G-space then ν is
µ-stationary.

The main example of such a convex G-space is P (X) where X is a compact metric G-
space. In this case, the Theorem states that if ν ∈ P (X) and α ∗ ν = ν then there is a
measure on the lattice µ such that also µ ∗ ν = ν.

We present a proof of the theorem, following Margulis, but the reader less interested in
the technical details may opt to skip it.

19.3.1 Density Lemma

Lemma 19.3.1. Let G be a locally compact second countable group and α an admissible
probability measure on G. Let g1, g2 ∈ G. Then there exist n, n′ ∈ N+ and δ > 0 such that
g1α

(n) > δg2α
(n′) where α(n) denotes the n-fold convolution of α with itself.

The reader is referred to [Mar91] for more information about this fact; we prove it only
in the case when α is the restriction of Haar measure to a compact set since that will be
enough for our purposes.
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Proof. Let n′ be such that the density of α(n′) is positive on a neighborhood of the identity.
Note that n′ is independent of g1 and g2. We will write α in place of α(n′) from here on
(convolution powers of α(n′) are convolution powers of α after all).

We will assume that α = m|K where m is Haar measure on G and K = U and 〈U〉 = G
where U is an open set containing the identity and U is symmetric: U−1 = U . Of course
we normalize the Haar measure so that α(G) = α(K) = 1. This is justified since (some
convolution power of) our original measure strictly dominates (a multiple of) this measure.
Define the function for g, h ∈ G by

δ(g, h) = sup
{
δ > 0 : ∃ open U ′ 3 e ∃n ∈ N ∀x ∈ U ′ dh−1gα(n)

dα
(x) ≥ δ

}
Since 〈K〉 = G there is some n such that h−1g ∈ Un. Then h−1gαn ≥ δα for some δ > 0
(since α is constant density on U there is some lower bound on the density of α ∗ α on U).
Hence δ(g, h) > 0 for all g, h.

19.3.2 Density of Translations

Lemma 19.3.2. Let G be a locally compact second countable group and α an admissible
probability measure on G and let v be an α-stationary vector in some Banach G-space with
isometric action. For any g, h ∈ G there exists δ(g, h) > 0 and an admissible ω ∈ P (G),
both independent of v, such that

gv = δ(g, h)hv + (1− δ(g, h))ω ∗ v

Proof. By the previous Lemma, there exists n, n′ and δ such that gα(n) > δhα(n′). Since
α ∗ ν = ν we have α(n) ∗ ν = ν and therefore

gv = gα(n) ∗ v = δhα(n′) ∗ v + (gα(n) − δhα(n′)) ∗ v = δhv + (1− δ)ω ∗ v

where ω = (1− δ)−1(gα(n) − δhα(n′)). This is a positive measure by the preceding Lemma.

19.3.3 Proof of Measures for Subgroups

Proof. (of Theorem) Let ρe ∈ P (Γ) be any symmetric fully supported probability measure
on Γ. Define the set

Θ′ = {µ′ ∈ P (Γ) : µ′ is fully supported }

and let V denote the class of all α-stationary vectors in closed convex subsets of Banach
spaces on which G acts isometrically. Define the function

L(g) = sup{0 ≤ ε ≤ 1 :(∃µ′ ∈ Θ′)(∃µ′′ ∈ P (G))(∀v ∈ V) gv = εµ′ ∗ v + (1− ε)µ′′ ∗ v}
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Fix g ∈ G. By the previous Lemma, for any γ ∈ Γ we have that

gv = δ(g, γ)γv + (1− δ(g, γ))ω(g, γ) ∗ v

Define ρg ∈ P (Γ) by

ρg(γ) =
δ(g, γ−1)

δ(g, γ) + δ(g, γ−1)
2ρe(γ)

Observe that

δ(g, γ−1)ρg(γ
−1) =

δ(g, γ−1)δ(g, γ)

δ(g, γ) + δ(g, γ−1)
2ρe(γ) = δ(g, γ)ρg(γ)

by the symmetry of ρe and that

2
∑
γ

ρg(γ) =
∑
γ

ρg(γ) + ρg(γ
−1) =

∑
γ

δ(g, γ) + δ(g, γ−1)

δ(g, γ) + δ(g, γ−1)
2ρe(γ) = 2

∑
γ

ρe(γ) = 2

so ρg ∈ P (Γ). Now set ε =
∑

γ δ(g, γ)ρg(γ) and

µ′(γ) = ε−1δ(g, γ)ρg(γ) and ω = (1− ε)−1

∫
Γ

(1− δ(g, γ))ω(g, γ) dρg(γ)

which are probability measures. This then means that

εµ′ ∗ v + (1− ε)ω ∗ v =
∑

Γ

εµ′(γ)γv +
∑

Γ

ρg(γ)(1− δ(g, γ))ω(g, γ) ∗ v

=
∑

Γ

ρg(γ)
(
δ(g, γ)γv + (1− δ(g, γ))ω(g, γ) ∗ v

)
=
∑

Γ

ρg(γ)gv = gv

and of course 0 < ε ≤ 1 since ρg is a probability measure and 1 ≥ δ(g, γ) > 0. Since ρg is
fully supported, so is µ′. Hence µ′ witnesses that fact that L(g) ≥ ε. Therefore L(g) > 0 for
all g ∈ G.

For γ ∈ Γ and g ∈ G, write µ′g and µ′′g to be the measures witnessing that L(g) > ε for
some fixed ε > 0. Then for any v ∈ V

γgv = εγµ′g ∗ v + (1− ε)γµ′g ∗ v

and so taking µ′γg = γµ′g and likewise for µ′′ we obtain that L(γg) ≥ ε. Note that

µ′γg(γ
′) = γµ′g(γ

′) = µ′g(γ
−1γ′) < δ(g, γ−1γ′) = δ(γg, γ′)

so µ′γg satisfies the requirements for L. We therefore conclude that L(γg) = L(g). So L is
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left-Γ-invariant. In particular, L(γ) = L(e) for all γ ∈ Γ so L is constant on Γ.

Assume for the moment that from this we can deduce that L is constant on G (or at
least uniformly bounded above zero). Take ε > 0 to be less than a uniform lower bound on
L (when L is constant any ε < L(e) is fine). For each g there is then µ′g ∈ P (Γ) such that

gv = εµ′g ∗ v + (1− ε)µ′′g ∗ v

for some µ′′g ∈ P (G) and every v ∈ V . Hence for any σ ∈ P (G)

σ ∗ v = εµ′σ ∗ v + (1− ε)µ′′σ ∗ v

where v ∈ V is arbitrary and

µ′σ =

∫
G

µ′g dσ(g)

is a probability measure on Γ and likewise for µ′′.

Set σ0 = δe. Given σm choose µm+1 ∈ P (Γ) and σm+1 ∈ P (G) such that for every v ∈ V

σm ∗ v = εµm+1 ∗ v + (1− ε)σm+1 ∗ v

By induction (using that V is a closed convex subset of a Banach space to ensure convergence
and that the G-action is isometric so ‖η ∗ v‖ ≤ ‖v‖ for any η ∈ P (G) or P (Γ))

v = σ0 ∗ v = εµ1 ∗ v + (1− ε)εµ2 ∗ v + · · ·

and so setting

µ = ε
∞∑
m=0

(1− ε)mµm+1

we get that (using that the G-action is isometric)

µ ∗ v = v

and of course
∑

(1− ε)m = 1/ε so this is a probability measure.

It remains to show that L being constant on Γ in fact implies that L is uniformly bounded
above zero on G. This follows from the Cauchy-Schwarz-Buniakowski inequality (as in
Margulis): observe that

L(g) ≥
∫
G

L(gg′) dα(g′)

since

gv = gα ∗ v =

∫
G

gg′v dα(g′)

and set L′(Γg) = 1−L(g) which is a well-defined function on Γ\G since L is left-Γ-invariant.
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For x ∈ Γ\G,

L′(x) ≤
∫
G

L′(xg) dα(g)

from the inequality for L and therefore, using the Cauchy-Schwarz-Buniakowski inequality,
letting m be the Haar measure on G (which is finite on Γ\G as it is a lattice),∫

Γ\G

∣∣L′(x)
∣∣2 dm(x) =

∫
Γ\G

∣∣ ∫
G

L′(xg) dα(g)
∣∣2 dm(x)

≤
∫

Γ\G

∫
G

∣∣L′(xg)
∣∣2 dα(g) dm(x)

=

∫
G

∫
Γ\G

∣∣L′(x)
∣∣2 dg−1m(x) dα(g)

=

∫
Γ\G

∣∣L′(x)
∣∣2 dm(x)

by the G-invariance of the Haar measure. The inequality is therefore an equality L(xg) =
L(x) for α×m-almost every (g, x). Now in fact we may replace α by any of its convolution
powers since the inequality still holds and since α is admissible there is some convolution
power which is nonsingular with respect to m. As the support of α generates G, and each
sufficiently large convolution power is nonsingular, we obtain that L(xg) = L(x) for m-almost
every g and x. Hence L is constant m-almost surely.

19.3.4 Moments

The above construction of a measure on the lattice leaves almost no information about the
measure constructed. In particular, nothing is known about the moments (in terms of word
length), information which can be useful to have (as we will see).

The proof of this involves Brownian motion and stopping times, combined with a general
form of Harnack’s Inequality. The reader is referred to [Fur71] for the original idea, [LS84]
for the general construction and [Kai88] and [Kai92] for general exposition.

Theorem 19.9 (Furstenberg, Lyons-Sullivan, Kaimanovich). The measure obtained on a
finitely generated lattice may be assumed to be symmetric and to have finite first and second
moments when the ambient group G is a Lie group.

The proof of this involves the idea of “discretizing” Brownian motion and we will not go
into details, the reader is referred to the works referenced above for the specific construction.
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Commensuration

Inherent in the study of lattices is their geometric nature: any finite index subgroup of
a lattice and any finite index extension of lattice are necessarily also lattices in the same
absent group. Moreover, any finite index subgroup is a lattice in the group. In this sense,
lattices fall squarely in the realm of geometric group theory which seeks to study groups “up
to finite index”, a natural approach to infinite groups considering the classification of finite
groups and that many “interesting” infinite groups are residually finite (meaning there exists
a descending chain of finite index subgroups with trivial intersection).

Once the point of view of identifying groups up to finite index is taken, various natural
group theoretic constructions need to be modified accordingly. The most important of these
for our purposes is the correct analogue of normal subgroups.

Recall that

Definition 20.1. Let G be a group and N < G be a subgroup. Then N is normal when
gNg−1 = N for all g ∈ G. More generally, if L < G is a subgroup the normalizer of L in
G is NG(L) = {g ∈ G : gLg−1 = L}.

The notion of commensuration generalizes normality in the setting of “up to finite index”:

Definition 20.2. Let G be a group and H < G be a subgroup. Then H is commensurated
by G when for all g ∈ G the subgroup H ∩ gHg−1 has finite index in both H and gHg−1.

The commensurator of H in G is

CommG(H) = {g ∈ G : [H : H ∩ gHg−1] <∞ and [gHg−1 : H ∩ gHg−1] <∞}.

Replacing “finite index” by “index one” in the above definition recovers the usual notion
of normal and normalizer. In this sense, commensuration is the correct geometric analogue
of normalization.

The most convenient notation for commensuration is

Γ <c Λ

meaning that Γ is a subgroup of Λ and that Λ < Comm(Γ).

Exercise 20.1 Let Γ < G be an arbitrary subgroup of G. Show that CommG(Γ) is also a
subgroup of G.

20.1 Commensurators of Lattices

The class of groups where the study of commensurators leads to the deepest understanding
is lattices, particularly those in semisimple groups. In the case of arithmetic lattices, the
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commensurator is easily identified:

Theorem 20.3. Let G = G[R be a a semisimple real Lie group with no compact factors and
Γ = G[Z] be an arithmetic lattice. Then the commensurator is

CommG(Γ) = G[Q].

We will not present the proof but leave it as an exercise:

Exercise 20.2 Show that PSLn[Z] is commensurated by PSLn[Q] (and nothing more).

The above example gives the first indication that commensurators of arithmetic lattices
enjoy certain properties, in particular the Q-points are always dense in the R-points. This
turns out to characterize arithmeticity:

Theorem 20.4 (Margulis 1979). Let Γ be an irreducible lattice in a semisimple group. Then
Γ is (S-)arithmetic if and only if Comm(Γ) is dense.

The above fact is a key step in the proof of the arithmeticity theorem which proceeds
by then showing that every lattice in a higher-rank semisimple group must have dense com-
mensurator. It also allows a more abstract definition of arithmeticity, even in the case when
the groups involved are not algebraic:

Definition 20.5. Let Γ be an irreducible lattice in a locally compact second countable group
G. Then Γ is abstractly arithmetic when CommG(Γ) is dense in G.

This reduces to the usual definition of arithmeticity in the case of semisimple groups but
also indicates why such exotic objects as tree lattices (cocompact lattices in automorphism
groups of regular trees) are referred to as arithmetic.

Part of the reason that the commensurator of a lattice is important is that in particular,
if Γ < G is a lattice and λ ∈ CommG(Γ) then λΓλ−1 is also a lattice in G. In this sense, the
commensurator acts on the set of lattices by conjugation.

20.2 Properties of Commensurated Subgroups

Before extending the ideas of rigidity to commensurators, we state and prove some basic
properties of commensurated subgroups.

Proposition 20.2.1. Let Γ <c Λ. Then Γ / Λ if and only if there exists a uniform bound
on the commensuration index: there exists N such that for all λ ∈ Λ, [Γ : Γ ∩ λΓλ−1] <∞.

We omit the proof but remark that it is somewhat nontrivial.

Exercise 20.3 Let Γ <c Λ. Show that the Γ-orbits under left multiplication on the coset
space Λ/Γ are finite.

Exercise 20.4 Show that if A <c B and B <c C it need not hold that A <c C. However,
show that if A <c C and B <c C then A ∩B <c C.
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20.3 Relative Profinite Completions

The main issue arising when passing from normal subgroups to commensurated subgroups
is that the quotient space is no longer a group. For example, if one wishes to show a group
G is just infinite this can be accomplished by letting N be an infinite normal subgroup and
showing that G/N is a finite group (there are a wealth of techniques for proving groups are
finite). This is in fact the approach taken by Margulis in the Normal Subgroup Theorem
[Mar91]. However, if one wishes to show that all commensurated subgroups are trivial (up
to finite index), as in the Margulis-Zimmer Conjecture, then this approach fails since the
quotient is not a group.

