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Abstract We prove results about subshifts with linear (word) complexity, meaning that

lim sup p(n)
n < ∞, where for every n, p(n) is the number of n-letter words appearing in

sequences in the subshift. Denoting this limsup by C, we show that when C < 4
3 , the subshift

has discrete spectrum, i.e. is measurably isomorphic to a rotation of a compact abelian group
with Haar measure. We also give an example with C = 3

2 which has a weak mixing measure.
This partially answers an open question of Ferenczi, who asked whether C = 5

3 was the min-
imum possible among such subshifts; our results show that the infimum in fact lies in [ 43 ,

3
2 ].

All results are consequences of a general S-adic/substitutive structure proved when C < 4
3 .

Introduction

The main objects of study in symbolic dynamics are subshifts, which are dynamical systems defined
by a finite alphabet A, a closed shift-invariant set of sequences X ⊂ AZ, and the left-shift map σ. We
sometimes speak of subshifts as measure-theoretic dynamical systems by associating a measure µ; in this
case µ is always assumed to be a Borel probability measure invariant under σ. One of the most basic
ways to measure the ‘size’ of a subshift X is the word complexity function p(n), which measures the
number of finite words of length n which appear within points of X. In addition to being intimately
connected with the fundamental notion of topological entropy (the entropy h(X) is just the exponential
growth rate of p(n) when p(n) grows exponentially), many recent works prove that slow growth of p(n)
forces various strong structural properties of X.

The well-known Morse-Hedlund theorem [MH38] implies that if X is infinite, then p(n) ≥ n + 1 for all
n. There are subshifts which achieve this minimal value (i.e. p(n) = n + 1 for all n), which are called
Sturmian subshifts. We do not give a full treatment here, but briefly say that Sturmian subshifts are
defined by symbolic codings of orbits for irrational circle rotations, and in fact are measure-theoretically
isomorphic to these rotations (associated with Lebesgue measure).

Slightly above the minimum possible complexity is the property of linear complexity, meaning that
lim sup p(n)/n = C <∞. This implies a great deal about X; a full list is beyond this work, but we list
a few such results here. In the following, X is transitive when there exists x ∈ X whose orbit {σnx}
is dense in X, and minimal when every x ∈ X has dense orbit.

1. If X is transitive, then the number of ergodic measures on X is bounded from above by bCc. If
C < 3, then in fact there is only one σ-invariant measure on X, in which case X is said to be
uniquely ergodic. ([Bos92], [DOP22])

2. For all X, the number of nonatomic generic measures on X is bounded from above by bCc ([CK19])

3. If X is minimal, then the automorphism group of X is virtually Z (in particular, there are at most
bCc cosets once one mods out by the shift action) ([CK15], [DDMP16])

4. If X is minimal, then X has finite topological rank ([DDMP21])

5. X cannot have any nontrivial strongly mixing measure ([Fer96])
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6. If X is transitive and C < 1.5, then X is minimal ([OP19])

(In fact, the weaker condition lim inf p(n)/n <∞ is sufficient for some of the structure above, but as our
results don’t involve this quantity, we don’t comment on it further here.) The final item above is one
of surprisingly few results proved about subshifts with C close to 1, and understanding more about the
structure of such shifts was a main motivation of this work. In a sense, we show that for C sufficiently
close to 1, a subshift must have structure more and more similar to the Sturmian subshifts, which achieve
minimal possible complexity. Recall that Sturmian subshifts are measure-theoretically isomorphic to a
(compact abelian) group rotation; this property is called discrete spectrum. In fact this property is
equivalent to L2(X) being spanned by the measurable eigenfunctions of σ (i.e. f for which f(σx) = λf(x)
for some λ). When X has no eigenfunctions at all, it is said to be weak mixing, which is in a sense an
opposite property to discrete spectrum.

Ferenczi ([Fer96]) proved that the property of strong mixing (which means that µ(A ∩ σ−nB) →
µ(A)µ(B) for all measurable A,B) cannot hold for any nontrivial measure on a linear complexity subshift.
He also gave an example of X with a strongly mixing measure and p(n) quadratic and asked whether
this complexity was the lowest possible. This was proved not to be the case in [Cre22] and [CPR23],
which provided examples first on the order of n log n, and then below any possible superlinear growth
rate, establishing linear complexity as the ‘threshold’ for existence of such a measure. In a different
work, Ferenczi ([Fer95]) examined the same question for weakly mixing measures, where it is known that
linear complexity can occur via the well-known Chacon subshift. He there gave an example of X with
a nontrivial weakly mixing measure and C = 5/3, and again asked whether this was minimal. This was
shown not to be the case in [Cre23], where examples were given of C arbitrarily close to (but above) 3/2.

Our main results are the following.

Theorem 1. If X is an infinite transitive subshift with lim sup p(q)
q < 4

3 , then X is uniquely ergodic
with unique measure which has discrete spectrum.

Theorem 2. There exists an infinite transitive subshift X which is uniquely ergodic, has unique measure

which is weak mixing, and for which lim sup p(q)
q = 3

2 .

In [Cre23], it was also suggested that perhaps a subshift X having a nontrivial weakly mixing measure

forces lim sup p(q)
q > 3

2 ; Theorem 2 answers this negatively. In fact, the examples from Theorem 2 satisfy

lim p(q)−1.5q = −∞, in contrast to Theorem C from [Cre23], which showed that for rank-one subshifts,

even total ergodicity implies lim sup p(q)− 1.5q =∞. The examples also satisfy lim inf p(q)q = 1 and for

any f(q)→∞, there exist examples such that p(q) < q + f(q) infinitely often.

The proof of Theorem 1 depends on proving a substitutive structure for subshifts with C < 4
3 . In fact,

for any C < 2, Corollary 5.28 from [PS23] already implies that X can be generated by a sequence of
substitutions τk on the alphabet {0, 1}; this is known as having alphabet rank two. Similar results
from [DDMP21] prove that even lim inf p(n)/n <∞ implies finite alphabet rank. However, in general it
is not so easy to prove dynamical properties of a subshift purely from such a structure; the key of our
arguments is that when C is closer to 1, these substitutions come from a very restricted class. We would
like to note that subshifts with p(n) ≤ 4n/3 + 1 were also studied in [Abe01], where the author proved
a substitutive structure and gave some interesting examples.

Specifically, our Proposition 2.1 shows that any such subshift is induced by a sequence of substitutions of
the form τmk,nk

: 0 7→ 0mk−11, 1 7→ 0nk−11 where n ≤ 2m for m > 1 and n ≤ 3 for m = 1. This is related
to the well-known Pisot conjecture for subshifts, which states that a subshift generated by iterating a
single substitution τ should have discrete spectrum if the associated matrix (in which the (a, b) entry is
the number of occurrences of b in τ(a)) has largest eigenvalue which is a Pisot number (i.e. a complex
number with modulus greater than 1 all of whose conjugates have modulus less than 1).

The Pisot conjecture has been proved in some settings, including when |A| = 2 ([BD02], [HS03]) and
whenever the so-called balanced pair algorithm terminates ([SS02]). Our proof of Theorem 1 is in fact
based on this algorithm.

In our case, the substitutive structure comes from a sequence of substitutions and not a single one;
this is sometimes called the S-adic Pisot conjecture, based on the often-used term ‘S-adic’ (among other
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references, see [DLR13]) to refer to sequences obtained by a sequence of substitutions on a fixed alphabet.
This is much more difficult. The strongest result is due to [BST19], which is too long to state formally
here, but which proves discrete spectrum in a fairly general S-adic setting. They do require, however,
that the sequence of substitutions (τn) be recurrent, meaning that for every k, there exists L so that
τi = τi+L for 1 ≤ i ≤ k.