20.3.1 Motivation

The relative profinite completion will be the replacement for the quotient group. It is a locally
compact group constructed from a group and a commensurated subgroup that reflects the
structure of the pair that has been studied in the context of group actions and representations
([Sch80], [Tza00], [Tza03]). In particular, a normal subgroup will lead to a discrete relative
profinite completion that agrees with the quotient group.

We will be most interested in proving that certain commensurated subgroups have finite
index in the group commensurating them. The relative profinite completion will be compact
precisely when the commensurated subgroup is finite index.

In general, the relative profinite completion can be thought of as the “totally discon-
nected” version of the quotient space obtained by trying to “impose” a group structure onto
it that behaves like that of a quotient group when the subgroup is normal. The reader is
referred to Shalom and Willis [SW09] for further details and proofs.

20.3.2 Formal Definition

Definition 20.6. Let A be a countable group and B < A such that A commensurates B.
Consider the group of symmetries of A/B which we denote by Symm(A/B) and observe that
the left action of A on A/B gives a homomorphism τ : A→ Symm(A/B).

Endow Symm(A/B) with the topology of pointwise convergence and define the relative
profinite completion of B w.r.t A, denoted A//B, to be the closure of τ(A) in Symm(A/B)
with this topology.

The phrase completion is slightly misleading since the kernel of τ vanishes but when the
kernel of τ is trivial this is a true completion. In the special case that B is normal then the
kernel is all of B and the relative profinite completion A//B is discrete and isomorphic to
A/B.

20.3.3 The Compact Open Subgroup

The closure of τ(B) in the topology of pointwise convergence of symmetries will be compact
since the orbits of the B action on A/B are finite (this is precisely where we need that B is
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commensurated by A). It will be open since aB ∩ B = ∅ for each a /∈ B. Hence τ(B) is a
compact totally disconnected group.

Now τ(B) is a subgroup of countable index in A//B since B is of countable index in A
(as A is countable). Hence A//B is locally compact and totally disconnected:

Proposition 20.3.1. Let A be a countable group and B < A be commensurated by A. Then
the relative profinite completion A//B is a totally disconnected locally compact group and the
image of A is dense in A//B and the image of B is precompact in A//B.

Proposition 20.3.2. Let B <c A and τ : A→ A//B be the natural map. Then τ(A)∩τ(B) =
τ(B) and τ−1(τ(B)) = B.

20.3.4 The Universal Property

The relative profinite completion has a certain universal property among totally disconnected
groups related to A and B. Specifically, for any H a totally disconnected locally compact
group and K a compact open subgroup of H, define τH,K : H → Symm(H/K) as before (K
is necessarily commensurated by H, see e.g. [SW09]).

Lemma 20.3.3 ([SW09]). Let H be a totally disconnected locally compact group and K a
compact open subgroup of H, define τH,K : H → Symm(H/K) as before (K is necessarily
commensurated by H). Then τH,K is a continuous open map with closed range.

Moreover, H//K is isomorphic to H/ker(τH,K) and in fact ker(τH,K) is the largest normal
subgroup of H that is contained in K.

A consequence of this is:

Lemma 20.3.4 ([SW09]). Let B < A be any subgroup of a countable group, H a totally
disconnected locally compact group and K a compact open subgroup of H. Let ϕ : A→ H be
a homomorphism such that (i) ϕ(A) is dense in H; and (ii) ϕ−1(K) = B.

Then B is commensurated by A and A//B is isomorphic to H//K. In particular, if H is
simple then A//B is isomorphic to H.

From this we can deduce the following universal property:

Theorem 20.7 (Shalom-Willis [SW09]). Let B be a commensurated subgroup of a group
A and let H be a totally disconnected group with a compact open subgroup K < H. Let
ϕ : A→ H a homomorphism such that (i) ϕ(A) is dense in H; and (ii) ϕ−1(K) = B.

Then there exists a continuous surjective homomorphism ψ : H → A//B such that
ψ ◦ ϕ : A→ H → A//B is the natural homomorphism.

20.3.5 An Example

We present an example of the relative profinite completion to aid the reader’s intuition.
Consider the groups

SLn(Z) < SLn(Z[1/p])
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where p is some prime.
Clearly SLn(Z) is commensurated by SLn(Z[1/p]) since for any fixed γ ∈ SLn(Z[1/p]) there

is some m ∈ N such that for every entry γi,j of γ we have that pmγi,j ∈ Z. Therefore
γSLn(Z)γ−1∩SLn(Z) has finite index in SLn(Z) and in γSLn(Z)γ−1 since p and m are fixed.
Of course m→∞ as γ ranges over SLn(Z[1/p]) and this is not a normal subgroup.

Observe that the natural homomorphism

ϕ : SLn(Z[1/p])→ SLn(Qp)

has the properties that ϕ(SLn(Z[1/p])) is dense and that ϕ−1(SLn(Zp)) = SLn(Z) where Zp is
the p-adic integers. Hence the above Lemmas apply and we observe that

SLn(Z[1/p])//SLn(Z) ' SLn(Qp)//SLn(Zp)

by the second Lemma above. Now

SLn(Qp)//SLn(Zp) ' PSLn(Qp)

by the first Lemma since the largest normal subgroup of SLn(Qp) is its center. Therefore,
we have derived that

SLn(Z[1/p])//SLn(Z) ' PSLn(Qp)

and so the relative profinite completion is what one would expect (in that the completion of
Z[1/p] over Z in any reasonable sense is the p-adic numbers).

20.3.6 Correspondence of Properties

Lemma 20.3.5. Let A be a countable group and B < A a commensurated subgroup. Then
[B : A] <∞ if and only if A//B is compact.

Proof. Assume that [A : B] < ∞. Then the image of B in A//B has finite index in A//B.
But the image of B is precompact hence A//B is the finite union of compact sets hence is
compact.

Now assume that A//B is compact. Let K be the closure of the image of B which is
compact. Now the images of B and aB are disjoint for a /∈ B so K ∩ aK = ∅ for a /∈ B
(since K is open). Since A//B is compact there can be only finitely many disjoint cosets of
K meaning there are only finitely many disjoint cosets in A/B.

Lemma 20.3.6. Let A be a countable group and B < A a commensurated subgroup. If A is
finitely generated then A//B is compactly generated.

Proof. Since B is compact in A//B if we take a finite generating set S for A then the set⋃
s∈S sB is a compact set which generates A//B.

Proposition 20.3.7. Let B <c A and let L < A be any subgroup such that L∩B has finite
index in B. Then τ(L) is an open subgroup of A//B. Moreover, if L / A then τ(L) / A//B.
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Proof. Since τ(L) contains τ(L ∩B) and since τ(L ∩B) is finite index in τ(B) (as finite
index passes to closures), τ(L) contains a compact open subgroup and is therefore open.
The normality is an easy consequence of the fact that τ(L) is dense in τ(L) and normality
also passes to closures.

20.4 Lattices as Commensurators

One of the main uses of the relative profinite completion is that it allows us to establish a
correspondence between commensurators of lattices and lattices in products.

Theorem 20.8. Let Γ < G ×H be an irreducible lattice in a product of two simple locally
compact second countable groups where H is totally disconnected and nondiscrete. Then
there exists an irreducible lattice Γ0 < G such that the projection of Γ to G is dense and
commensurates Γ0.

Proof. Let K be a compact open subgroup of H. Let L = Γ ∩ (G ×K). Then projK L is
dense in K since Γ is irreducible. L is a lattice in G×K since K is open.

Set Γ0 = projG L. Since K is compact, Γ0 has finite covolume in G since L does in
G×K. Moreover, Γ0 is discrete since L is discrete. Therefore Γ0 is a lattice in G.

Set Λ0 = projG Γ. Then Λ0 is dense in G since Γ is irreducible and Γ0 <c Λ0 since
K <c H.

By Lemmas 20.3.4 and 20.3.3, Γ//L is isomorphic to H/ker(τH,K) since proj : Γ→ H is a
homomorphism with dense image and pullback of K equal to L. Since ker(τH,K) is contained
in K and H is semisimple then the kernel is trivial so Γ//L is isomorphic to H.

Set N = Γ∩{e}×H and write M for the subgroup of H such that N = {e}×M . Then
N / Γ since {e} ×H / G ×H and M is discrete in H so M = projH N / projH Γ = H by
the irreducibility of Γ. Since H is simple, M is trivial so Γ ∩ {e} ×H is trivial. This means
that projG : Γ→ Λ0 is an isomorphism and so Λ0//Γ0 ' H.

We remark that the above construction, writing an irreducible lattice in a product of
nondiscrete groups, at least one of which is totally disconnected, as the commensurator of a
lattice in one of the groups can also be reversed:

Theorem 20.9. Let Γ be a lattice in a locally compact second countable group G and let Λ
be a subgroup of G such that Γ <c Λ. Then Λ sits diagonally as a lattice in G× (Λ//Γ).

Proof. Let τ : Λ→ Λ//Γ be the map defining the relative profinite completion and let

Λ0 = {(λ, τ(λ)) : λ ∈ Λ} < G× (Λ//Γ)

be the diagonal embedding of Λ.
Let F be a fundamental domain for G/Γ: F is of finite volume, F ∩ Γ = {e} and

Γ · F = G. Let K = τ(Γ) be the canonical compact open subgroup. Let λ0 ∈ Λ0 ∩ F ×K.
Then λ0 = (λ, τ(λ)) for some λ ∈ Λ ∩ F such that τ(λ) ∈ K. Now K = τ(Γ) and by
Proposition 20.3.2, K ∩ τ(Λ) = τ(Γ) so τ(λ) ∈ τ(Γ) meaning that λ ∈ Γ (as the kernel of
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τ is contained in Γ). But λ ∈ Λ ∩ F so λ ∈ Γ ∩ F = {e}. Therefore F ×K is a subset of
G× (Λ//Γ) of finite volume such that Λ0 ∩ F ×K = {e} and, in particular, Λ0 is discrete in
G× (Λ//Γ).

Let (g, h) ∈ G×Λ//Γ be arbitrary. Write h = τ(λ′)k′ for some λ′ ∈ Λ and k′ ∈ K. Write
(λ′)−1g = γf for some γ ∈ Γ and f ∈ F . Set λ = λ′γ. Then τ(λ)τ(γ−1)k′ = τ(λ′)k′ = h and
k = τ(γ−1)k′ ∈ K. Also g = λ′γf = λf . Therefore (g, h) = (λ, τ(λ))(f, k) ∈ Λ0 · (F ×K).

Therefore F ×K is a fundamental domain for Λ0 hence Λ0 is a lattice as claimed.

We remark that if both G and Λ//Γ are semisimple with finite center then Λ sits as an
irreducible lattice if and only if Γ is irreducible and Λ is dense.
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Rigidity for Contractive Actions

Contractive actions display a variety of rigidity properties, in far contract to measure-
preserving actions, which in general are not rigid at all. In this chapter we explore some of
these rigidity properties, with an aim towards proving the “contractive factor theorem” due
to the author and Y. Shalom [CS14] that will be the central ingredient in the proof of the
normal subgroup theorem in the next part.

21.1 Cocompact Lattices and Contractiveness

The next result, due to the author and Y. Shalom [CS14] is the first indication that contrac-
tive actions, like boundaries, have a place in rigidity theory for lattices in locally compact
groups:

Proposition 21.1.1. Let G be a locally compact second countable group and Γ a cocompact
lattice in G. Let (X, ν) be a contractive G-space. Then (X, ν) is a contractive Γ-space.

Proof. Let K ⊆ G be a compact set such that KΓ = G. Let B ⊆ X such that ν(B) < 1.
Then there exists gn ∈ G such that ν(gnB) → 0 since the G action is contractive. Write
gn = knγn for kn ∈ K and γn ∈ Γ. Since K is compact there is a convergent subsequence
knj
→ k∞ (and so k−1

nj
→ k−1

∞ since inverse is continuous). By Lemma 17.7.2 we then have

that ν(k−1
nj
gnj
B)→ 0. Hence ν(γnj

B)→ 0. Therefore the Γ action is contractive.

21.2 Contractiveness for Lattices in General

The case of noncocompact lattices is more subtle and the result is only known to hold in the
case of stationary actions, the following is due to the author and J. Peterson [CP12]:

Theorem 21.1. Let G be a locally compact second countable group and Γ < G a lattice. Let
(X, ν) be a contractive (G, µ)-space for some µ ∈ P (G) such that the support of µ generates
G. Then the restriction of the G-action to Γ makes (X, ν) a contractive Γ-space.

Proof. Let B ⊆ X be a measurable set such that ν(B) < 1. Let U be an open neighborhood
of the identity in G such that ν(UB) < 1 where UB = {ux : u ∈ U, x ∈ B} (the existence
of such an open set is a standard consequence of the continuity and the proof is left to the
reader). Let ε > 0 such that m(UΓ) > ε where m is the Haar probability measure on G/Γ.
Note that m(UΓ) > 0 since U is open. Since (X, ν) is contractive, there exists g ∈ G such
that ν(gUB) < ε2.

By the Random Ergodic Theorem, there exists Q0 ⊆ GN with µN(Q0) = 1 such that for
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all (ω1, ω2, . . .) ∈ Q0,

lim
N→∞

∫
1

N

N∑
n=1

1gUB(ωn · · ·ω1x) dν(x) = ν(gUB).

So for all (ω1, . . .) ∈ Q0,

1

N

N∑
n=1

ν(ω−1
1 · · ·ω−1

n gUB)→ ν(gUB) < ε2.

Therefore, for all (ω1, . . .) ∈ Q0,

lim sup
N→∞

1

N
#{n ≤ N : ν(ω−1

1 · · ·ω−1
n gUB) > ε} ≤ ε.

Also by the Random Ergodic Theorem, there exists Q1 ⊆ GN with µN(Q1) = 1 such that for
all (ω1, . . .) ∈ Q1 and almost every y ∈ G/Γ,

lim
N→∞

1

N

N∑
n=1

1gUΓ(ωn · · ·ω1y) = m(gUΓ) = m(UΓ).

Therefore, for all (ω1, . . .) ∈ Q1 and almost every y ∈ G/Γ,

lim inf
N→∞

1

N
#{n ≤ N : y ∈ ω−1

1 · · ·ω−1
n gUΓ} ≥ m(UΓ).

And so we conclude that for all (ω1, . . .) ∈ Q1 and almost every h ∈ G,

lim inf
N→∞

1

N
#{n ≤ N : there exists γ ∈ Γ with hγ ∈ ω−1

1 · · ·ω−1
n gU } ≥ m(UΓ).

Combining these facts, for (ω1, . . .) ∈ Q0 ∩Q1 and almost every h ∈ G,

lim inf
N→∞

1

N
#{n ≤ N : there exists γ ∈ Γ with hγ ∈ ω−1

1 · · ·ω−1
n gU

and ν(ω−1
1 · · ·ω−1

n gUB) < ε } ≥ m(UΓ)− ε.

As m(UΓ) > ε, the above sets are nonempty, so for almost every h ∈ G there exists γ ∈ Γ,
u ∈ U and ω1, . . . , ωn ∈ G (for infinitely many choices of n) such that hγ = ω−1

1 · · ·ω−1
n gu

and ν(ω−1
1 · · ·ω−1

n gUB) < ε. Then

ν(hγB) = ν(ω−1
1 · · ·ω−1

n guB) ≤ ν(ω−1
1 · · ·ω−1

n gUB) < ε.

This holds for all 0 < ε < m(UΓ) and so for almost every h ∈ G, there exists {γn} in Γ such
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that ν(hγnB)→ 0.

Fix such an h ∈ G and let {γn} such that ν(hγnB) → 0. For each m ∈ N, let nm such
that ν(hγnmB) < 2−m. Then

ν
(
h
∞⋃
`=1

∞⋃
m=`+1

γnmB
)
≤ lim

`→∞

∞∑
m=`+1

ν(hγnmB) ≤ lim
`→∞

∞∑
m=`+1

2−m = 0.

Since ν is quasi-invariant,

lim sup
m→∞

ν(γnmB) ≤ lim sup
`→∞

ν
( ∞⋃
m=`+1

γnmB
)

= ν
( ∞⋂
`=1

∞⋃
m=`+1

γnmB
)

= 0

meaning that (X, ν) is Γ-contractive.

21.3 The Contractive Factor Theorem

Factor Theorems play a key role in using dynamics to study the structure of groups, par-
ticularly lattices. Previous factor theorems, including those of Margulis [Mar91], Zimmer
and Bader-Shalom [BS05], have always applied only to boundary actions. The Contractive
Factor Theorem applies to general contractive actions and is therefore more general and
more dynamical in nature.

Theorem 21.2. Let G be a locally compact second countable group and Γ < G a lattice in
G. Let Λ < Comm(Γ) be a subgroup of the commensurator of Γ such that Λ is dense in G
and Γ < Λ.

Let (X, ν) be a G-space where the Γ-action on (X, ν) is contractive and let (Y, η) be a
Λ-space such that there exists a Γ-map ϕ : (X, ν)→ (Y, η).

Then ϕ extends to a G-map in the sense that there is some G-space (Y ′, η′) which is
measurably Λ-isomorphic to (Y, η) (meaning the isomorphism is a Λ-map) such that ϕ extends
to a G-map from (X, ν) to (Y ′, η′) (in the sense that the various Λ-maps commute).

The factor theorem roughly says that if we have a G-space on which Γ acts contractive
and a Γ-map from it (meaning the map only respects the lattice as far as equivariance) to a
space where the commensurator of the lattice acts then in fact the target space is measurably
a G-space and the map is a G-map. This means that merely knowing that the lattice acts
contractive is enough to guarantee that lattice factors are in fact coming from the ambient
group. Note also that unlike in the measure-preserving case it is nontrivial that the action
of a dense subgroup extends measurably to a quasi-invariant action of the group.

Proof. Let (X, ν) be a G-space where the Γ-action on (X, ν) is contractive and let (Y, η) be
a Λ-space such that there exists a Γ-map ϕ : (X, ν) → (Y, η). Note that Γ acts ergodically
on (Y, η) since it does on (X, ν) because it acts contractive on (X, ν) (Lemma 17.6.2).
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Fix λ ∈ Λ. Since Λ commensurates Γ, the subgroup Γ0 = Γ ∩ λ−1Γλ is also a lattice in
G. Consider the map ϕλ : X → Y given by

ϕλ(x) := λ−1ϕ(λx)

Since ϕ is Γ-equivariant, ϕλ is Γ0-equivariant: for γ0 ∈ Γ0 we have λγ0λ
−1 ∈ Γ and so

ϕλ(γ0x) = λ−1ϕ(λγ0x) = λ−1ϕ((λγ0λ
−1)λx) = λ−1(λγ0λ

−1)ϕ(λx) = γ0ϕλ(x).

Let η = ϕ∗ν be the pushforward of ν to Y over ϕ and η′ = (ϕλ)∗ν be the pushforward
over ϕλ. Then η and η′ are in the same measure class: if η(A) = 0 then η(λA) = 0 by the
Λ-quasi-invariance of η, and therefore ν(ϕ−1(λA)) = 0. But η′(A) = λν(ϕ−1(λA)) so by the
Λ-quasi-invariance of ν this is zero, hence the measures are in the same class.

By Proposition 21.1.1, the action of Γ0 on (X, ν) is contractive since the Γ-action is.
Since ϕ and ϕλ are both Γ0-equivariant maps, one relative to a contractive Γ0-space, and
one relative to another measure in the class of the contractive measure, by Theorem 17.8,
ϕλ = ϕ a.e. Hence for each λ we have that λ−1ϕ(λx) = ϕ(x) for almost every x, making ϕ
a Λ-map.

Treating L∞(Y, η) as a Λ-invariant sub-σ-algebra of the G-invariant σ-algebra L∞(X, ν),
the density of Λ in G means that as a σ-algebra L∞(Y, η) is G-invariant. Then by Mackey’s
point realization there exists a G-space (Y ′, η′) measurably Λ-isomorphic to (Y, η), and a
G-map (X, ν)→ (Y ′, η′) such that this map composed with the Λ-isomorphism is ϕ.
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Property (T )

Property (T ) is a strong anti-amenability property that was introduced by Kazhdan in
connection with studying lattices in Lie groups. The intuition for property (T ) is that if a
group acts on a Hilbert space unitarily with nontrivial almost invariant vectors then there
is actually a nontrivial invariant vector. The name arises from an equivalent condition that
the trivial representation is an isolated point in the unitary dual.

Property (T ) plays a key role in the study of rigidity for Lie groups and lattices and
in the study of lattices in general locally compact groups. It is also a crucial aspect of
group representation theory and appears in many forms in the areas of operator algebras
and geometric group theory.

A very complete introduction to Property (T ) along with an overview of many of its
applications and some results it plays a key role in can be found in the book of Bekka, de la
Harpe and Valette [BDV08].

22.1 The Definition

The most commonly used definition of property (T ), and the one we will adopt, is in terms
of almost invariant vectors for unitary representations.

Definition 22.1. Let G be a locally compact or countable discrete group and π a unitary
representation of G on a Hilbert space H. A vector x ∈ H is (K, ε)-invariant for a compact
set K ⊆ G and an ε > 0 when ‖gxn − xn‖ < ε for all g ∈ K.

Definition 22.2. Let G be a locally compact or countable discrete group and π a unitary
representation of G on a Hilbert space H. A sequence of vectors xn ∈ H is K-almost-
invariant for a compact set K ⊆ G when ‖gx− x‖ → 0 for all g ∈ K.

Definition 22.3. Let G be a group and π a unitary representation of G on a Hilbert space.
A vector x is invariant when π(g)x = x for all g ∈ G. When x 6= 0 is invariant we say that
(G, π) admits a nontrivial invariant vector.

Definition 22.4. Let G be a group and π a unitary representation on a Hilbert space. Let
K ⊆ G be a compact set and xn a sequence of unit vectors such that ‖π(k)xn − xn‖ → 0
for all k ∈ K. Then {xn} is a sequence of K-almost-invariant unit vectors. When for
every compact K there is such a sequence we say that (G, π) admits almost invariant
(unit) vectors.

Definition 22.5. Let G be a locally compact or countable discrete group. Then G has
property (T ) when any unitary representation π of G on a Hilbert space that admits
almost invariant (unit) vectors also admits a nonzero invariant vector.
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This can be sharpened quantitatively in that it is equivalent to say that there exists
a fixed ε > 0 and compact K ⊆ G, both depending only on G, such that any unitary
representation that has a (K, ε)-invariant vector in fact has an invariant vector. The ε is
referred to as the Kazhdan constant for G.

22.2 Rigidity and Property (T )

Property (T ) turns out to play a key role in rigidity theory. The most basic result in this
direction is due to Kazhdan [Kaz67]:

Theorem 22.6 (Kazhdan 1967). Let Γ < G be a lattice in a locally compact second countable
group. Then Γ has property (T ) if and only if G does.

We opt not to present a proof of Kazhdan’s result since it is a representation theory
argument and does not involve ergodic theory. However, the fact that property (T ) is
inherited by lattices plays a key role in the normal subgroup theorems and other applications
in the next part.

22.3 Equivalent Conditions

As with amenability, part of the power of property (T ) is that it has a variety of equivalent
conditions:

Theorem 22.7. Let G be a locally compact or countable discrete group. The following are
equivalent:

• G has property (T ) (almost invariant vectors implies invariant vectors)

• the trivial unitary representation is an isolated point in the space of representations of
G (the unitary dual) under the Fell topology

• if Fn are positive definite functions on G converging on compact sets to 1 then Fn
converge to 1 uniformly

• every continuous affine isometric action of G on a real Hilbert space admits a fixed
point

We remark that the trivial representation being isolated in the unitary dual (the second
condition above) is the motivation for the name property (T ) which is meant to indicate the
trivial representation is isolated.

22.4 Consequences of (T )

We list some general facts about property (T ):

• quotients of groups with property (T ) also have property (T )
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• if G has property (T ) then the abelianization of G is compact (the abelianization of G
is G/[G,G] where [·, ·] is the commutator: [A,B] = {aba−1b−1 : a ∈ A, b ∈ B})

• a countable group Γ that has property (T ) is finitely generated (and likewise a locally
compact group with property (T ) is compactly generated)

We remark also that while not every property (T ) group is finitely presented (as was
conjectured by Kazhdan), every property (T ) group is the quotient of a finitely presented
group (as shown by Shalom).

Exercise 22.1 Let Γ be a countable discrete group with property (T ) and let ϕ : Γ→ Λ be
a surjective homomorphism. Show that Λ has property (T ).

22.5 Examples

The main examples of property (T ) groups are simple real Lie groups of rank two or higher,
lattices in those groups, compact groups, finite groups, and a variety of hyperbolic groups.

Some groups that do not have property (T ) are the integers, nonabelian free groups,
noncompact solvable groups and SL2(R) and SL2(Z).

22.6 Mutual Exclusion with Amenability

Amenability and Property (T) are “mutually exclusive” in that the intersection of these
two classes of groups is trivial in the geometric sense–having both properties characterizes a
group being finite (compact):

Proposition 22.6.1. Let Γ be a countable discrete group that both has property (T ) and is
amenable. Then Γ is finite.

Proof. Consider the action of Γ on L2(Γ) (with the counting measure). Since Γ is amenable
there are nontrivial almost invariant vectors fn ∈ L2(Γ), ‖fn‖ = 1 such that ‖γ ·fn−fn‖ → 0
for each γ ∈ Γ (this is due to Dixmier). This can be seen as follows. Let {Fn} be a Følner
sequence for Γ and let f0 = δe be the function that is one at the identity and zero elsewhere.
Then ‖f0‖ = 1. For each n, define

fn(γ) =
1√
|Fn|

∑
f∈Fn

δf (γ).

Then

‖fn‖2 =
∑
γ∈Γ

1

|Fn|
∑
f,g∈Fn

δfγδg(γ) = 1

and for γ ∈ Γ,

(γfn)(g) =
1√
|Fn|

∑
f∈Fn

δf (γ
−1g) =

1√
|Fn|

∑
f∈Fn

δγf (g) =
1√
|Fn|

∑
f∈γFn

δf (g)
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and so

γfn − fn =
1√
|Fn|

∑
f∈γFn\Fn

δf −
1√
|Fn|

∑
f∈Fn\γFn

δf

meaning that∣∣〈γfn, fn〉∣∣ =
∣∣∣ 1

|Fn|

〈 ∑
f∈γFn\Fn

δf −
∑

f∈Fn\γFn

δf ,
∑
h∈Fn

δh

〉∣∣∣ ≤ 1

|Fn|
2|γFn4Fn| → 0.

Since Γ has property T and this is an action of Γ on a Hilbert space, the presence of
almost invariant vectors implies the existence of a nontrivial invariant vector f ∈ L2(Γ),
f 6= 0, such that g · f = f for all g ∈ Γ. Since f is Γ-invariant it is constant so we have
∞ > ‖f‖2 =

∑
g∈Γ |f(g)|2 = |f(e)|2|Γ| and therefore |Γ| <∞ since f 6= 0.

Proposition 22.6.2. Let G be a locally compact group that both has property (T ) and is
amenable. Then G is compact.

Proof. Exactly as above replacing the counting measure with Haar measure (and using that
the almost invariant vectors are almost invariant uniformly over compact sets).

22.7 Reduced Cohomology

A useful characterization of property (T ), and one leading to deep results in rigidity theory,
is due to Y. Shalom and is formulated in terms of cohomology.

Definition 22.8. Let G be a locally compact second countable group and π : G→ U(H) a
strongly continuous unitary representation of G on a Hilbert space H. A continuous function
ϕ : G→ H is a cocycle when

ϕ(gh) = π(g)ϕ(h) + ϕ(g)

for all g, h ∈ G.

One example of a cocycle is formed as follows: let v ∈ H be a vector and set ϕv(g) =
π(g)v − v. Then

ϕv(gh) = π(gh)v − v = π(g)(π(h)v − v) + (π(g)v − v) = π(g)ϕv(h) + ϕv(g)

so ϕv is a cocycle.

Definition 22.9. A cocycle is called a coboundary when it is of the form π(g)v − v for
some v ∈ H.

Definition 22.10. Let G be a locally compact second countable group and π : G→ U(H)
a strongly continuous unitary representation of G on a Hilbert space H.
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Let Z1(G, π) be the space of all cocycles and B1(G, π) the subspace of all coboundaries.
The cohomology for π is H1(G, π) = Z1(G, π)/B1(G, π).