We cannot enforce any such condition on our substitutions, as it’s quite possible to have low complexity
for τmk,nk

all distinct (for instance, consider Sturmian subshifts, which can be generated by an infinite
sequence of distinct substitutions if the digits of its continued fraction expansion are distinct). Never-
theless, due to the extremely simple form of τmk,nk

(in which both 0 and 1 are mapped to words of the
form 0i1), we are able to prove discrete spectrum.

We note that indeed our substitutive structure is in some sense Pisot; the associated matrix for τm,n

is
(
m−1 1
n−1 1

)
, whose eigenvalues are

√
m2+4(n−m)±m

2 . This matrix is Pisot when m < n ≤ 2m. Our
Proposition 2.1 implies m < n ≤ 2m, with the possible exception m = 1, n = 3. Though this substitution
is not Pisot, Proposition 2.1 implies that when it occurs, the previous substitution has n = m + 1, and
the composition of those substitutions has matrix ( 0 1

2 1 )
(
m−1 1
m 1

)
=
(

m 1
3m−2 3

)
, which is always Pisot.

One of course should not expect that simply assuming each τi to be Pisot should guarantee discrete spec-
trum; informally, if the second eigenvalues have moduli each less than 1 but which converge to 1 quickly,
then the ‘average behavior’ will be that of a non-Pisot number. This is essentially the construction of
our example from Theorem 2, which not only does not have discrete spectrum, but is weak mixing (i.e.
has no eigenvalue at all).

1 Definitions and preliminaries

Let A be a finite subset of Z; the full shift is the set AZ associated with the product topology. We use
σ to denote the left shift homeomorphism on AZ. A subshift is a closed σ-invariant subset X ⊂ AZ.
The orbit of x ∈ X is the set {σnx}n∈Z. A subshift X is transitive when it is the closure of the orbit
of a single sequence x, and minimal when it is the closure of the orbit of every x ∈ X. For a minimal
subshift X, in a slight abuse of notation, we sometimes refer to X as the orbit closure of a one-sided
sequence y ∈ AN; this simply means that X is the orbit closure of a two-sided sequence x ∈ X containing
y.

A word is any element of An for some n ∈ N, referred to as its length and denoted by |w|. We denote
A∗ =

⋃
n≥1An. We represent the concatenation of words w1, w2, . . . , wn by w1w2 . . . wn.

The language of a subshift X on A, denoted L(X), is the set of all finite words appearing as subwords
of points in X. For any n ∈ N, we denote Ln(X) = L(X) ∩ An, the set of n-letter words in L(X).
For a subshift X, the word complexity function of X is defined by p(n) := |Ln(X)|. For a subshift
X and word w ∈ L(X) we denote by [w] the clopen subset in X consisting of all x ∈ X such that
x0 . . . x|w|−1 = w.

One way to generate subshifts is via substitutions. A substitution (sometimes called a morphism) is a
map τ : A → B∗ for finite alphabets A and B. An example is the well-known Thue-Morse substitution
{0, 1} → {0, 1}∗ given by 0 7→ 01 and 1 7→ 10.

Substitutions can be composed when viewed as homomorphisms on the monoid of words under com-
position, i.e. if τ : A → B∗ and ρ : B → C∗, then ρ ◦ τ : A → C∗ can be defined by (ρ ◦ τ)(a) =
ρ(b1)ρ(b2) . . . ρ(bk), where τ(a) = b1 . . . bk.

When a sequence of substitutions τk : A → A∗ shares the same alphabet, and when there exists a ∈ A
for which τk(a) begins with a for all k, clearly (τ1 ◦ · · · ◦ τk)(a) is a prefix of (τ1 ◦ · · · ◦ τk+1)(a) for all k.
In this situation one may then speak of the (right-infinite) limit of (τ1 ◦ · · · ◦ τk)(a). For example, if all
τk are equal to the Thue-Morse substitution and a = 0, the limiting sequence is .0110100110010110 . . .,
and the orbit closure of this sequence is called the Thue-Morse substitution subshift.

For any subshift X, there is a convenient way to represent the n-language and possible transitions
between words in points of X by a directed graph called the Rauzy graph.
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Definition 1.1. For a subshift X and n ∈ N, the nth Rauzy graph of X is the directed graph GX,n with
vertex set Ln(X), and directed edges from w1 . . . wn to w2 . . . wn+1 for all w1 . . . wn+1 ∈ Ln+1(X).

Example 1.2. If X is the golden mean subshift consisting of bi-infinite sequences on {0, 1} without
consecutive 1s, and n = 3, then GX,3 is the following directed graph:

000

100 010

001 101

0000

0001

1001

1000

0100

0010
1010 0101

There is a natural association from bi-infinite paths on the Rauzy graph to sequences in AZ; a sequence
of vertices (vk) corresponds to the sequence x ∈ AZ defined by x(k) . . . x(k + n − 1) = vk for all k.
The main usage of the Rauzy graph is that every point of X corresponds to a bi-infinite path in the
Rauzy graph. However, the opposite is not necessarily true; if X has restrictions/forbidden words of
length greater than n+ 1, then there may be paths in the Rauzy graph whose associated sequences are
not in X. However, when X has low word complexity function, the set of paths in the Rauzy graph is
sufficiently restrictive to give us useful information about (but not necessarily a complete description of)
X.

We note that when X is transitive, GX,n is strongly connected for all n, i.e. there is a path between any
two vertices. Rauzy graphs are particularly useful for working with so-called left/right special words in
L(X).

Definition 1.3. A word w ∈ L(X) is left-special (resp. right-special) if there exist a 6= b ∈ A so
that aw, bw ∈ L(X) (resp. wa,wb ∈ L(X)). A word is bi-special if it is both left- and right-special.

For a given n, the left- and right-special words in Ln(X) correspond to vertices of GX,n with multiple
incoming/outgoing edges respectively. When GX,n has relatively few such vertices, large portions of
bi-infinite paths are ‘forced’ in the sense that when such a path visits a vertex which is not right-special,
there is only one choice for the following edge. Note that if X contains no right-special words of some
length n, then any edge of GX,n forces all subsequent edges, meaning that GX,n has only finitely many
bi-infinite paths and X is finite. Therefore every infinite subshift X has right-special words of every
length, and a similar argument shows that it has left-special words of every length as well.

A particularly simple case that we deal with repeatedly is when p(n + 1) − p(n) = 1; this means that
GX,n has exactly one more edge than the number of vertices, which means that it has a single vertex
r with two outgoing edges and a single vertex ` with two incoming edges (` and r may be the same
vertex), which correspond to the unique right- and left-special words in Ln(X). It’s not hard to show
that when X is transitive and p(n + 1) − p(n) = 1, the structure of the Rauzy graph GX,n must be a
(possibly empty) path from ` to r and two edge-disjoint paths from r to `.

We will frequently make use of the following standard lemma, essentially contained in [MH38], for
estimating word complexity.

Lemma 1.4. Let X be a subshift on alphabet A, for all n let RSn(X) denote the set of right-special
words of length n in the language of X, and for all right-special w, let F (w) denote the set of letters
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which can follow w, i.e. {a : wa ∈ L(X)}. Then, for all q > r,

p(q) = p(r) +

q−1∑
i=r

∑
w∈RSi(X)

(|F (w)| − 1).

Proof. Consider the map f : Lr+1(X) → Lr(X) obtained by removing the final letter, i.e. f(wa) = w.
It’s clear that f is surjective and that |f−1(w)| = 1 for w which is not right-special and |f−1(w)| =
|F (w)| for w ∈ RSr(X). The result for q = r + 1 follows immediately, and the general case follows by
induction.