Definition 22.11. Let G be a locally compact second countable group and π : G→ U(H)
a strongly continuous unitary representation of G on a Hilbert space H.

Endow Z1(G, π) with the topology of strong (in H) convergence uniformly on compact
sets (in G). Let B1(G, π) be the closure of the space of coboundaries in this topology. Then
ϕ ∈ B1(G, π) \B1(G, π) is an almost coboundary.

Definition 22.12. Let G be a locally compact second countable group and π : G→ U(H)
a strongly continuous unitary representation of G on a Hilbert space H. The reduced
cohomology for π is the space H1(G, π) = Z1(G, π)/B1(G, π).

Definition 22.13. Let G be a locally compact second countable group and π : G→ U(H) a
strongly continuous unitary representation of G on a Hilbert spaceH. Then π is irreducible
when the only π(G)-invariant subspaces of H are trivial.

Exercise 22.2 Let G y (X, ν) be an ergodic measure-preserving action on a probability
space. Show that the Koopman representation on L2

0(X, ν) is irreducible.
We are now in a position to state Shalom’s characterization of property (T ):

Theorem 22.14 (Shalom 2000 [Sha00a]). Let G be a locally compact second countable group.
Then G has property (T ) if and only if for every irreducible strongly continuous unitary
representation π : G→ U(H) on a Hilbert space, the reduced cohomology H1(G, π) is trivial
(i.e. every cocycle is an almost coboundary).

22.8 Harmonic Cocycles

Building on Shalom’s work, the author and Shalom refined the nonexistence of reduced
cohomology to a statement more along the lines of the harmonic functions approach to the
Poisson boundary.

Definition 22.15. Let G be a locally compact second countable group and π : G→ U(H)
a strongly continuous unitary representation of G on a Hilbert space H. Let µ ∈ P (G) be a
probability measure on G. A cocycle ϕ ∈ Z1(G, π) is µ-harmonic when

ϕ(g) =

∫
G

ϕ(gh) dµ(h)

for all g ∈ G.

Exercise 22.3 Show that a cocycle ϕ is µ-harmonic if and only if it is harmonic at the
identity: ∫

G

ϕ(g) dµ(g) = ϕ(e) = 0.

The connection with reduced cohomology is:
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Theorem 22.16 (Creutz-Shalom [Cre11]). Let G be a locally compact second countable
compactly generated group and π : G → B(H) a unitary representation of G on a Hilbert
space and µ a compactly supported symmetric probability measure on G with support gener-
ating G. In any reduced cohomology class [β] ∈ H1(G, π) there exists a unique µ-harmonic
representative.

As a corollary, we obtain another characterization of property (T ):

Corollary 22.17. A locally compact second countable compactly generated group has prop-
erty (T ) if and only if the only harmonic cocycle (for every compactly supported measure
generating the group and any representation) is zero.

We opt not to go into the details of the proof of the above result, but mention that is
based heavily on the idea of energy first introduced by Mok and developed to a large extent
by Kleiner [Kle10]:

Definition 22.18. Let G be a locally compact second countable compactly generated group
and π : G → B(H) a unitary representation of G on a Hilbert space and µ a compactly
supported symmetric probability measure on G with support generating G. The energy of
a cocycle ϕ is

Eµ(ϕ) =

∫
G

‖ϕ(g)‖2 dµ(g).

The argument for the above result in essence comes down to showing various properties of
the energy function (namely continuity and that it is minimized precisely when the directional
derivatives are all zero in a specific sense) and then showing that given any cocycle ϕ if one
considers the cocycle ϕ′(g) = ϕ(g) + π(g)v − v where v =

∫
G
π(g)v dµ(g) then the energy

always decreases: Eµ(ϕ′) ≤ Eµ(ϕ). Iterating this process and taking limits, along with a
uniqueness argument, then gives the result. The reader is referred to the author’s dissertation
[Cre11] for details.
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The Normal Subgroup Theorems

The most striking application of the rigidity theory developed so far is the celebrated nor-
mal subgroup theorems for lattices in various classes of groups. The first such result, due to
Margulis, and often referred to as “the” normal subgroup theorem states that every arith-
metic (and S-arithmetic) lattice is “as simple as possible” in the sense that the only normal
subgroups are those of finite index (which necessarily exist since such lattices are residually
finite and the presence of finite index subgroups implies the presence of normal finite index
subgroups).

23.1 Normal Subgroups of Lattices

We now state the normal subgroup theorems of Margulis, Bader and Shalom, and the author
and Shalom.

Definition 23.1. Let Γ be a countable discrete group. Then Γ is just infinite when every
nontrivial normal subgroup N / Γ has finite index in Γ.

Theorem 23.2 (Margulis 1979 [Mar79]). Let G be a higher-rank semisimple group with
trivial center and no compact factors and let Γ < G an irreducible lattice. Then Γ is just
infinite.

Margulis’ theorem, proved in tandem with the arithmeticity theorem, answered a long-
standing question about normal subgroups of lattices in Lie groups. Among the striking
features of this result is that the statement of the theorem is a purely algebraic result about
groups, however the proof strategy involves heavy use of rigidity theory, ergodic theory and
representation theory. In the following sections, we will employ the same strategy in the
context of commentators to prove the normal subgroup theorem of the author and Shalom.

Generalizing Margulis’ theorem to a larger class of groups was accomplished by Bader
and Shalom:

Theorem 23.3 (Bader-Shalom 2005 [BS05]). Let Γ < G×H be an irreducible integrable lat-
tice in a product of nondiscrete simple compactly generated locally compact second countable
groups. Then Γ is just infinite.

The requirement of higher-rank in Margulis’ theorem is replaced by the requirement that
the lattice sit in a product of at least two simple groups in the work of Bader and Shalom.
In this sense, their theorem is the optimal result for irreducible lattices.

We have already seen that when one of the ambient groups is totally disconnected, such a
lattice can be represented as the commensurator of another lattice. Pushing this idea further
will be the content of the following section, but we first present a consequence of what is to
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come that improves the Bader-Shalom theorem in the case where at least one ambient group
is totally disconnected.

Definition 23.4. Let G be a locally compact second countable group. Then G is just
noncompact if and only if every nontrivial closed normal subgroup N / G is cocompact.

Theorem 23.5 (Creutz-Shalom 2014 [CS14]). Let Γ < G × H be an integrable irreducible
lattice in a product of locally compact second countable groups such that G is compactly
generated and G is not a compact extension of an abelian group and H is totally disconnected
and such that Γ ∩ {e} ×H is finite (it is enough that H have finite center). Then Γ is just
infinite if and only if G is just noncompact and H has no nontrivial infinite index open
normal subgroups.

The above will appear as a corollary to the results proved in the following section but
we remark that it is the first instance of a normal subgroup theorem where the rigidity
phenomena is “in reverse” in the sense that the lattice having no normal subgroups implies
the same about the ambient groups.

23.2 Normal Subgroups of Commensurators

We will now state and prove the normal subgroup theorem for commensurators, making
heavy use of the material on contractive rigidity and property (T ) discussed in the previous
chapters. The initial statement of the theorem says that every normal subgroup of a dense
commensurator necessarily contains the lattice; later we will see the connection with the
relative profinite completion that leads to a “true” normal subgroup theorem.

Theorem 23.6. Let G be a locally compact, second countable, compactly generated group
that is not a compact extension of an abelian group.

Let Γ < G be a finitely generated square integrable lattice and let Λ < G be a dense
subgroup of G that contains and commensurates Γ.

Then every infinite normal subgroup N / Λ has the property that N ∩ Γ has finite index
in Γ, if and only if Λ intersects finitely every closed normal non-cocompact subgroup of G.

23.3 The Reduction Step

Theorem 23.6 will be a consequence of the following Proposition. We shall first state it and
prove that Theorem 23.6 follows from it, and then turn to proving the result.

Proposition 23.3.1 (The Reduction Step). Let Γ <c Λ < G be as in Theorem 23.6, but
with no structural restriction on G. Let N be a normal subgroup of Λ such that Γ maps onto
Λ/N via the coset map Λ→ Λ/N , and [N,N ] is co-compact in G (hence N is as well). Then
Λ/N is finite.

Proof of Theorem 23.6 assuming Proposition 23.3.1. Assume first that Λ intersects finitely
every closed normal non-cocompact subgroup of G, and let N / Λ be any infinite normal
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subgroup. Then N / Λ = G and since N is infinite and contained in Λ ∩ N it follows from
the assumption of the Theorem that N is co-compact in G. Now [N,N ] is a characteristic
normal subgroup of N , hence also [N,N ] / Λ. Then either [N,N ] is finite, or it’s infinite,
in which case the exact same argument as before (with N replaced by [N,N ]) shows that
[N,N ] is co-compact in G. We now observe that the first possibility cannot occur.

Indeed, it is a general fact that [N,N ] = [N,N ], hence the assumed finiteness property
of [N,N ] implies that property for the left, hence also for the right hand side. Now N < G is
co-compact so it inherits compact generation from G. By the general Lemma 23.3.2 below it
then follows from this finiteness property that the center Z(N) has finite index in N , hence
is co-compact as well in G. Being a characteristic normal subgroup of N , it is also normal in
G. Hence G is a compact extension of the abelian group Z(N), contradicting the hypothesis
of the Theorem. We conclude that the second possibility holds: [N,N ] is co-compact in G.

Let Λ′ = Γ · N . Then Λ′ is a subgroup of Λ that contains and commensurates Γ.
Clearly Γ maps onto Λ′/N via the coset map γ 7→ γN . We are now in position to apply
Proposition 23.3.1 to the groups Γ < Λ′ < Λ′ with N / Λ′ (the closure of [N,N ], being
co-compact in G, is so in Λ′ as well). It follows from this Proposition that Λ′/N is finite.
Then Γ/(Γ∩N) ' (Γ ·N)/N is finite as well, so N contains a finite index subgroup of Γ, as
required.

The reverse direction of Theorem 23.6 is easy, and we prove it for completeness. Assume
that for every infinite normal subgroup N / Λ it holds that N ∩ Γ has finite index in Γ. We
need to show that every closed M / G which intersects Λ infinitely, is co-compact. Given
such M , set N = M ∩ Λ / Λ, noting that here by the reverse assumption of the Theorem
N ∩ Γ = M ∩ Γ has finite index in Γ. Since (every finite index subgroup of) Γ has co-finite
Haar measure in G, it follows that so does the normal subgroup M / G. Hence the group
G/M has finite Haar measure, and is therefore compact, as required. This completes the
reduction of the proof of Theorem 23.6 to Proposition 23.3.1, modulo the following general
(and probably well known) Lemma.

Lemma 23.3.2. Let H be a compactly generated, second countable locally compact group,
for which [H,H] is finite. Then the center Z(H) has finite index in H.

Proof. Let K ⊆ H be a compact generating set. For x ∈ K consider the orbit of x under
conjugation by H: h 7→ hxh−1. Since [H,H] is finite, hxh−1x−1 takes on only finitely many
values, so for each x, the orbit {hxh−1 : h ∈ H} is finite. Therefore Hx = {h ∈ H : hxh−1 =
x} has finite index in H.

Each Hx is compactly generated since H is. Let Qx ⊆ Hx be a compact generating set.
For q ∈ Qx observe that qxq−1x−1 = e. By the continuity of the action of H on itself there
is then an open neighborhood Ux of x such that qyq−1y−1 = e for all q ∈ Qx and all y ∈ Ux.
This can be seen as follows: if no such neighborhood exists then there exists xn → x and
qn ∈ Qx such that qnxnq

−1
n x−1

n 6= e. Since qnxnq
−1
n x−1

n ∈ [H,H] is a finite set there is a
subsequence on which qnxnq

−1
n x−1

n = z 6= e is constant. Take a further subsequence along
which qn → q ∈ Qx (compactness of Qx). Then qnxnq

−1
n x−1

n → qxq−1x−1 and qnxnq
−1
n x−1

n = z
hence qxq−1x−1 = z 6= e contradicting that q ∈ Hx.
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Therefore, for all x ∈ K there is an open neighborhood Ux of x such that for all q ∈ Qx

and all y ∈ Ux we have qyq−1y−1 = e. Since Qx generates Hx this means that Ux commutes
with Hx. Now K ⊆

⋃
x∈K Ux is an open cover of a compact set hence there is a finite

subcover: K ⊆
⋃`
j=1 Uxj for some x1, . . . , x` ∈ K. Let H0 =

⋂`
j=1 Hxj . Then H0 commutes

with Ux1 , . . . , Ux` hence it commutes with K and therefore H0 commutes with all of H. Now
H0 has finite index in H since it is a finite intersection of finite index subgroups of it, hence
H0 ⊆ Z(H) and the latter has finite index, as claimed.

In the rest of this chapter we prove Proposition 23.3.1. This is done in two independent
parts: the “amenability half” and the “property (T ) half”, which are Propositions 23.4.1
and 23.5.1 below.

Proof of Proposition 23.3.1 from Propositions 23.4.1 and 23.5.1 below. The group Λ/N has
property (T ) by Proposition 23.5.1 and is amenable by Proposition 23.4.1, hence it is finite.

23.4 The Amenability Half

Proposition 23.4.1. Let G be a locally compact second countable group and let Γ < G be a
lattice in G. Let Λ < G be a dense subgroup that contains and commensurates Γ.

Let N be a normal subgroup of Λ such that N is co-compact in G, and such that Γ maps
onto Λ/N via the coset map. Then Λ/N is amenable.

Proof. Since Λ/N is (second) countable, it is amenable if for any compact metric space on
which Λ/N acts continuously, there is a Λ/N invariant probability measure. Let Z be such
a space, viewed as a Λ-space with trivial action of N .

Let(X, ν) be the Poisson boundary of G (with respect to any symmetric measure with
support generating G). By Theorem 21.1, the action of Γ on (X, ν) is contractive. The
G-action on (X, ν) is amenable, hence also that of its closed subgroup Γ [Zim84]. Let then
ϕ : X → P (Z) be a measurable Γ-equivariant map . Let Y = P (Z) and η = ϕ∗ν ∈ P (Y ) so
that ϕ : (X, ν)→ (Y, η) is a Γ-map.

By hypothesis, Γ maps onto Λ/N via the coset map γ 7→ γN so for any λ ∈ Λ there is
some γ ∈ Γ such that γN = λN . Since N acts trivially on Z, we have λη = γη and therefore
the Γ-quasi-invariance of η implies Λ-quasi-invariance, so (Y, η) is a Λ-space.