The following corollary is immediate.

Corollary 1.5. If X is an infinite subshift and T ⊂ N denotes the set of lengths n for which |RSn(X)| >
1, then for all q > r,

p(q) ≥ p(r) + (q − r) + |T ∩ {r, . . . , q − 1}|.
If |RSi(X)| ≤ 2 for all m ≤ i < n and |F (w)| = 2 for all right-special w with lengths in [r, q), then the
inequality above is an equality.

2 Structure of subshifts with C < 4/3

As mentioned above, our results rely on a substitutive/S-adic structure for subshifts with sufficiently
low complexity. The substitutions in question all have the same form. Namely, for all positive integers
m < n, define the substitution

τm,n :

{
0 7→ 0m−11

1 7→ 0n−11.

When m1, . . . ,mk and n1, . . . , nk are understood, we use the shorthand notation

ρk = τm1,n1
◦ · · · ◦ τmk,nk

.

Proposition 2.1. If X is an infinite transitive subshift with lim sup p(q)
q < 4

3 , then there exists a sub-

stitution π : {0, 1} → A∗ where π(0), π(1) begin with different letters and |π(0)| < |π(1)| < 2|π(0)| and
sequences (mk), (nk) satisfying 0 < mk < nk so that X is the orbit closure of

x(mk),(nk) = lim
k

(π ◦ τm1,n1
◦ · · · ◦ τmk,nk

)(0) = lim
k
π(ρk(0)).

In addition,

• nk ≤ 2mk whenever mk > 1;

• nk < 1.9mk whenever mk > 4;

• nk ≤ 3 whenever mk = 1;

• if mk+1 = 1, nk+1 = 3 then nk = mk + 1; and

• every right-special word of length at least |s(π(0))m1−1|, where s is the maximal common suffix of
(π(0))∞ and (π(0))∞π(1), is a suffix of a concatenation of π(0) and π(1).

Definition 2.2. A word v is a root of w if |v| ≤ |w| and w is a suffix of the left-infinite word v∞. The
minimal root of w is the shortest v which is a root of w.

Every word w has a unique minimal root since it is a root of itself (and all roots of w are suffixes of w).

Lemma 2.3 ([Cre22] Lemma 5.7). If w and v are words with |v| ≤ |w| such that wv has w as a suffix
then v is a root of w.

Lemma 2.4 ([Cre22] Lemma 5.8). If uv = vu then u and v are powers of the same word, i.e. there
exists a word v0 and integers t, s > 0 such that u = vt0 and v = vs0.
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Lemma 2.5. Let u and v be words with |v| < |u|. Let s be the maximal common suffix of v∞ and v∞u.
If |s| ≥ |vu| then u and v are powers of the same word.

Proof. If |s| ≥ |vu| then s has vu as a suffix. Since v is a root of s, v is a root of u so u = u′vt for some
t ≥ 1 and suffix u′ of v. Then s has u′vtv as a suffix since that is a suffix of v∞ and |s| ≥ |u′vtv|. Then
uv is a suffix of s so uv = vu as they are both suffixes of s and have the same length so Lemma 2.4 gives
the claim.

Lemma 2.6. Let v and u be words with |v| < |u| which are not powers of the same word and where v is
a suffix of u. Let s be the maximal common suffix of v∞ and v∞u (which must be finite by Lemma 2.5).
Then s is a suffix of any left-infinite concatenation of u and v.

Proof. By Lemma 2.5, |s| < |vu| so we need only verify that s is a suffix of uvq for q ≥ 1 and of uu.
Since v is a suffix of u, uu has vu as a suffix hence has s as a suffix. If |s| ≥ |u| then v is a root of u so
u = u′vt and uvq = u′vtvq is a suffix of v∞ so s is a suffix of uvq. If |s| < |u| then u = u0s

′vt for some
(possibly empty) suffix s′ of v and t ≥ 1 (as s = s′vt has v as a root and |s| ≥ |v| as v is a suffix of u).
Then uvq = u0s

′vt+q has s = s′vt as a suffix.

Lemma 2.7. Let v and u be words and s be the maximal common suffix of v∞ and v∞u. Let y and z
be suffixes of some (possibly distinct) concatenations of u and v, both of length at least |s|. Then for any
word w, the maximal common suffix of yvw and zuw is sw.

Proof. Since y is a suffix of a concatenation of u and v, so is yv. Then yv has sv as a suffix by Lemma
2.6. Likewise zu has su as a suffix. As s is a suffix of v∞, then so is yv. Likewise, zu is a suffix of v∞u.
Therefore the maximal common suffix of yv and zu is s (as they are both at least as long as s).

Lemma 2.8. If p(q+1)−p(q) = 1 then there exists a bi-special word which has length in [q, q+p(q)], has
exactly two successors, and is the unique right-special word of its length and also the unique left-special
word of its length.

Proof. Let w be the unique right-special word of length q (which must have exactly two successors) and
y be the unique left-special word and write z for the label of the path from y to w in the Rauzy graph.
Then |z| ≤ p(|w|). The word yz is left-special and right-special and |yz| = |y|+ |z| ≤ q + p(q).

If x is a word of the same length as yz which is right-special then x must have w as a suffix. Then
x = x0w and |x0| = |z|. Since there is only one path in the Rauzy graph ending at w of length |z| (due
to y being the unique left-special word), we have that x = yz.

Lemma 2.9. Let X be an infinite transitive subshift with p(q) ≤ 4
3q for all sufficiently large q. Then

there exist words a and b which begin with different letters with |a| < |b| < 2|a| and p(q) < 4
3q for

all q ≥ |a| and where a is a root of b such that every x ∈ X can be written in exactly one way as a
concatenation of a and b. If we define s to be the maximal common suffix of a∞ and a∞b, there exists
t ≥ 0 so sat is the unique right-special and left-special word of its length.

Proof. There exist infinitely many q such that p(q+1)−p(q) = 1 by Corollary 1.5. By Lemma 2.8, there
exists a bi-special word w with |w| arbitrarily large which is the unique left-special and right-special
word of its length and which has exactly two successors. We may assume p(q) ≤ 4

3q for all q ≥ |w|. We
note that by [OP19], X is infinite and minimal.

Let u and v be the shortest two return words for w (meaning wu and wv both have w as a suffix) which
will be the labels of the two paths from w to itself in the Rauzy graph GX,|w| for words of length |w|,
with v being the shorter of the two. All bi-infinite words in X can be written in exactly one way as a
concatenation of v and u, as every such word must be the label of a path in the Rauzy graph (which
visits the vertex w infinitely many times by minimality of X), and the only two such paths have labels
v and u.
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Since |u|+ |v| ≤ p(|w|) + 1 ≤ 4
3 |w|+ 1, we have 2|v| ≤ 4

3 |w|+ 1 so |v| ≤ 2
3 |w|+

1
2 . This is less than |w|

(since |w| > 1), and so v is a root of w by Lemma 2.3. Note that v cannot be a proper power of any
word since if v = vt0 then wv0 has w as a suffix so v0 is a root of w making v0 a return word for w which
is shorter than v.

Observe that if |w| < 3|v| then |u| ≤ 4
3 |w| + 1 − |v| < 4

3 |w| −
1
3 |w| + 1 so u is a suffix of w making v a

root of u. We write u = u?vs for some proper suffix u? of v (which cannot be empty as u and v start
with different letters) and define a = v and b = u?v. Then as before, every bi-infinite word in X can be
written uniquely as a concatenation of v = a and u = bas−1, hence the same is true of a and b (since
a = v). Clearly a is a root of b, and |a| < |b| < 2|a| as 0 < |u?| < |a|.
So assume from here on that |w| ≥ 3|v|.
Suppose now that for every suffix w0 of w with |v| ≤ |w0| < 2|v|, we have p(|w0| + 1) − p(|w0|) ≥ 2.

Then, by Corollary 1.5, p(2|v|) = p(2|v|)− p(|v|) + p(|v|) ≥ 2(2|v|− |v|) + |v|+ 1 = 3|v|+ 1 so p(2|v|)
2|v| > 3

2 ,

contradicting our hypothesis.

Therefore there exists w0 a suffix of w with |v| ≤ |w0| < 2|v| which is the unique right-special word of
its length and it has exactly two successors.

Since w0 is a suffix of w, v is a root of w0. As there must also be a unique left-special word of the same
length as w0, w0 extends to a bi-special word w00 which is the unique left-special and right-special word
of its length and which has exactly two successors (Lemma 2.8). Now |w00| ≤ |w0| + |v| since the path
from the left-special to the right-special vertex in the Rauzy graph for words of length |w0| must be no
longer than v (as w0v must have w0 as a suffix). Then |w00| < 2|v|+ |v| = 3|v| ≤ |w| so w00 is a proper
suffix, and prefix, of w.

Let v0 and u0 be the shortest return words for w00 with v0 beginning with the same letter as v (and u0
beginning with a different letter). Then all bi-infinite words in X are concatenations of u0 and v0. Since
v is a return word for w00, v must be a concatenation of u0 and v0 which means that v0 must be a prefix
of v by virtue of sharing a common first letter. Likewise u0 must be a prefix of u.

Since v is a suffix of w, then vv0 has v as a suffix so v0 is a root of v by Lemma 2.3. Write v = v′vt0 for
some t ≥ 1 and v′ a proper suffix of v0. Then v0 = v′′v′ so v has v′v0 = v′v′′v′ as a prefix. But v0 is also
a prefix of v so both v′v′′ and v′′v′ are prefixes of v. Therefore they are equal so by Lemma 2.4 both are
powers of the same word. But then v is a power of that word and it cannot be a proper power of any
word so either v′ or v′′ is empty and so v0 = v.

If |u0| ≤ |v| then u0 is a root of w00 hence of v. Write v = v?us0 for some proper suffix v? of u0 (which
cannot be empty as v begins with a different letter than u) and s ≥ 1. Taking a = u0 and b = v?u0,
then every bi-infinite word in X is a concatenation of u0 = a and v = bas−1. Clearly a is a root of b and
|a| < |b| < 2|a|.
So we are left with |u0| > |v|. Here |u0| ≤ p(|w00|) + 1 − |v| < 4

3 |w00| + 1 − 1
3 |w00| as |w00| < 3|v|.

Therefore |u0| ≤ |w00|. So u0 is a suffix of w hence v is a root of u0. Writing u0 = u?vs for some proper
suffix u? of v and s ≥ 1 then taking a = v and b = u?v, just as before we have that every bi-infinite word
in X is a unique concatenation of v = a and u0 = bas−1, hence of a and b. As before, clearly a is a root
of b and |a| < |b| < 2|a|.
In all cases, one of a, b is a prefix of u and the other is a prefix of v. Since u and v begin with different
letters, a and b begin with different letters. It remains to verify the claim about the maximal common
suffix s and that a may be taken arbitrarily long.

In the case when a is a root of w (and w00 was not introduced), set w00 = w and t = 0. Then in all
cases, a is a root of w00 as a is either v or u0 so w00 is a suffix of a∞. In all cases, bat is the other return
word for w00 for some t ≥ 0. Then w00a

`bat has w00 as a suffix for all ` ≥ 0 so w00 is a suffix of a∞bat.
Since w00 is left-special and a and bat are its two return words, the maximal common suffix of a∞ and
a∞bat must be no longer than w00. Therefore w00 = sat where s is the maximal common suffix of a∞

and a∞ba.

Let {w`} be a sequence of such bi-special words with |w`| increasing to ∞ and let {a`} and {v`} be the
corresponding a and v above. Since either a = v or a = u0, and in both cases it is a root of w00, a` is a
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root of v`.

Since w` is the unique right-special word of its length, it is a suffix of w`+1 and therefore v` is a suffix
of v`+1. If |v`| were bounded then there would exist L such that v` = vL for ` ≥ L but then vL would
be a root of w` for ` ≥ L so v∞L ∈ X, a contradiction. So |v`| → ∞. Likewise, since a` is a root of v`, if
|a`| were bounded then for some L we would have a∞L ∈ X. Therefore |a`| → ∞ so we may take a and b
such that for all q ≥ |a|, we have p(q) < 4

3q.

The following lemma is our main tool to recursively demonstrate the structure from Proposition 2.1.
The key is control over the lengths of the suffixes from Lemmas 2.5 and 2.6.

Lemma 2.10. Let X be an infinite transitive subshift with p(q)
q < 4

3 for q > N . Let u and v be words

with N < |v| < |u| such that v is a suffix of u and v is not a prefix of u. Let s be the maximal common
suffix of v∞ and v∞u and let p be the maximal common prefix of u and v.

Assume that |p|+ |s| < |u|+ |v| and |p|+ |s| < 3|v| and that every bi-infinite word in X can be written
as a concatenation of u and v. Then there exist 0 < m < n such that every concatenation of u and v
which represents a point in X has only vm−1 and vn−1 appearing between nearest occurrences of u and
satisfying:

• n ≤ 2m whenever m > 1;

• n < 1.9m whenever m > 4;

• n ≤ 3 whenever m = 1

and the words svn−2p and svm−1uvm−1p are right-special.

Proof. For brevity, whenever we refer to a ‘concatenation’ in the following, it is a concatenation of u, v
which represents a point of X or a subword of such a point. We again note that by [OP19], X is infinite
and minimal, and so no concatenation can contain infinitely many consecutive v. Similarly, if there was
only a single number of v which may occur between nearest occurrences of u, then X would be finite,
contradicting our assumptions. So there are at least two different numbers of v which can occur between
nearest occurrences of u.

Suppose for a contradiction that uvxu and uvyu and uvzu all appear in some concatenations and that
x < y < z. We may assume that x is the minimal value such that uvxu appears in a concatenation. Since
uvxu and uvyu are necessarily preceded by vx (due to x being minimal), then vxuvxu and vxuvxv both
appear in concatenations (as y > x). By Lemma 2.6 (as v is not a prefix of u, they cannot be powers of
the same word), s is a suffix of every left-infinite concatenation. This means that vxuvxu and vxuvxv
are both preceded by s in the bi-infinite concatenations they respectively appear in, and so svxuvx can
be followed by either u or v, meaning that svxuvxp is right-special (since the letters appearing after p in
u and v are distinct by maximality of p).

Likewise, vxuvyu and vxuvyv appear in some concatenations (due to z > y) so svxuvyp is also right-
special. By Lemma 2.7, the maximal common suffix of svxuvxp and svxuvyp is svxp. Therefore there
are at least two right-special words of length ` for |svxp| < ` ≤ |svxuvxp| (namely, the unequal suffixes
of svxuvxp and svxuvyp of length `). Then, since |p|+ |s| < |v|+ |u| < 2|u|, by Corollary 1.5

p(|svxuvxp|)
|svxuvxp|

≥ 1 +
|svxuvxp| − |svxp|
|svxuvxp|

= 1 +
x|v|+ |u|

|p|+ |s|+ 2x|v|+ |u|
> 1 +

x|v|+ |u|
2|u|+ 2x|v|+ |u|

.