By the Contractive Factor Theorem (Theorem 21.2), ϕ extends to a G-map to a Λ-
isomorphic G-space (Y ′, η′). Since N acts trivially on Z the same is true on Y = P (Z) and
therefore N acts trivially on Y ′. As η is invariant under N , η′ is N -invariant.

Let Q = G/N . Then Q is a compact group. Since η′ is quasi-invariant under G it also is
under Q. Let m be the Haar measure on Q normalized to be a probability measure and set
η′′ = m ∗ η′. Then η′′ is in the same measure class as η′, and η′′ is Q-invariant. Therefore η′′

is G-invariant since N / G and η′ is N -invariant.
Let η′′′ be the isomorphic image of η′′ on Y . So η′′′ is a Λ-invariant probability measure

on Y = P (Z). Take ρ to be the barycenter of η′′′: ρ =
∫
P (Z)

ζ dη′′′(ζ). Then ρ ∈ P (Z) is
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Λ-invariant since λρ =
∫
P (Z)

λζ dη′′′(ζ) =
∫
P (Z)

ζ dλη′′′(ζ) = ρ. Hence ρ is a Λ/N -invariant

probability measure on Z and the proof is complete.

23.5 The Property (T ) Half

The requirement that Γ be square-integrable in the main Theorem is only necessary for the
property (T ) half of the proof. As our focus here is on ergodic theory we will merely state
the result:

Proposition 23.5.1. Let Γ <c Λ < G be as in Proposition 23.4.1, with G compactly gen-
erated and Γ (uniform or) square integrable. Let N be a normal subgroup of Λ such that Γ
maps onto Λ/N via the coset map, and such that [N,N ] (hence also N) is co-compact in G.
Then Λ/N has property (T ).

Note that if the ambient group G is assumed to have property (T ) then this is inherited
by the lattice Γ (all of which occurs before the reduction step). Then Γ/Γ ∩ N will inherit
property (T ) from Γ as property (T ) passes to quotients. So, while we have omitted the
proof of Proposition 23.5.1 as it involves representation theory outside our scope, we have
presented a complete proof of the following special case of Theorem 23.6:

Theorem 23.7. Let G be a locally compact, second countable, compactly generated group
that is not a compact extension of an abelian group and assume that G has property (T ).

Let Γ < G be a lattice and let Λ < G be a dense subgroup of G that contains and
commensurates Γ.

Then every infinite normal subgroup N / Λ has the property that N ∩ Γ has finite index
in Γ, if and only if Λ intersects finitely every closed normal non-cocompact subgroup of G.

23.6 Bijection of Commensurability Classes

Once we know that every normal subgroup of the commensurator contains the lattice, the
result can be upgraded to a one-one correspondence statement involving the relative profinite
completion.

Theorem 23.8. Let G be a locally compact, second countable, compactly generated group
that is not a compact extension of an abelian group.

Let Γ < G be a finitely generated square integrable lattice and let Λ < G be a dense
subgroup of G that contains and commensurates Γ.

Then there is a bijection between commensurability classes of infinite normal subgroups
of Λ and of commensurability classes of open normal subgroups of Λ//Γ.

Using the fact that lattices in products can be written as commensurators, we derive the
following corollary:

Corollary 23.9. Let Γ < G × H be an irreducible lattice in a product of simple nondis-
crete locally compact second countable groups, H totally disconnected and G not a compact
extension of an abelian group. Then Γ is just infinite.
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Theorem 23.8 follows from Theorem 23.6 and the following proposition:

Proposition 23.6.1. Let Γ < Λ be countable discrete groups such that Λ commensurates Γ.
Let ϕ : Λ→ H be a dense homomorphism into the locally compact totally disconnected group
H such that K = ϕ(Γ) is compact open, and ϕ−1(K) = Γ. Then the map N 7→ ϕ(N) induces
a bijection between commensurability classes of normal subgroups N /Λ with [Γ : N∩Γ] <∞,
and commensurability classes of open normal subgroups of H.

Proof. Let N be a normal subgroup of Λ with [Γ : N ∩ Γ] <∞. Then [K : ϕ(Γ ∩N)] <∞
and ϕ(Γ ∩N) is a compact open subgroup of H. Since ϕ(N) contains this group, ϕ(N) is
an open normal subgroup of H.

LetN1 andN2 be commensurate normal subgroups of Λ with [Γ : N1∩Γ], [Γ : N2∩Γ] <∞.
Then N1 ∩N2 is a normal subgroup of Λ that has finite index in both N1 and N2. Therefore
ϕ(N1 ∩N2) is an open normal subgroup of H that has finite index in both ϕ(N1) and ϕ(N2)
meaning that N1 and N2 are mapped to the same commensurability class of open normal
subgroups. Therefore the induced map on the commensurability classes is well defined.

Surjectivity is obvious: given an open normal subgroup M of H, set N = ϕ−1(M). Then
N is normal in Λ and [Γ : N ∩Γ] <∞ since M contains a finite index subgroup of ϕ(Γ). Of
course, ϕ(N) = ϕ(Λ) ∩M = M , as M is open and by density of ϕ.

To prove injectivity, take N1 and N2 to be normal subgroups of Λ with [Γ : N1 ∩ Γ], [Γ :
N2∩Γ] <∞ such that ϕ(N1) and ϕ(N2) are commensurate (open normal) subgroups. Since
ϕ is a homomorphism, ϕ−1(ϕ(N1)) and ϕ−1(ϕ(N2)) are commensurate subgroups of Λ. Once
we show that [ϕ−1(ϕ(N1)) : N1] <∞ and [ϕ−1(ϕ(N2)) : N2] <∞ we would get immediately
that N1 and N2 are commensurate, implying injectivity. So, we are only left with proving
that any N as in the Proposition has finite index in ϕ−1(ϕ(N)).

Indeed, as ϕ(N) is dense in ϕ(N) and K = ϕ(Γ) is open, ϕ(N) ⊆ Kϕ(N). Set Q =
ϕ(N) ∩ ϕ(Λ). For h ∈ Q, write h = kn for some k ∈ K and n ∈ ϕ(N). Then hn−1 = k ∈ K
and hn−1 ∈ ϕ(Λ)ϕ(N) = ϕ(Λ) so hn−1 ∈ K ∩ ϕ(Λ) = ϕ(Γ) (since ϕ−1(K) = Γ). Therefore
Q ⊆ ϕ(Γ)ϕ(N) = ϕ(ΓN). Since ϕ is a homomorphism,

[ϕ−1(Q) : ϕ−1(ϕ(N))] ≤ [Q : ϕ(N)] ≤ [ϕ(ΓN) : ϕ(N)] ≤ [ΓN : N ] = [Γ : Γ ∩N ] <∞.

Because Γ = ϕ−1(K), kerϕ < Γ and we also have:

[ϕ−1(ϕ(N)) : N ] = [N kerϕ : N ] ≤ [NΓ : N ] <∞

These two finiteness results yield [ϕ−1(Q) : N ] < ∞, precisely what is needed to be
proved.
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Free Actions and Character Rigidity

Our final topic will be an overview of some generalizations of the normal subgroup theorem
for arithmetic lattices to actions of such groups and to representations into unitary groups
of finite factors.

24.1 Invariant Random Subgroups

The first generalization of the normal subgroup theorems we will discuss involves the notion
of invariant random subgroup, which intuitively represents a “normal” random subgroup of
a group:

Definition 24.1. Let G be a locally compact second countable (or countable discrete) group.
Let S(G) be the space of closed subgroups of G equipped with the action of G by conjugation.
Endow S(G) with the Chabauty (Fell) topology (as a subspace of the space of closed subsets
of G).

When Γ is a countable discrete group the topology of S(Γ) is simply that inherited from
the space 2Γ with the product topology. As such, S(G) is always a compact (metric) space.

Definition 24.2. Let G be a locally compact second countable group. A Borel probability
measure η ∈ P (S(G)) is an invariant random subgroup when it is invariant under the
action of G by conjugation.

This is indeed a generalization of a normal subgroup in the sense that if N / G is a
closed normal subgroup then δN , the point mass on the subgroup N , is an invariant random
subgroup.

Definition 24.3. Let G be a locally compact second countable group. The point mass on
G, δG, is the trivial invariant random subgroup and the point mass on the trivial group,
δ{e}, is the free invariant random subgroup.

Definition 24.4. Let G be a locally compact second countable group and η ∈ P (S(G)) an
invariant random subgroup. Then η has finite index when for η-almost every H ∈ S(G) it
holds that [G : H] <∞.

Other properties of subgroups can likewise be carried over to invariant random subgroups
(the author and J. Peterson [CP12] introduced the technique of using joinings of invariant
random subgroups to generalize notions such as commensurability).

Definition 24.5. Let G be a locally compact second countable group and η ∈ P (S(G)) be
an invariant random subgroup. Then η is ergodic when Gy (S(G), η) is ergodic.
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The author and J. Peterson generalized the normal subgroup theorem for lattices to:

Theorem 24.6 (Creutz-Peterson 2012 [CP12]). Let G be a semisimple Lie group (real or
p-adic or both) with no compact factors, trivial center, at least one factor with rank at least
two and such that each real simple factor has rank at least two. Let Γ < G be an irreducible
lattice. Then every ergodic invariant random subgroup is either the free invariant random
subgroup or has finite index.

The case when there is exactly one factor in the ambient group (i.e. G is a simple Lie
group) is due to Nevo, Stuck and Zimmer [SZ94],[NZ99] and is a generalization of the Mar-
gulis Normal Subgroup Theorem. The general case follows the technique of treating lattices
in products as commensurators and therefore follows from:

Theorem 24.7 (Creutz-Peterson 2012 [CP12]). Let G be a noncompact nondiscrete locally
compact second countable group with the Howe-Moore property and property (T ). Let Γ < G
be a torsion-free lattice and let Λ < G be a countable dense subgroup such that Λ contains
and commensurates Γ and such that Λ has finite intersection with every compact normal
subgroup of G. Then every ergodic invariant random subgroup of Λ is either finite index or
the intersection of it with Γ is free.

While the proof is some ways follows the same strategy as that of the Normal Subgroup
Theorem for Commensurators, considerable new machinery is required. We opt not to
go into details here, but mention that among the key new ideas are the introduction of
relatively contractive maps (relativizing contractive actions to G-maps), using the Howe-
Moore property as a replacement for the simplicity of the ambient group, and, crucially,
replacing the notion of induced action (which we have not discussed but is critical in the
work of Nevo-Stuck-Zimmer) with invariant random subgroups (specifically, if η ∈ P (Λ) is
an invariant random subgroup of a countable dense Λ < G then η ∈ P (G) given by η = c∗η
where c : S(Λ)→ S(G) is c(L) = L). The reader is referred to [CP12] for details.

24.2 Essentially Free Actions

There is another method of constructing invariant random subgroups using actions. Recall
that:

Definition 24.8. Let G be a locally compact second countable group and G y (X, ν) a
G-space. Then the stabilizer subgroup of x ∈ X is

stabG(x) = {g ∈ G : gx = x}.

Let G be a group and G y (X, ν) be a measure-preserving action. Then the mapping
x 7→ stabG(x) sending each point to its stabilizer subgroup defines a Borel map X → S(G)
([AM66] Chapter 2, Proposition 2.3). Let η be the pushforward of ν under this map. Observe
that stabG(gx) = g stabG(x)g−1 so the mapping is a G-map and therefore η is an invariant
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measure on S(G). Hence G y (X, ν) gives rise in a canonical way to an invariant random
subgroup of G defined by the stabilizer subgroups.

In fact the converse of this is also true: any invariant random subgroup can be realized
as the stabilizer subgroups of some measure-preserving action:

Theorem 24.9. Let G be a locally compact second countable group. Given an invariant
random subgroup (S(G), η) there exists a measure-preserving G-space (X, ν) such that the
G-equivariant mapping x 7→ stabG(x) pushes ν to η.

Proof. We make use of the Gaussian action construction: for a separable Hilbert space H
one can associate a probability space (YH , νH) and an embedding ρ : H → L2(YH , νH) such
that for any orthogonal T : H → K between Hilbert spaces there is a measure-preserving
map VT : (YH , νH)→ (YK , νK) such that ρ(T (ξ)) = ρ(ξ) ◦ V −1

T and that for T : H → K and
S : K → L, VS ◦VT = VS◦T almost everywhere for each fixed pair S, T . The reader is referred
to Schmidt [Sch96] for details. Decompose S(G) into the conjugation invariant Borel sets

S1 = {H < G : H is cocompact in G} and S2 = S(G) \ S1.

For each H ∈ S1 let (YH , ηH) be YH = G/H and ηH the Haar measure normalized to be
a probability measure. For each H ∈ S2 let (YH , ηH) be the Gaussian probability space
corresponding to L2(G/H). Let Y = ((YH , ηH))H∈S(G) be the field of measure spaces just
constructed.

Define the cocycle α : G × S(G) → Y such that α(g,H) ∈ Aut(YH , YgHg−1) as follows:
for H ∈ S1 define α(g,H)(kH) = kg−1(gHg−1) and for H ∈ S2 define α(g,H) to be the
measure-preserving isomorphism from YH to YgHg−1 induced by the orthogonal operator Tg,H
given by (Tg,Hf)(kgHg−1) = f(kgH). For each g, h ∈ G, the cocycle identity holds almost
everywhere by the nature of the Gaussian construction. Define the measure space

(X, ν) =
(⊔

YH ,

∫
ηH dη(H)

)
equipped with the measure-preserving cocycle action of G coming from α. By Mackey’s
point realization [Mac62], as G is locally compact second countable by removing a null set
we may assume, the cocycle identity holds everywhere.

For each fixed H ∈ S(G) the map g 7→ α(g,H) defines an action of the normalizer NG(H)
of H in G modulo H on YH which is essentially free (Proposition 1.2 in [AEG94]). For g ∈ G
and (H, x) ∈ X we see that g(H, x) = (gHg−1, α(g,H)x) and therefore (H, x) = g(H, x)
if and only if g ∈ NG(H) and α(g,H)x = x hence if and only if g ∈ H. That is to say,
stabG(H, x) = H for almost every (H, x). Therefore the G-action on (X, ν) gives rise to the
invariant random subgroup η as required.