The final expression is increasing for x ≥ 0, hence is at least 4
3 (its value at x = 0), contradicting our

hypothesis that p(q)/q < 4
3 for q > N . Therefore such x < y < z cannot exist so there are only two

distinct values x and y. Writing x = m− 1 and y = n− 1 then shows that vm−1 and vn−1 are the only
words appearing between occurrences of u in a concatenation.

By similar reasoning as above, we observe that svm−1uvm−1p is right-special and that svn−2p is also
right-special since svn−1u appears in a concatenation and it has svn−2v as a prefix and svn−2u as a
suffix. Again by similar reasoning as above, their maximal common suffix is svm−1p.
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Suppose |svm−1uvm−1p| ≤ |svn−2p|. Then there are at least two right-special words of length ` for
|svm−1p| < ` ≤ |svm−1uvm−1p| so, by Corollary 1.5 and the fact that |p|+ |s| < |u|+ |v| < 2|u|,

p(|svm−1uvm−1p|)
|svm−1uvm−1p|

≥ 1 +
(m− 1)|v|+ |u|

|p|+ |s|+ 2(m− 1)|v|+ |u|
> 1 +

(m− 1)|v|+ |u|
2(m− 1)|v|+ 3|u|

≥ 4

3

which contradicts our hypothesis.

So instead |svn−2p| < |svm−1uvm−1p|. Then there are at least two right-special words of length ` for
|svm−1p| < ` ≤ |svn−2p| so, by Corollary 1.5 and the fact that |p|+ |s| < 3|v|,

p(|svn−2p|)
|svn−2p|

≥ 1 +
(n−m− 1)|v|

|p|+ |s|+ (n− 2)|v|
> 1 +

(n−m− 1)|v|
3|v|+ (n− 2)|v|

= 1 +
n−m− 1

n+ 1
.

Consider first when m = 1. If n ≥ 4 then n−m−1
n+1 = n−2

n+1 ≥
2
5 >

1
3 which contradicts our hypothesis.

Now consider when m > 1. If n ≥ 2m+ 1 then n−m−1
n+1 ≥ 2m+1−m−1

2m+1+1 = m
2m+2 ≥

2
2(2)+2 = 1

3 contradicting

our hypothesis. So n ≤ 2m when m > 1.

Finally, consider when m ≥ 5. Suppose n ≥ 1.9m. Then

n−m− 1

n+ 1
≥ 1.9m−m− 1

1.9m+ 1
=

0.9m− 1

1.9m+ 1
≥ 4.5− 1

9.5 + 1
=

1

3

contradicting our hypothesis. So n < 1.9m whenever m > 4.

Proof of Proposition 2.1. We prove by induction that such sequences exist, using the notation vk :=
π(ρk−1(0)) and uk := π(ρk−1(1)).

By [OP19], X is minimal. Write sk for the maximal common suffix of v∞k and v∞k uk and pk for the
maximal common prefix of vk and uk.

Our inductive hypotheses are the following:

• all x ∈ X can be written as concatenations of uk and vk;

• vk is a suffix of uk and is not a prefix of uk;

• |pk|+ |sk| < min(|vk|+ |uk|, 3|vk|);
• vk = (π ◦ τm1,n1

◦ · · · ◦ τmk−1,nk−1
)(0) = π(ρk−1(0)) and uk = (π ◦ τm1,n1

◦ · · · ◦ τmk−1,nk−1
)(1) =

π(ρk−1(1)).

Since lim sup p(q)
q < 4

3 , eventually p(q) < 4
3q. Lemma 2.9 gives v1 and u1 with v1 a suffix of u1 and

|v1| < |u1| < 2|v1| which start with different letters such that every infinite word is a concatenation of
u1 and v1. By Lemma 2.5, |s1| < |v1u1| < 3|v1|. As u1 and v1 begin with different letters, p1 is empty.
Therefore the base case is established by setting π(0) = v1 and π(1) = u1. Lemma 2.9 ensures that
p(q) < 4

3q for all q ≥ |π(0)|.
Given vk and uk, by Lemma 2.10 there exist 0 < mk < nk such that every infinite word is a concatenation
of vk+1 = vmk−1

k uk and uk+1 = vnk−1
k uk. Observe that uk+1 = vnk−1

k uk = (π(ρk−1(0)))nk−1π(ρk−1(1)) =
π(ρk−1(0nk−11)) = π(ρk−1(τmk,nk

(1))) = π(ρk(1)) and similarly vk+1 = π(ρk(0)).

Clearly vk+1 is a suffix of uk+1. If vk+1 were a prefix of uk+1 then uk would be a prefix of vnk−mk

k uk but

that would make vk a prefix of uk. So vk+1 is not a prefix of uk+1, and pk+1 = vmk−1
k pk.

By definition, sk+1 is the maximal common suffix of v∞k+1 and v∞k+1uk+1. We can rewrite these as

y = . . . ukv
mk−1
k uk and z = . . . vkv

mk−1
k uk. These share a suffix of vmk−1

k uk, so we must just find the
maximal common suffix of the portions with this removed, i.e. y′ = . . . uk, a concatenation ending with
uk, and z′ = . . . vk, a concatenation ending with vk. But y′ then agrees with v∞k uk on a suffix of length
|uk|+|sk| > |sk| by Lemma 2.6 and z′ agrees with v∞k on a suffix of length |vk|+|sk| > |sk| by Lemma 2.6,
meaning that y′ and z′ have maximal common suffix sk. Therefore, sk+1 = skv

mk−1
k uk = skvk+1. Then,

|pk+1|+ |sk+1| = |pk|+ |sk|+ 2(mk − 1)|vk|+ |uk| < (2mk − 1)|vk|+ 2|uk| = 2|vk+1|+ |vk|
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and since |vk+1|+ |vk| ≤ |uk+1| and |vk| < |vk+1|, the inductive hypotheses are verified.

Lemma 2.10 gives that nk ≤ 2mk when mk > 1 and nk ≤ 1.9mk when mk > 4 and that nk ≤ 3 when
mk = 1.

Suppose that mk = 1 and nk = 3 and nk−1 ≥ mk−1 + 2. By Lemma 2.10, the words skvkpk and

sk−1v
nk−1−2
k−1 pk and skukpk are right-special. By Lemma 2.7, the maximal common suffix of skvkpk

and skukpk is skpk. Using Lemma 2.6 and that pk = v
mk−1−1
k−1 pk−1, both skvkpk and skukpk have

sk−1uk−1v
mk−1−1
k−1 pk−1 as a suffix. By Lemma 2.7, the maximal common suffix of either of them and

sk−1v
nk−1−2
k−1 pk−1 is then sk−1v

mk−1−1
k−1 pk−1. Therefore there are least |skvkpk| + |skvkpk| − |skpk| +

|sk−1v
nk−1−1
k−1 pk−1| − |sk−1v

mk−1−1
k−1 pk−1| right-special words of length at most |skvkpk|.

Since pk = vmk−1
k−1 pk−1, sk = sk−1vk and |pk−1|+ |sk−1| < 3|vk−1|,

|pk|+ |sk| = (mk−1 − 1)|vk−1|+ |vk|+ |pk−1|+ |sk−1| < |vk|+ (mk−1 + 2)|vk−1| = 2|vk| − |uk|+ 3|vk−1|.

Therefore, since nk−1 ≥ mk−1 + 2,

p(|skvnk−2
k pk|)

|skvnk−2
k pk|

≥ 1 +
|vk|+ (nk−1 −mk−1 − 1)|vk−1|

|vk|+ |pk|+ |sk|
> 1 +

|vk|+ |vk−1|
3|vk| − |uk−1|+ 3|vk−1|

> 1 +
1

3

contradicting our hypothesis. So if mk = 1 and nk = 3 then nk−1 = mk−1 + 1.