Using the notion of invariant random subgroups, and the connection between them and
measure-preserving actions, the author and J. Peterson generalized the normal subgroup
theorem for lattices to:
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Theorem 24.10 (Creutz-Peterson 2012 [CP12]). Let G be a semisimple Lie group (real or
p-adic or both) with no compact factors, trivial center, at least one factor with rank at least
two and such that each real simple factor has rank at least two. Let Γ < G be an irreducible
lattice. Then any ergodic measure-preserving action of Γ on a nonatomic probability space
is essentially free.

24.3 Character Rigidity

Our final topic is a further generalization of the normal subgroup theorem to the setting of
“non-commutative actions”. We begin with the following definitions:

Definition 24.11. Let G be a locally compact second countable group. A function ϕ : G→
C is positive-definite when for all c1, . . . , cn ∈ C and g1, . . . , gn ∈ G,

n∑
j,k=1

cjckϕ(g−1
k gj) ≥ 0.

Definition 24.12. Let G be a locally compact second countable group. A (continuous)
function ϕ : G → C is a character on G when it is positive-definite, conjugation-invariant
(ϕ(h−1gh) = ϕ(g) for all g, h ∈ G) and normalized (ϕ(e) = 1).

Definition 24.13. Let Γ be a countable discrete group. The trivial character on Γ is the
character ϕ(γ) = 1 for all γ ∈ Γ. The regular character on Γ is the character ϕ(e) = 1
and ϕ(γ) = 0 for γ 6= e.

Definition 24.14. The space of characters on a group G will be a closed convex subset
of the space of functions on G. The extremal points in the convex set are referred to as
extremal characters.

Character theory was first studied in the context of finite groups where they all arise
from representations as finite-dimensional matrices. Observe that if π : Γ → Mn×n is a
homomorphism of a countable group Γ into unitary matrices then

ϕ(γ) =
1

n
Trace(π(γ))

is a character on Γ (see the following section for a proof in a more general setting).
When passing to infinite groups, such representations also give rise to characters and

therefore:

Definition 24.15. Let Γ be a countable discrete group. A character ϕ on Γ is a classical
character when it can be realized from a representation in finite-dimensional matrices.

Before discussing the meaning of character rigidity, we point out that characters encom-
pass, in a certain sense, actions of the group (and therefore invariant random subgroups and
normal subgroups):
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Proposition 24.3.1. Let G be a locally compact second countable group and Gy (X, ν) be
a measure-preserving action of G. Then the function

ϕ(g) = ν({x ∈ X : gx = x})

is a character on G.

Proof. We will present the proof only in the case when G is countable discrete to avoid
technicalities. Clearly ϕ(e) = 1 since ν is a probability measure. Observe that

ϕ(h−1gh) = ν({x ∈ X : h−1ghx = x})
= ν({x ∈ X : ghx = hx}) = (hν)({x ∈ X : gx = x}) = ϕ(g)

since the action is measure-preserving.
Consider now the space Y = {(x, y) ∈ X × X : x = gy for some g ∈ G }. For a Borel

set A ⊆ Y and x ∈ X, denote Ax = {(x, y) ∈ A} (which is at most countable since G is
countable). Then

σ(A) =

∫
X

|Ax| dν(x)

is a σ-finite measure on Y (here | · | denotes cardinality). Let f : Y → R be the indicator
function of the diagonal: f(x, x) = 1 and f(x, y) = 0 for x 6= y. Observe that∫

Y

f(x, y)f(gx, y) dσ(x, y) =

∫
X

1x=gx dν(x) = ν({x ∈ X : gx = x})

and in particular f ∈ L2(Y, σ) with ‖f‖2 = 1.
For c1, . . . , cn ∈ C and g1, . . . , gn ∈ G,

n∑
j,k=1

cjckϕ(g−1
k gj) =

n∑
j,k=1

cjckν({x ∈ X : gjx = gkx})

=

∫
Y

n∑
j,k=1

cjckf(gjx, y)f(gkx, y) dσ(x, y)

=

∫
Y

∣∣ n∑
j=1

cjf(gjx, y)
∣∣2 dσ(x, y) ≥ 0

and therefore ϕ is positive-definite.

The author and J. Peterson have generalized the normal subgroup theorem for commen-
surators, and its generalization to actions, as follows:

Theorem 24.16 (Creutz-Peterson 2013 [CP13]). Let G be a semisimple connected Lie group
with trivial center and no compact factors, such that at least one factor is higher-rank, and
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let H be a non-compact totally disconnected semisimple algebraic group over a local field with
trivial center and no compact factors. Let Γ < G ×H be an irreducible lattice. Then every
extremal character on Γ is either the regular character or else is a classical character.

24.4 Operator Algebraic Superrigidity

There is a more general method for constructing characters as well.

Proposition 24.4.1. Let N be a finite von Neumann algebra with normalized trace τ and
let π : G → U(N) be a unitary representation of a countable discrete group Γ on N . Then
ϕ(g) = τ(π(g)) is a character on Γ.

Proof. Since τ is a normalized trace, ϕ is normalized and conjugation-invariant.
For c1, . . . , cn ∈ C and g1, . . . , gn ∈ Γ,

n∑
j,k=1

cjckτ(π(g−1
k gj)) = τ

( n∑
j,k=1

cjπ(gj)ckπ(g−1
k )
)

= τ
(∣∣ n∑

j=1

cjπ(gj)
∣∣2) ≥ 0

since τ is a positive functional.

In fact, the converse is also true: every character on G can be realized as the trace of a
unitary representation (this is simply the GNS construction).

The previous theorem on character rigidity then becomes operator algebraic superrigidity:

Theorem 24.17 (Creutz-Peterson 2013 [CP13]). Let G be a semisimple connected Lie group
with trivial center and no compact factors, such that at least one factor is higher-rank, and
let H be a non-compact totally disconnected semisimple algebraic group over a local field
with trivial center and no compact factors. Let Γ < G × H be an irreducible lattice. Let
π : Γ → U(M) be a representation into the unitary group of a finite factor M such that
π(Γ)′′ = M . Then either M is finite dimensional, or else π extends to an isomorphism
LΓ

∼−→M .

Unlike the previous rigidity results, the question of operator algebraic superrigidity is
open for lattices in purely connected Lie groups (and in particular for lattices in simple Lie
groups, the one exception being PSLn where the result is known). The requirement that one
factor have property (T ) replaces the property (T ) half of the proof of the Normal Subgroup
Theorem for Commensurators, and the question of operator algebraic superrigidity (and
measure-preserving actions) is open in the case when none of the ambient factors have (T ).
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List of Exercises

Exercise 18.1 (Page 165)
Let Γ,Λ < G be commensurable. Show that Γ is a lattice if and only if Λ is, and moreover,
that Γ is irreducible if and only if Λ is.

Exercise 18.2 (Page 165)
Let φ : G → H be a surjective homomorphism of locally compact second countable groups
with compact kernel and let Γ < G be a lattice. Show that φ(Γ) is a lattice in H. Moreover,
if Γ is irreducible then so is φ(Γ).

Exercise 18.3 (Page 165)
In particular, show that if Γ < G is a lattice in a real Lie group then for any c ∈ R, the
group cΓ = {cγ : γ ∈ Γ} is also a lattice in G.

Exercise 20.1 (Page 175)
Let Γ < G be an arbitrary subgroup of G. Show that CommG(Γ) is also a subgroup of G.

Exercise 20.2 (Page 176)
Show that PSLn[Z] is commensurated by PSLn[Q] (and nothing more).

Exercise 20.3 (Page 176)
Let Γ <c Λ. Show that the Γ-orbits under left multiplication on the coset space Λ/Γ are
finite.

Exercise 20.4 (Page 176)
Show that if A <c B and B <c C it need not hold that A <c C. However, show that if
A <c C and B <c C then A ∩B <c C.

Exercise 22.1 (Page 189)
Let Γ be a countable discrete group with property (T ) and let ϕ : Γ → Λ be a surjective
homomorphism. Show that Λ has property (T ).

Exercise 22.2 (Page 191)
Let Gy (X, ν) be an ergodic measure-preserving action on a probability space. Show that
the Koopman representation on L2

0(X, ν) is irreducible.
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List of Exercises

Exercise 22.3 (Page 191)
Show that a cocycle ϕ is µ-harmonic if and only if it is harmonic at the identity:∫

G

ϕ(g) dµ(g) = ϕ(e) = 0.
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Appendix A

Group Theory

Groups play a central role in modern mathematics, being an abstract generalization of the
ideas of addition and multiplication, and arise in virtually every field.

Fundamental in the study of groups is the understanding of group actions. Our study
centers on group actions on analytic spaces, namely metric and measure spaces, and on
group actions on Hilbert spaces.

A.1 Groups

Definition A.1. A group is a set G together with a binary operation · : G× G → G and
a distinguished element e ∈ G such that

• g · e = g for all g ∈ G;

• for all g ∈ G there exists g−1 ∈ G such that g · g−1 = g−1 · g = e; and

• g · (h · k) = (g · h) · k for all g, h, k ∈ G

The binary operation is usually written as multiplication, omitting the ·. The group is
abelian when g · h = h · g for all g, h ∈ G in which case we often write + for the operation.
The map g 7→ g−1 maps G onto itself and is called the inverse map.

Much of our work involves studying the structure and classification of certain classes
of infinite groups. Examples of groups include the integers Z, the real numbers R and the
rational numbers Q, and also such objects as the two-by-two matrices with determinant one
SL2(R).

A.1.1 Homomorphisms

Definition A.2. Let G and H be groups. A map ϕ : G→ H is called a homomorphism
when ϕ preserves the group operations:

ϕ(eG) = eH ϕ(gh) = ϕ(g)ϕ(h) ϕ(g−1) = ϕ(g)−1

Definition A.3. A homomorphism that is one-one and onto is called an isomorphism.

Definition A.4. Let G be a group and g ∈ G. The map ϕg : G → G by ϕg(h) = ghg−1 is
a homomorphism called the conjugation by g.

A.1.2 Subgroups

Subsets of groups inherit the operations of the group; those that are closed under these
operations are groups in their own right, called subgroups. Much of our focus will be on
understanding specific types of subgroups in larger groups.
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Definition A.5. Let G be a group. A subset H ⊆ G is called a subgroup when e ∈ H and
the group operations of G restricted to H are closed, that is if h, k ∈ H then hk ∈ H and
h−1 ∈ H. This will be written as H < G.

A.1.3 Normal Subgroups

The most important class of subgroups are the normal subgroups: those which remain fixed
under conjugation. Briefly this is because they are the only subgroups on which morphisms
can vanish and therefore groups can be decomposed over their normal subgroups.

Many of the major results in this dissertation and in the background leading up to our
work focus on showing the existence or nonexistence of normal subgroups.

Definition A.6. Let G be a group. A subgroup N < G is called normal when the con-
jugation of N by any element of G is N , that is for all g ∈ G and n ∈ N we have that
gng−1 ∈ N , also written gNg−1 = N . Normality will be written as N / G.

Definition A.7. A group G is simple when it has no nontrivial normal subgroups (the
trivial ones being G and {e}).

Definition A.8. The kernel of a homomorphism ϕ is the set {g ∈ G : ϕ(g) = e}. The
kernel is written ker(ϕ).

The kernel of any homomorphism is a normal subgroup: ker(ϕ) / G.

A.1.4 Quotients and Cosets

Given a group and a subgroup it is natural to ask to what extent we can write each group
element in terms of the subgroup. This process is referred to as quotienting, i.e. dividing out
by a subgroup.

Definition A.9. Let G be a group and H a subgroup. The quotient of G modulo H,
written G/H, is the set of equivalence classes of elements of g under right multiplication by
H. That is

G/H = {gH : g ∈ G} where gH = {gh : h ∈ H}

Definition A.10. Let G be a group and H < G a subgroup. The elements of G/H are
called cosets of H in G, that is gH is a coset for each g ∈ G.

Definition A.11. Let G be a group and H < G a subgroup. The normalizer of H in G is

NG(H) = {g ∈ G : gHg−1 = H}

The normalizer of a subgroup is the largest subgroup in which the group is normal.
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A.1.5 Abelian Groups

Definition A.12. A group G is abelian when gh = hg for all g, h ∈ G, that is the group
operation is commutative.

Obviously any subgroup of an abelian group is normal.

Definition A.13. Let G be a group. The center of G is the subgroup

Z(G) = {g ∈ G : gh = hg for all h ∈ G }

That is, the center is the elements which commute with the rest of the group. A group
is abelian if and only if Z(G) = G.

A.1.6 Finite Index Subgroups

Subgroups of finite index have a special role in the geometric study of groups. Geometrically
speaking, groups that share a finite index subgroup are “the same” in that they exhibit the
same geometric and dynamical properties.

Definition A.14. Let G be a group and H a subgroup. The index of H in G is

[G : H] =
∣∣G/H∣∣

where | · | is the cardinality.

Definition A.15. A subgroup H of a group G has finite index when [G : H] <∞.

A.1.7 Quotient Groups

For a group G and a subgroup H < G the coset space G/H is not a group in general.
However, in the special case when N / G the quotient becomes a group itself:

Definition A.16. Let N / G be a normal subgroup in a group. Then G/N is called the
quotient group of G by N .

For gN, hN ∈ G/N observe that

gN · hN = {gn1hn2 : n1, n2 ∈ N}

and since n1h = hn′ for some n′ ∈ N (because h−1Nh = N so Nh = hN) we have that

gn1hn2 = ghn′n2 ∈ ghN

and therefore
gN · hN = ghN

defines a group operation (likewise g−1N = g−1gNg−1 = Ng−1 = (gN)−1).
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A.1.8 Systems of Representatives

When writing a group element in terms of cosets, it is common to fix a system of represen-
tatives for the quotient operation.

Definition A.17. Let G be a group and H a subgroup. A system of representatives for
G/H is a (finite or infinite) collection g1, g2, . . . in G such that no two gj are in the same coset
(gjH ∩ g`H = ∅ for j 6= `) and such that the union of the cosets is all of G:

⋃
j gjH = G.

Definition A.18. A system S is said to be symmetric when g ∈ S implies g−1 ∈ S. This
is written S = S−1.

Observe that if g, g−1 are in the same coset then g−1 ∈ gH so g−1 = gh for some h ∈ H
meaning that g2 = h−1 ∈ H. Then g ∈ H or

√
g ∈ H so either g ∈ H or gHg−1 = H.

Therefore one can always take a system of representatives that is symmetric except for
representatives in the normalizer which must be taken one or the other only.

A.2 Group Actions

A major theme in the study of groups is to understand the structure of a group in terms of
its actions. An action of a group on a set is when each element of the group moves around
the elements of the set in a manner compatible with the group operations.

Definition A.19. Let G be a group and S a set. A map · : G× S → S such that

• e · s = s for all s ∈ S

• g · (h · s) = (gh) · s for all g, h ∈ G and s ∈ S

is called an action of the group G on the set S and will be written Gy S.

Definition A.20. Let Gy S. The kernel of the group action is

ker(Gy S) = {g ∈ G : g · s = s for all s ∈ S }

and is always a normal subgroup: ker(Gy S) / G.

Definition A.21. Let Gy S. The stabilizer of an element in the set is

stabG(s) = {g ∈ G : g · s = s}

and the orbit is

orbG(s) = Gs = {s′ ∈ S : ∃g ∈ G g · s = s′} = {g · s : g ∈ G}

The main result about orbits and stabilizers is the orbit-stabilizer theorem: |Gs| = [G :
stab(s)]. That is, the size of the orbit of s equals the index of the stabilizer (when everything
is finite).
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A.3 Countable Groups

The theory of infinite groups is simplest in the case of countable groups without a topology
(more correctly, with the discrete topology).

Definition A.22. A group G is called countable when the underlying set has countable
(finite or infinite) cardinality.

A.3.1 Finitely Generated Groups

Finitely generated groups are the easiest countably infinite groups to work with. Being
finitely generated means that while the group is infinite, there is a finite set of elements in
terms of which every element can be written as a product.

Definition A.23. Let G be a group and A ⊆ G. The group generated by A, written 〈A〉, is
the smallest subset of G containing A that is closed under the group operations multiplication
and inversion. This is a subgroup of G.

Definition A.24. A group G is finitely generated when there is a finite set S ⊆ G such
that the group generated by S is all of G: 〈S〉 = G. Such S is called a generating set.

Definition A.25. Let G be a finitely generated group and S a generating set. The word
length on G relative to S is defined by

|g|S = min{n ∈ N : ∃s1, . . . , sn ∈ S g = s1s2 · · · sn}

When S is clear from context we will write | · | with no subscript.

Definition A.26. Let G be a finitely generated group. A generating set S is called sym-
metric, written S = S−1 when s ∈ S implies s−1 ∈ S.

A.4 Topological Groups

When the underlying set G is not countable it is often the case that there is a natural
topology on it. For example, the set of real numbers R with addition is a group and the real
numbers have a nondiscrete topology on them. It is easy to see that the group operations are
continuous with respect to this topology. Likewise, the n-by-n matrices with real entries (and
determinant one) SLn(R) have a topology under which the group operations are continuous.

Definition A.27. A topological group is a set G together with a topology on G and a
group structure such that the group operations of multiplication and inversion are continuous
with respect to the topology.

Countable discrete groups are special cases of topological groups (in fact any group can
be made a topological group by imposing the discrete topology but when the underlying set
is uncountable this is not generally helpful).
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Definition A.28. A homomorphism of topological groups is an ordinary homomorphism
of the underlying groups that is continuous with respect to their topologies.

Definition A.29. A subgroup of a topological group is an ordinary subgroup that is
also closed in the topology of the group. Likewise, normal subgroup means closed normal
subgroup.

Definition A.30. A topological group is simple or topologically simple when there are
no nontrivial closed normal subgroups.

This extends generally to all aspects of group structure. When the group is topological,
all group operation related mappings are required to be continuous.

A.4.1 Locally Compact Groups

A subclass of topological groups that has been particularly well-studied are the groups which
are locally compact topologically. Recall that a topological space is locally compact when
every point has a compact neighborhood.

Definition A.31. A topological group is called locally compact when the underlying
topology is locally compact. We will refer to such groups as locally compact groups with
the implicit indication that they are topological.

This applies in general to topological properties: a topological group is said to have a
topological property (such as compactness, second countability, etc.) when the topology the
group is endowed with has that property.

A.4.2 Polish Groups

A generalization of locally compact groups still well enough behaved to study analytically
are the Polish groups:

Definition A.32. A topological group is called Polish when the underlying topology is
Polish: it is separable and completely metrizable.

A.4.3 Compact Generation

Compactly generated groups are the topological analogue of finitely generated groups: when
the group is discrete–meaning we can treat it as a topological group with the discrete
topology–compact generation is the same as finite generation.

Definition A.33. A locally compact group G is compactly generated when there is a
compact set K ⊆ G such that 〈K〉 = G.

Compactly generated groups are the analogue of finitely generated groups, and in fact
compactly generated countable groups are simply finitely generated groups.
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A.4.4 Discrete Subgroups

Any countable group can be endowed with the discrete topology in which case the group
operations multiplication and inversion are automatically continuous.

Definition A.34. A group G is called discrete when there is no additional topological
structure placed on G.

Definition A.35. A subgroup Γ of a topological group G is called a discrete subgroup
when Γ is discrete in the topology of G.

Examples of countable discrete groups include the integers Z and the two by two matrices
with integer entries and determinant one: SL2(Z). Both are discrete groups and also are
discrete subgroups of R and SL2(R) respectively. However Q is a discrete group but as a
subgroup of R it is not discrete (in fact it is dense).

A.4.5 Finite Index, Normality and Closure

We also mention that basic properties of subgroups carry to closures, in particular normality
and finite index:

Lemma A.4.1. Let A < B < G where G is a Polish topological group and A and B are
arbitrary subgroups. If A / B then A / B.

Proof. Let b ∈ B and a ∈ A. Then b = lim bn for some bn ∈ B and a = lim an for some
an ∈ A. Since A / B for each n we know that bnanb

−1
n = a′n for some a′n ∈ A. Now by (joint)

continuity of group multiplication

bab−1 = lim
n
bnanb

−1
n = lim

n
a′n ∈ A

hence bAb−1 ⊆ A for all b ∈ B.

Lemma A.4.2. Let A < B < G where G is a Polish topological group and A and B are
arbitrary subgroups. If [B : A] < ∞ then [B : A] ≤ [B : A] < ∞ (the topology being any of
those of G).

Proof. Write B =
⋃N
j=1 bjA where b1, . . . , bN is a system of representatives for B/A (we are

writing N = [B : A] <∞). Let x ∈ B. Then there exists xn ∈
⋃N
j=1 bjA such that xn → x.

Since the union is finite there is some j such that an infinite subsequence of the xn are in
bjA. Therefore x ∈ bjA = bjA. Hence

B =
N⋃
j=1

bjA ⊇
N⋃
j=1

bjA

and therefore [B : A] ≤ N <∞.
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A.5 Lie Groups

The original motivation for the study of topological groups was the work of Lie on manifolds
admitting group structure. Lie groups are topological groups with the topology coming from
a differentiable manifold, that is:

Definition A.36. A Lie group is a differentiable manifold equipped with group operations
compatible with the smooth structure on the manifold.

Definition A.37. Let G be a Lie group. A subgroup H < G is called a Lie subgroup
when H is topologically a subgroup of G (a closed subgroup) and H inherits the differentiable
structure from G in such a way that H is a submanifold.

The reader is referred to [Mil11] and [Var74] and [Che46] for more information on Lie
groups. A key example of a Lie group is SLn(R), the special linear group consisting of n by
n matrices with real entries and determinant one. Other examples are R, the real numbers,
and Tn, the n-torus.

A.5.1 Semisimple Lie Groups

The representation theory of Lie groups, and most of rigidity theory for lattices in Lie groups,
is most complete in the context of semisimple Lie groups. Though we will not make use of
the semisimple property directly in our work, we should mention what it means.

Definition A.38. Let G be a Lie group and G1, . . . , Gk be Lie subgroups of G. If the map
(g1, . . . , gk) 7→ g1 · · · gk from G1 × · · · ×Gk → G is surjective and has a finite kernel then we
say that G is the almost direct product of G1, . . . , Gk.

Definition A.39. Let G be a connected Lie group. We say G is almost simple when
the center of G, written Z(G), is finite and G/Z(G) is simple (no nontrivial normal Lie
subgroups).

Definition A.40. A connected Lie group G is semisimple when it is the almost direct
product of almost simple connected Lie groups.

A broader description of semisimplicity and related notions in a more general setting is
presented in Appendix B but given the nature of the results we will be discussing later it
seems appropriate to mention it and define it here along with Lie groups.

A.5.2 The Rank of a Lie Group

The rank of a Lie group, and more generally for algebraic groups, which are discussed in
Appendix B, is effectively the maximal dimension of a diagonal subgroup. Precisely:

Definition A.41. Let G be a connected Lie group. The Cartan subgroup of G is the
centralizer of a maximal torus in G.
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A Cartan subgroup of a connected Lie group will be connected and nilpotent, and all
possible maximal tori lead to conjugate subgroups so we often speak of “the” Cartan sub-
group.

Definition A.42. The rank or real rank of a connected Lie group G is the dimension of
a maximal torus in G.

For example, SL2(R) is a rank-one Lie group and more generally SLn(R) has rank n− 1.
Also note that the rank of G1 ×G2 equals the rank of G1 plus that of G2.

A.6 Further Examples

We present now some other examples of locally compact groups.

A.6.1 p-adic Lie Groups

Lie groups are manifolds with smooth structure, meaning they are groups over the real or
complex numbers. This can be generalized to the p-adic numbers giving rise to the p-adic
Lie groups. A key example of a p-adic Lie group is SLn(Qp) where Qp are the p-adic numbers
(the completion of the rationals under the p-adic valuation).

p-adic Lie groups will be totally disconnected (see below) since the underlying field is
totally disconnected. Lattices in p-adic Lie groups can be obtained using the p-adic integers
Zp in place of the integers as in the Lie group case.

One can also form products of groups, for example G = SL2(Z) × SL2(Qp), and form
lattices by diagonal embedding: SL2(Z[1/p]) is a lattice in G.

A.6.2 Automorphism Groups of Trees

Another area where topological groups arise is in the study of automorphism groups of
structures. An automorphism is a map from a structure X to itself preserving the algebraic
(and possibly analytic) structure on X.

Let X be a graph (a collection of vertices and edges). The automorphisms of X are the
maps sending vertices to vertices such that two vertices are connected by an edge if and only
if their images under the map are connected by an edge. The set of automorphisms of a
structure forms a group under composition and inversion and is written Aut(X).

Let T be a tree (graph with no cycles). Then Aut(T ) will be a locally compact group
which is totally disconnected. Lattices in Aut(T ) can be thought of as follows: cocompact
lattices correspond to quotient actions on finite graphs and noncocompact lattices to “profi-
nite” graphs. This idea can be extended to automorphism groups of simplicial complexes in
the obvious way.

A.7 Totally Disconnected Groups

Definition A.43. A totally disconnected group is a locally compact group that is totally
disconnected in its topology.

– 219 –



Appendix A. Group Theory

As remarked above, p-adic Lie groups and automorphism groups of trees are totally
disconnected groups. The structure of totally disconnected groups is not as well-understood
as that of Lie groups though recently progress has been made by Willis [Wil94].

Proposition A.7.1. A totally disconnected group admits a compact open subgroup and in
fact there is a neighborhood base of compact open subgroups.
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Algebraic Groups

An algebraic group over a field is essentially defined as the zeroes of a set of polynomials in
some number of variables. The easiest example is the special linear group SLn(R), the set of
n by n matrices with determinant one and real entries equipped with matrix multiplication.
The elements of this set can be thought of as the zeroes of the polynomial equation det(M)−
1 = 0 in n2 variables (the entries of the matrix). The theory of algebraic groups is quite
deep and old and the reader should consult [Mil11] for detailed information.

B.1 Definition

Before we formally define algebraic groups we will attempt to briefly motivate how this
definition was arrived at. Throughout the definition process we will use SLn as an example
to illustrate the meaning of the abstract categorical statements.

B.1.1 Motivation

As mentioned above, SLn(R) is the algebraic group consisting of n by n matrices with
determinant one and real entries. Notationally it is clear that SLn(C) refers to the algebraic
group of n by n matrices with complex entries and that more generally we can write SLn(k)
for any field k. In fact, the polynomial that defines the determinant in terms of the entries of
the matrix is the same for all these cases. The SLn is to be defined as a functor from rings (or
fields) to groups and algebraic groups in general as functors “determined by polynomials”.

B.1.2 Zero-Sets

Before formally defining algebraic groups we will need some preliminary definitions:

Definition B.1. Let k be a field and k[X1, . . . , Xn] denote the ring adjoining n abstract
variables to k. For S ⊆ k[X1, . . . , Xn] and R a k-algebra define the zero-set of S in Rn to
be

S(R) = {(r1, . . . , rn) ∈ Rn : f(r1, . . . , rn) = 0 for all f ∈ S}

If R → R′ is a homomorphism of k-algebras then S(R) → S(R′) induced in the natural
way defines a morphism of zero-sets. Thus S is a functor from k-algebras to sets. Clearly
the zero-set of S coincides with the zero-set of the ideal generated by S in k[X1, . . . , Xn] and
by the Hilbert basis theorem this ideal is generated by a finite set of polynomials and the
quotient of k[X1, . . . , Xn] by the ideal is a finitely generated k-algebra, sometimes called the
zero-ideal.
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B.1.3 Formal Definition

Definition B.2. Given a finitely generated k-algebra A we can define the functor FA from
k-algebras to sets by FA(R) = Hom(A,R) and FA(f)(g) = f ◦ g for f a homomorphism of
k-algebras and g ∈ Hom(A,R). A functor from k-algebras to sets is representable when is
it is isomorphic as a functor to a functor FA for some k-algebra A.

Definition B.3. Let k be a field and G be a functor from k-algebras to groups such that
the composition of G with the functor from groups to sets that simply forgets the group
structure is representable by a finitely generated k-algebra. Then G is an (affine) algebraic
group defined over k.

We will not define carefully the more general non-affine algebraic group since we make
no use of those. We have already seen that SLn is representable as the k-algebra obtained
by quotienting the polynomials in k out by the zero-ideal of the determinant minus one so
it is clear this definition captures the motivation correctly.

B.1.4 The Zariski Topology

The natural topology on algebraic varieties is called the Zariski topology and is usually
defined by specifying the closed sets. The closed sets in kn are defined to be the zero-sets
of polynomials in at most n variables and the closed sets of a general variety, including an
algebraic group, are the intersections of these with the variety. That is, an algebraic group
has the Zariski topology inherited as a subspace topology from kn.