Since s1v
t
1 is the unique right-special and unique left-special word of its length for some t ≥ 0 (Lemma

2.9) and u1v
t
1 and v1 are the two return words for s1v

t
1, we have that t ≤ m1− 1 as u1 is always followed

by vt1. Since s1v
t
1 is left-special, u1v

ts1v
t must appear meaning that t = m1 − 1. Therefore any right-

special word of length at least |s1vm1−1
1 | must have s1v

m1−1
1 as a suffix. As the return words for s1v1

are v1 and u1v
m1−1
1 , then every right-special word of at least that length is a suffix of a concatenation

of u1 and v1.

Finally, since vk is in the language for all k, there exists a two-sided sequence containing x(mk),(nk) =
lim vk. Then since X is minimal, X is the orbit closure of x(mk),(nk).

Remark 2.11. In future arguments, for any subshift X satisfying the structure of Proposition 2.1, we use
the notation of the proof, i.e. uk = π(ρk−1(1)), vk = π(ρk−1(0)), pk is the maximal prefix of vk and uk,
and sk is the maximal suffix of v∞k and v∞k uk. In addition, as shown in the proof of Proposition 2.1, the
sequence (pk) satisfies the recursion pk+1 = vmk−1

k pk = vkpk+1, the sequence (sk) satisfies the recursion
sk+1 = skvk+1, and |pk|+ |sk| < min(|uk|+ |vk|, 3|vk|) for all k.

Remark 2.12. By induction on k, each substitution π ◦ ρk is uniquely decomposable, in the sense
that each x ∈ X can be decomposed uniquely into words (π ◦ ρk)(a) for a ∈ {0, 1}. For k = 0,
this follows from Lemma 2.9 since π(0) = v1 and π(1) = u1 were constructed using that lemma. If
π ◦ ρk is uniquely decomposable, then every x is representable uniquely as a concatenation of (π ◦ ρk)(0)
and (π ◦ ρk)(1), and then the same must be true of (π ◦ ρk+1)(0) = (π ◦ ρk)(0)mk+1−1(π ◦ ρk)(1) and
(π ◦ ρk+1)(1) = (π ◦ ρk)(0)nk+1−1(π ◦ ρk)(1) (since each of these contains (π ◦ ρk)(1) exactly once.)

3 Subshifts with C < 4/3 have discrete spectrum

Theorem 1. If X is an infinite transitive subshift with lim sup p(q)
q < 4

3 , then X is uniquely ergodic with
unique measure which has discrete spectrum.

Our proof relies on first proving exponential decay of some quantities, which will later be used to verify
discrete spectrum via so-called mean almost periodicity.

Proposition 3.1. Let X be the orbit closure of x(mk),(nk) where (mk), (nk) satisfy the conclusions of
Proposition 2.1. Then there exist εk which converge to 0 exponentially so that for every k,

(nk+1 + 1)|π(0)|
∏k
i=1(ni −mi)

|(π ◦ ρk+1)(0)|
< εk.
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Proof. We first set some preliminary notation. Define a1 = 1 and ak = nk−1 −mk−1 and bk = mk for
k > 0. Note that by Proposition 2.1, all bk and ak are positive; ak+1 ≤ bk whenever bk > 1; ak+1 < 0.9bk
whenever bk > 4; and ak+1 ≤ 2 whenever bk = 1. We also define dk = |(π ◦ ρk)(0)|, and note that (dk)
satisfies the recursion

dk+1 = bk+1dk + ak+1dk−1 (1)

where d−1 = |π(1)| − |π(0)| and d0 = |π(0)|.
For ease of notation, define

βj =
aj+1dj−1

dj

and observe that, by (1),

βj+1 =
aj+2dj
dj+1

=
aj+2

bj+1 + aj+1
dj−1

dj

=
aj+2

bj+1 + βj
.

Note that β0 = a1d−1

d0
= d−1

|π(0)| . Then

|π(0)|a1 · · · ak+1

dk
=
|π(0)|
d−1

k∏
j=0

aj+1dj−1
dj

=
|π(0)|
d−1

β0

k∏
j=1

βj =

k∏
j=1

βj . (2)

Claim. 0 < βj < 2 for all j ≥ 0.

Proof. Since aj+1 ≤ bj + 1 for all j, βj ≤ bj+1
bj+β

< 1 + 1
bj
≤ 2.

Claim. If aj+1 ≤ bj then βj < 1.

Proof. Since βj−1 > 0, βj =
aj+1

bj+βj−1
<

aj+1

bj
≤ 1.

Claim. If aj+1 = bj + 1 then at least one of βj < 1 or βjβj−1 ≤ 1.

Proof. When aj+1 = 2 and bj = 1, by Proposition 2.1, τ1,3 cannot occur for consecutive values so we
have aj ≤ bj so βj−1 ≤ 1. Since βj = 2

1+βj−1
≥ 1, we have βjβj−1 = 2− βj ≤ 1.

This implies
∏k
j=1 βj ≤ β1 ≤ 2.

By the assumptions on (mk) and (nk), we see that ak+1 ≤ bk when bk > 1 and ak+1 ≤ 2 when bk = 1
and ak+1 < 0.9bk when bk > 4. We now break into several cases.

Case 1: If bj > 4 then βj < 0.9.

Proof. If bj > 4 then, as dj > bjdj−1 by (1), βj =
aj+1dj−1

dj
< 0.9.

Case 2: If aj+1 ≤ bj ≤ 4 and bj−1 ≤ 4 then βj < 0.96.

Proof. If aj+1 ≤ bj ≤ 4 and bj−1 ≤ 4 then by (1),

dj = bjdj−1 + ajdj−2 ≤ bjdj−1 + (bj−1 + 1)dj−2 < bjdj−1 + dj−1 + dj−2 ≤ (bj + 2)dj−1 ≤ 6dj−1.

Then, again by (1), using that aj+1 ≤ bj ,

dj
dj−1

= bj +
ajdj−2
dj−1

> bj +
1

6
≥ aj+1 +

1

6
.
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Therefore, since aj+1 ≤ bj ≤ 4,

βj =
aj+1dj−1

dj
<

aj+1

aj+1 + (1/6)
=

(
1 +

1

6aj+1

)−1
<

(
1 +

1

24

)−1
= 0.96.

Case 3: If aj+1 ≤ bj ≤ 4 and bj−1 > 4 then at least one of βj < 0.96 or βjβj−1 < 0.5 holds.

Proof. Consider when aj+1 ≤ bj ≤ 4 and bj−1 > 4 so βj−1 < 0.96. Suppose βj >
8
9 . Then

8

9
<

aj+1

bj + βj−1
≤ bj
bj + βj−1

≤ 4

4 + βj−1

so 8 + 2βj−1 < 9 so βj−1 <
1
2 . Then βjβj−1 < βj−1 < 0.5 since aj+1 ≤ bj implies βj < 1. So at least

one of βj ≤ 8
9 < 0.96 or βjβj−1 < 0.5 must hold.

Any j where aj+1 ≤ bj is covered by Case 1 if bj > 4 and Case 2 or 3 if bj ≤ 4. The only remaining case
is then aj+1 > bj , which happens only if aj+1 = 2 and bj = 1.

Case 4: If aj+1 = 2 and bj = 1 then at least one of βjβj−1 <
48
49 or βjβj−1βj−2 < 0.52 holds.

Proof. Consider any such j. By Proposition 2.1, τ1,3 cannot occur consecutively so aj ≤ bj−1, and so
j − 1 is in one of Cases 1-3. If βj−1 < 0.96, then

βjβj−1 =
aj+1

bj + βj−1
βj−1 =

2βj−1
1 + βj − 1

= 1 +
βj−1 − 1

βj−1 + 1
< 1 +

0.96− 1

0.96 + 1
=

48

49
.

If βj−1 ≥ 0.96, then j − 1 must be in Case 3 and βj−1βj−2 < 0.5. Then

βjβj−1βj−2 =
2

1 + βj−1
βj−1βj−2 <

1

1 + βj−1
≤ 1

1 + 0.96
< 0.52.

Claim. For all k ≥ 1,
k∏
j=1

βj < 2
(48

49

)k/2
.

Proof. All j > 2 are in one of the cases above, and so at least one of the following hold: βj < 0.96,

βjβj−1 <
48
49 , or βjβj−1βj−2 < 0.52. For every k, we can group the product

∏k
j=1 βj into products of

one, two, or three consecutive terms bounded from above in this way, with the possible exception of β1

or β1β2. As 0.96 <
√

48
49 and 0.52 < ( 48

49 )3/2, and since β1β2 < 1 whenever β1 > 1, this yields

k∏
j=1

βj < β1

(48

49

)k/2
< 2
(48

49

)k/2
.

Since nk+1 ≤ 2mk+1 + 1 = 2bk+1 + 1, we have (nk+1+1)dk
dk+1

≤ (2bk+1+2)dk
bk+1dk

= 2 + 2
bk+1

≤ 4, and so

nk+1|π(0)|
∏k
i=1(ni −mi)

dk+1
=
nk+1dk
dk+1

|π(0)|a1 · · · ak+1

dk
≤ 4

k∏
j=1

βj < 8

(
48

49

)k/2
.

Defining εk := 8( 48
49 )k/2 completes the proof.

Proof of Theorem 1. Our technique for verifying discrete spectrum of X is by using mean almost peri-

odicity, which requires a definition. The upper density of A ⊂ N, denoted d(A), is lim sup |A∩{1,...,n}|n .

It’s easy to check that upper density is subadditive, i.e. d(A ∪B) ≤ d(A) + d(B) for every A,B.
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A subshift X is mean almost periodic if for all ε > 0 and all x ∈ X, there exists a syndetic set S so
that for all s ∈ S, x and σsx differ on a set of locations with upper density less than ε. It is well-known
that mean almost periodicity implies discrete spectrum; see for instance Theorem 2.8 of [LS09].

Examples of aperiodic but mean almost periodic subshifts are given by the Sturmian subshifts and also
so-called regular Toeplitz subshifts. Since our hypotheses are satisfied by Sturmian subshifts, their mean
almost periodicity follows as a corollary of our proof.

By Proposition 2.1, X is the orbit closure of

x(mk),(nk) = lim
k→∞

(π ◦ τm1,n1
◦ τm2,n2

◦ · · · τmk,nk
)(0) = lim

k→∞
(π ◦ ρk)(0)

for some π : {0, 1} → A∗ where π(0), π(1) begin with different letters and |π(0)| < |π(1)| < 2|π(0)| and
some sequences (mk), (nk) satisfying 0 < mk < nk ≤ 2mk or (mk, nk) = (1, 3).

We again use the notations ak+1 = nk −mk and dk = |(π ◦ ρk)(0)| as in the proof of Proposition 3.1.

For any k > 0 and p ∈ N, define the words

y0,k,p = ((π ◦ ρk)(0))p(π ◦ ρk)(1), z0,k,p = (π ◦ ρk)(1)((π ◦ ρk)(0))p,

y1,k,p = ((π ◦ ρk)(1))p(π ◦ ρk)(0), z1,k,p = (π ◦ ρk)(0)((π ◦ ρk)(1))p.

We will prove the following by induction:

yi,k,p, zi,k,p differ on fewer than 2|π(1)|pa1 . . . ak+1 locations (i ∈ {0, 1}). (3)

The base case k = 0 trivially holds, since the lengths of y0,0,p, z0,0,p, y1,0,p, z1,0,p are less than 2p|π(1)|.
Assume now that (3) holds for some k − 1 (and all p).

Consider first the case when nk ≤ 2mk.

Then by definition of τmk,nk
, if we write u = (π ◦ ρk−1)(1), v = (π ◦ ρk−1)(0), m = mk, and n = nk, then

y0,k,p = (vm−1u)pvn−1u and z0,k,p = vn−1u(vm−1u)p.

Since v is a suffix of u, write u = u′v. Then, using that m < n ≤ 2m,

y0,k,p = (vm−1u)pvn−1u = (vm−1u′v)pvm−1vn−mu = vm−1(u′vm)pvn−mu

= vm−1(u′vn−mv2m−n)pvn−mu,

z0,k,p = vn−1u(vm−1u)p = vm−1vn−m(u′vm)pu = vm−1vn−m(u′v2m−nvn−m)pu

= vm−1(vn−mu′v2m−n)pvn−mu.

Since |u′vn−m| = |vn−mu′|, this means y0,k,p and z0,k,p differ at a number of locations equal to p times
the number of locations where u′vn−m and vn−mu′ differ. Clearly u′vn−m and vn−mu′ differ on the same
number of locations as u′vn−mv = uvn−m and vn−mu′v = vn−mu differ. Since uvn−m = z0,k−1,n−m and
vn−mu = y0,k−1,n−m, the inductive hypothesis gives that they differ on fewer than 2|π(1)|(n−m)a1 · · · ak
locations. Then y0,k,p and z0,k,p differ on fewer than 2|π(1)|p(n −m)a1 · · · ak locations. Since ak+1 =
n−m, this proves the claim. Similarly,

y1,k,p = (vn−1u)pvm−1u = vn−1(u′vn)p−1u′vmu

= vm−1vn−m(u′vmvn−m)p−1u′vmu = vm−1(vn−mu′vm)pu,

z1,k,p = vm−1u(vn−1u)p = vm−1(u′vn)pu = vm−1(u′vn−mvm)pu.

so y1,k,p and z1,k,p differ on fewer than 2|π(1)|pa1 · · · ak+1 locations.

Consider now the case when nk = 3 and mk = 1. Here

(π ◦ ρk)(0) = (π ◦ ρk−1)(1), (π ◦ ρk)(1) = ((π ◦ ρk−1)(0))2(π ◦ ρk−1)(1)

By Proposition 2.1, nk−1 = mk−1 + 1 so we have (π ◦ ρk−1)(1) = (π ◦ ρk−2)(0)(π ◦ ρk−1)(0).

First consider when mk−1 > 1. Here (π ◦ ρk−2)(0) is a prefix of (π ◦ ρk−1)(0) so there are words
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g = (π ◦ ρk−2)(0) and h such that (π ◦ ρk−1)(0) = gh and (π ◦ ρk−1)(1) = ggh. Then (π ◦ ρk)(0) = ggh
and (π ◦ ρk)(1) = (gh)2ggh so

y0,k,p = (ggh)p(ghghggh) = ggh(ggh)p−1ghghggh

z0,k,p = (ghghggh)(ggh)p = ghg(hgg)p−1hgghggh

which differ on two pairs of gh and hg and on p− 1 pairs of ggh and hgg.

Our inductive hypothesis does apply directly to gh and hg, however gh and hg differ on the same number
of letters as ggh = (π ◦ ρk−2)(0)((π ◦ ρk−2)(0))mk−1−1(π ◦ ρk−2)(1) and ghg = ((π ◦ ρk−2)(0))mk−1−1(π ◦
ρk−2)(1)(π ◦ ρk−2)(0). Those words differ on the same number of letters as (π ◦ ρk−2)(0)(π ◦ ρk−2)(1)
and (π ◦ ρk−2)(1)(π ◦ ρk−2)(0), and by hypothesis they differ on fewer than 2|π(1)|a1 · · · ak−1 locations.