We will make only slight use of the Zariski topology in our study but it is always in the
background when studying algebraic groups.

Definition B.4. An algebraic subgroup of an algebraic group is a Zariski closed subgroup.

That is, an algebraic subgroup is a closed subgroup (i.e. topological subgroup) when
the group is endowed with the Zariski topology. Likewise, algebraic homomorphism means
topological homomorphism with respect to the Zariski topology. We mention this as usually
groups have multiple topologies, only one of which is the Zariski topology.

Generally speaking, when one refers to a property of a group as an algebraic property one
means that it is a topological group property using the Zariski topology. For example, when
G is a topological group we say it is topologically simple when there are no closed nontrivial
normal subgroups. Likewise, a group is algebraically simple when there are no nontrivial
algebraic normal subgroups (meaning there are no nontrivial closed normal subgroups in the
Zariski topology).

B.1.5 Groups Over Fields

Note that when G is defined over a field that is not algebraically closed, for example Q, then
it is also defined over every completion of that field to an algebraic closure (or in between).
Clearly SLn is an algebraic group over Q hence it is over R and C but also over Qp, the p-adic
numbers. In general any algebraic group over Q is algebraic over the p-adics and the reals.
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We will generally be concerned with algebraic groups defined over Q but may localize them
to the reals or the p-adics.

B.1.6 Lie Groups

Algebraic groups defined over R, evaluated at R, such as SLn(R) will always be Lie groups.
There are however Lie groups which are not algebraic groups, such as the simply-connected
covering of SL2(R).

B.1.7 Connected Algebraic Groups

Definition B.5. An algebraic group is connected when it has no finite group as a quotient,
even over the algebraic closure of the underlying field.

B.1.8 Notational Language

Though algebraic groups are defined as functors, it is generally easier to speak of them as
groups and use the usual group theory terminology. This is always understood to mean that
at the level of the group (that is applying the functor to a specific k-algebra) the properties
are group theoretic and at the level of the functor the properties are the corresponding
functorial interpretation.

For example, we will refer to subgroups of algebraic groups and quotients of algebraic
groups in phrases such as “the center of SL2 is a normal subgroup” and “the quotient by the
center is PSL2”. The reader can verify that the functorial definitions implied here coincide
with the group theoretic properties.

B.2 Structure Theory

We now (briefly) state the well-known structure theory of algebraic groups both for com-
pleteness and to explain a bit why the focus on semisimple groups is not so restrictive.

B.2.1 Basic Classes of Algebraic Groups

There are five basic class of algebraic groups that together with extensions define all algebraic
groups: finite groups, abelian varieties, semisimple groups, tori and unipotent groups.

Finite Groups

The first basic class of algebraic groups is finite groups. These can be seen to be algebraic
since all are subgroups of permutation groups which are in turn realizable as subgroups of
GLn hence defined by polynomial conditions making them algebraic groups.

Abelian Varieties

Another basic class of algebraic groups is abelian varieties, those algebraic varieties defined
by elliptic curves hence definable by a homogenous polynomial equation. Abelian varieties
are not affine algebraic groups but they are algebraic.
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Semisimple Groups

The discussion of semisimple groups is postponed to the next section since it is the class we
will be most focused on.

Tori

An algebraic subgroup of GL(V ) over a finite-dimensional vector space V is of multiplicative
type when there is a basis for V over the algebraic closure of k that diagonalizes the subgroup.
A group that is realizable as such subgroups is called a torus.

Unipotent Groups

The final class of algebraic groups are those arising as algebraic subgroups of GL(V ) where
there exists a basis of V over k such that the subgroup is contained in the subgroup of upper
triangular matrices with ones along the diagonal.

B.2.2 Extensions

The structure theory of algebraic groups can be stated as saying that every algebraic group
has a composition series with specific types of algebraic groups at each step. Specifically:

• a general algebraic group G contains a maximal connected component G0 which is
normal in G and that is a connected algebraic group such that G/G0 is finite

• a connected algebraic group contains a maximal affine algebraic subgroup which is
normal in the group such that the quotient is an abelian variety

• a connected affine algebraic group contains a maximal connected solvable subgroup,
sometimes called the radical, which is normal in the group and where the quotient is
a semisimple algebraic group

• a connected affine solvable algebraic group contains a maximal normal unipotent sub-
group where the quotient is a torus

B.2.3 The Structure of Algebraic Groups

Therefore any algebraic group can be decomposed into a composition series of normal sub-
groups such that each quotient group (and the “last” group in the series) are in the basic
classes outlined above.

In particular, affine algebraic groups are precisely those that avoid abelian varieties. More
importantly, an affine algebraic group has a decomposition into a finite quotient, a semisimple
quotient and a solvable subgroup. Subsuming the finite quotient into the semisimple group
(that is, allowing for nonconnected semisimple groups) this means that affine algebraic groups
can always be written as a normal solvable subgroup with quotient semisimple. As solvable
groups are generally easy to understand, the focus put on semisimple groups in the theory
is not misplaced.
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B.3 Semisimple Groups

Paralleling and expanding upon the material in the previous chapter on semisimple Lie
groups, we define semisimplicity for algebraic groups.

B.3.1 Almost Simple Groups

Recall that a connected algebraic group is simple when it is noncommutative and has no
nontrivial normal algebraic subgroups (as in the case of topological groups, the notion of
normal for algebraic groups should mean normal algebraic subgroups).

Definition B.6. An algebraic group G is almost simple when the center of G is finite
and the quotient by the center is simple.

SLn is almost simple since the center (consisting of matrices of the form nth root of unity
times the identity) is finite and the quotient by the center is PSLn which is simple.

B.3.2 Isogenies

Definition B.7. Let G and H be algebraic groups. A homomorphism G → H that is
surjective and has finite kernel is an isogeny.

Definition B.8. Two algebraic groups H1 and H2 are isogenous when there exists an
algebraic group G such that G→ H1 and G→ H2 are both isogenies.

Isogeneity is an equivalence relation, as is easily checked, and when the underlying field
is algebraically closed there is a classification scheme for almost simple groups up to isogeny.

B.3.3 Almost Direct Products

Definition B.9. Let G be an algebraic group and G1, . . . ,Gn be algebraic subgroups such
that the map G1 × · · · ×Gn → G by (g1, . . . , gn) 7→ g1 · · · gn is an isogeny. Then G is the
almost direct product of the Gj.

In this case, each Gj will be a normal subgroup of G and they will necessarily all commute
with one another.

B.3.4 Semisimple Groups

The actual definition of semisimple is then given as:

Definition B.10. An algebraic group is semisimple when it is an almost direct product
of almost simple groups.

The following result on lattices in semisimple groups is the starting off point for Margulis’
classification theory:

Theorem B.11 (Borel-Harish-Chandra). Let G be a semisimple algebraic group. Then
G(Z) is a lattice in G(R).
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B.4 Q-Groups and Rank

In terms of rigidity theory there is a fundamental difference between the groups PSL2 and
PSLn for n ≥ 3. Since PSL2(Z) is essentially a free product of two finite groups, among
other things, it has a huge collection of normal subgroups since any finitely generated group
is a quotient of a free group and each kernel is normal. On the other hand, Margulis’ Normal
Subgroup Theorem implies that PSLn(Z) for n ≥ 3 has no nontrivial normal subgroups (up
to finite index).

B.4.1 k-rank

This phenomena can be described more generally in terms of the rank of the ambient group.
Intuitively the rank of an algebraic group such as SLn is the dimension of the maximal
diagonal subgroup so rank(SLn) = n− 1. We formalize this by:

Definition B.12. Let G be an algebraic group over k. The k-rank of G is the dimension
of any Cartan subgroup. A Cartan subgroup is a maximal nilpotent subgroup such that
each normal subgroup of it of finite index has finite index in the normalizer. When G is a
linear algebraic group this becomes simply the dimension of the maximal k-split torus. This
will be written rankk(G).

B.4.2 Real and p-adic Rank

Definition B.13. Let G be an algebraic group over Q. The real rank of G is the dimension
of a maximal R-split torus in G(R). The real rank will be written rankR(G) or rank∞(G).

The p-rank, for a prime p, is the dimension of a maximal Qp-split torus in G(Qp). This
will be written as rankp(G).

B.4.3 General Rank

Definition B.14. Let G1, . . . ,Gn be algebraic groups defined over local fields k1, . . . , kn,
respectively, and let G be the almost direct product of the groups G1(k1), . . . ,Gn(kn). The
rank of G is defined as

rank(G) =
n∑
j=1

rankkj(Gj)

For example, rank(SLn) = n− 1 when treated as an algebraic group over R or Qp. Note
that the rank is defined in terms of the local fields (completed versions of Q for example).

Another example is that rank(SL2(R)× SL2(Qp)) = 2 since the real rank is one and the
p-rank is one and the group is an almost direct product.

Definition B.15. An algebraic group G is said to be of higher rank when the rank is at
least two.
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B.5 Rings of Integers and S-Integers

Let G be an algebraic group over Q, or more generally over any number field K. Write k for
the algebraic closure of K. The ring of integers will be denoted O (when K = Q we have
O = Z). We can then form the algebraic group G(O), an example of this is SLn(Z).

B.5.1 The Ring of Integers

Definition B.16. The ring of integers of an algebraic number field is the set of algebraic
integers in K equipped with the operations of addition, subtraction and multiplication.

Algebraic integers are just roots of monic polynomial equations with coefficients in Z
so it is easy to see that the algebraic integers contained in the rationals are just the usual
integers.

B.5.2 S-Integers

Let V be the set of all (inequivalent) valuations of K and V∞ the archimedean valuations.
When K = Q the valuations correspond to primes, including ∞ to represent zero (which
would be the only archimedean valuation).

Definition B.17. Let S be a subset of V of valuations on K containing V∞ the archimedean
valuations. The ring of S-integers in K is

OS = {x ∈ K : |x|v ≤ 1 for all v ∈ S}

When K = Q and S is a set of primes the ring of S-integers means the set of x ∈ Q such
that |x| ≤ 1 and |x|p ≤ 1 for each p ∈ S where | · |p is the p-adic valuation.

We will be interested in algebraic groups G over Q (or more generally over a number field
K) and S as above to form G(OS) the algebraic group of S-integer-valued G elements.

B.6 Arithmetic Lattices

The notion of arithmetic lattices is fundamental to Margulis’ classification theory of lattices
in semisimple Lie groups and more general semisimple groups.

Definition B.18. Let G be a semisimple Lie group with trivial center and no compact
factors and Γ a lattice in G. Then Γ is arithmetic when there exists an algebraic group
H defined over Q and a surjective homomorphism φ : H(R)0 → G (from the connected
component of H(R) to G) such that the kernel of φ is compact and φ(H(Z) ∩H(R)0) is a
lattice in G that is commensurate with Γ.

This notion is the natural notion of arithmeticity in the sense that it captures the largest
class of lattices that can be constructed from the integer points of an algebraic group (the
motivation for the terminology arithmetic).
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B.6.1 Classification of Lattices

One construction of arithmetic lattices is clear: given an algebraic group simply take the Z
points in the R group and (restricting to the connected component) you must have a lattice
in a Lie group. Up to isogeny then all “obvious” lattices are the Z points, i.e. arithmetic.

After some time of no one being able to exhibit a non-arithmetic lattices in a Lie group,
Selberg conjectured that in fact every lattice in a semisimple Lie group is arithmetic. Mar-
gulis eventually proved this, in his classification theorem: the Margulis Arithmeticity Theo-
rem.

B.6.2 S-Arithmetic Lattices

The starting off point for the notion of S-arithmetic lattices is a result of Borel generalizing
that arithmetic lattices are in fact lattices: for S be a finite collection of prime numbers
write ZS to be the S-integers, the rational numbers whose denominators (in simplest form)
contain only factors in S. Then

Theorem B.19 (Borel). Let G be an algebraic group defined over Q and let S be a finite
collection of prime numbers. When G is connected and semisimple G(ZS) is a lattice in∏

p∈S G(Qp).

Such a lattice will be called S-arithmetic. We now generalize this as we did with
arithmetic lattices to obtain the complete definition.

Let K be a global (number) field and V the set of (inequivalent) valuations on K and
V∞ the archimedean valuations in V . Write | · |v for each v ∈ V to mean the valuation of an
element of K and write Kv for the completion of K under v ∈ V . Concretely, when K = Q
write Qp for the completion under the p-adic valuation | · |p.

Definition B.20. Let S ⊆ V such that V∞ ⊆ S and let G be an absolutely simple, simply
connected algebraic group defined over K. As usual write OS for the ring of S-integers in
K. Let G be an algebraic group such that

∏
v∈S G(Kv) → G is an isogeny. Any subgroup

of G commensurate with the image of G(OS), embedded diagonally into the product group,
is called S-arithmetic.

Note that G(OS) will be a lattice in
∏

v∈S G(Kv) and therefore so will be the image in
G. Any group commensurate with a lattice (meaning the intersection of the group with the
lattice has finite index in both) is of course also a lattice.

Arithmetic lattices usually means S-arithmetic lattices for arbitrary finite sets S but some
use the phrase S-arithmetic without specifying S and reserve the unadorned arithmetic to
mean images of the usual ring of integers (that is, the case when S = V∞). We will refer
to lattices arising from the usual ring of integers as pure arithmetic to avoid confusion
when necessary. The pure arithmetic lattices are then those of the form G(Z) and isogenic
images of it. In particular, SLn(Z) and all its finite index subgroups are arithmetic. A more
interesting example is that SLn(Z[1/p]) is an S-arithmetic lattice where S contains the p-adic
valuation and the archimedean ones: S = {p,∞}.
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B.7 The Margulis Arithmeticity Theorem

While the construction of lattices in rank one algebraic semisimple groups is easy and there
are a variety of them, in the higher-rank case (the rank at least two) the only lattices that
anyone could exhibit were of the arithmetic type defined above. Margulis in the 1970s proved
the celebrated Arithmeticity Theorem:

Theorem B.21 (Margulis). Let Γ be an irreducible lattice in a higher-rank semisimple
algebraic group G. Then Γ is arithmetic.

This theorem is interpreted as saying that there is a finite index subgroup of Γ that is
the isogenic image of G(OS) embedded diagonally in the almost direct product of G(Kv)
for v ∈ S where S is some set of valuations.
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