Similarly, gggh = ((π ◦ρk−2)(0))mk−1+1(π ◦ρk−2)(1) and ghgg = ((π ◦ρk−2)(0))mk−1−1(π ◦ρk−2)(1)((π ◦
ρk−2)(0))2 differ on the same number of letters as (π ◦ ρk−2)(1)((π ◦ ρk−2)(0))2 and ((π ◦ ρk−2)(0))2(π ◦
ρk−2)(1) which by hypothesis is fewer than 2|π(1)|2a1 · · · ak−1 locations.

Therefore y0,k,p and z0,k,p differ on fewer than 2 · 2|π(1)|a1 · · · ak−1 + 2(p− 1)2|π(1)|a1 · · · ak−1 locations.
Since ak = 1 and ak+1 = 2, they differ on fewer than 2|π(1)|pa1 · · · ak+1 locations. Similarly,

y1,k,p = (ghghggh)pggh = ghg(hgghghg)p−1hgghggh

z1,k,p = ggh(ghghggh)p = ggh(ghghggh)p−1ghghggh

differ on two pairs of gh and hg and on p− 1 pairs of hgghghg and ghghggh. As hgghghg and ghghggh
differ on two pairs of gh and hg, the total number of differences is 2p times the number of differences
between gh and hg. Since gh and hg differ on fewer than 2|π(1)|a1 · · · ak−1 locations, and since ak = 1
and ak+1 = 2, y1,k,p and z1,k,p differ on fewer than 2|π(1)|pa1 · · · ak+1 locations.

Now consider when mk−1 = 1. Here (π◦ρk−1)(0) = (π◦ρk−2)(1) so (π◦ρk−2)(0) is a suffix of (π◦ρk−1)(1).
So there are words g = (π ◦ ρk−2)(0) and h such that (π ◦ ρk−1)(0) = hg. Then (π ◦ ρk)(0) = ghg and
(π ◦ ρk)(1) = (hg)2ghg so

y0,k,p = (ghg)phghgghg = gh(ggh)p−1ghghgghg

z0,k,p = hghgghg(ghg)p = hg(hgg)p−1hgghgghg

which differ on two pairs of gh and hg and on p−1 pairs of ggh and hgg. Since gghg = (π ◦ρk−2)(0)2(π ◦
ρk−1)(0) = (π ◦ ρk−2)(0)2(π ◦ ρk−2)(1) and hggg = (π ◦ ρk−2)(1)((π ◦ ρk−2)(0))2, by hypothesis they
differ on fewer than 2|π(1)|2a1 · · · ak−1 locations. Then, as above, y0,k,p and z0,k,p differ on fewer than
2|π(1)|pa1 · · · ak+1 locations. Similarly,

y1,k,p = (hghgghg)pghg = hg(hgghghg)p−1hgghgghg

z1,k,p = ghg(hghgghg)p = gh(ghghggh)p−1ghghgghg

differ on 2p pairs of gh and hg so y1,k,p and z1,k,p differ on fewer than 2|π(1)|pa1 · · · ak+1 locations.

We will now prove that X is mean almost periodic. Fix any k, and as before, define u = (π ◦ ρk−1)(1),
v = (π ◦ ρk−1)(0), m = mk, and n = nk. Choose any y ∈ X; by minimality of X, y can be written as
a bi-infinite concatenation of the words (π ◦ ρk)(0) = vm−1u and (π ◦ ρk)(1) = vn−1u. We may assume
without loss of generality that y contains vm−1u starting at the origin, since any syndetic set S as in the
definition of mean almost periodicity for y also works for any shift of y. Since dk = |vm−1u|, let us write

y = . . . .vm−1uvi1−1uvi2−1u . . .

σdky = . . . .vi1−1uvi2−1u . . .

where each ik is either m or n. We can rewrite as

y = . . . .vm−1(uvi1−m)vm−1(uvi2−m)vm−1 . . .

σdky = . . . .vm−1(vi1−mu)vm−1(vi2−mu)vm−1 . . .

The words inside parentheses are unequal exactly when ij = n, in which case they are the pair uvn−m,
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vn−mu. Since the lengths of uvn−m and vn−mu are the same, this means that the only differences
in y and σdky occur within pairs uvn−m, vn−mu. By (3), the number of differences in any such pair
is bounded from above by 2|π(1)|(n − m)a1 . . . ak = 2|π(1)|a1 . . . ak+1. When y is partitioned into its
level-(k + 1) words (π ◦ ρk+1)(0) and (π ◦ ρk+1)(1) (and σdk is partitioned at the same locations), each
partitioned segment contains exactly one such pair uvn−m, vn−mu. Since each such segment has length
at least |(π ◦ ρk+1)(0)| = dk+1,

d
(
{t : y(t) 6= (σdky)(t)}

)
≤ 2|π(1)|a1 . . . ak+1

dk+1
.

For ease of notation, we define Dq = {t : y(t) 6= y(t+ q)} for every q; by the above,

d(Ddk) ≤ 2|π(1)|a1 . . . akak+1

dk+1
. (4)

Now, fix any k and consider the set

Sk :=

{
r∑
i=k

pidi : r > k, 0 ≤ pi ≤ ni+1 + 1

}
.

We claim that Sk is syndetic. To see this, note that ni+1di > di+1 for all i since di+1 = mi+1di + (ni −
mi)di−1 ≤ mi+1di + (mi + 1)di−1 < mi+1di + di + di−1 ≤ (mi+1 + 2)di ≤ (ni+1 + 1)di, and so a simple
greedy algorithm shows that for all M ∈ N, there exists s ∈ Sk with M ≤ s < M + dk.

Finally, choose any s =
∑r
i=k pidi ∈ Sk. For any `1, `2 ∈ N, D`1+`2 ⊂ D`1 ∪ (D`2 − `1) since t ∈ D`1+`2

implies at least one of y(t) 6= y(t+ `1) or y(t+ `1) 6= y(t+ `1 + `2) , and so d(D`1+`2) ≤ d(D`1) + d(D`2).
Using this repeatedly implies

d(Ds) = d
(
D∑r

i=k pidi

)
≤

r∑
i=k

pid(Ddi) ≤
r∑
i=k

2|π(1)|ni+1a1 . . . ai+1

di+1
.

Proposition 3.1 implies that (ni+1+1)|π(0)|a1···ai+1

di+1
< εi for a sequence εi which is exponentially decaying.

Then d(Ds) <
∑r
i=k

2|π(1)|
|π(0)| εi. Since (εi) is summable, the right-hand side becomes arbitrarily small as

k →∞, and so X is mean almost periodic, and therefore has discrete spectrum.

Remark 3.2. We remark that in fact this proof yields an explicit formula for an eigenvalue of X.
Namely, define a sequence (ck) by c−1 = 1, c0 = 0, and the same recursion ck+1 = bk+1ck + ak+1ck−1.
Basic continued fraction theory implies that ck

dk
approaches a limit α, and that for all k,∣∣∣∣ ckdk − α

∣∣∣∣ < ∣∣∣∣ ckdk − ck+1

dk+1

∣∣∣∣ =
|π(0)|a1 . . . ak+1

dkdk+1
=
|π(0)|

∏k
i=1(ni −mi)

dkdk+1
.

Therefore, the distance from dkα to the nearest integer is less than
|π(0)|

∏k
i=1(ni−mi)

dk+1
, which decays

exponentially by Proposition 3.1. If we define λ = e2πiα, then λdk = λ|(π◦ρk)(0)| approaches 1 with
exponential rate. By definition, |(π◦ρk)(1)| = dk+(nk−mk)dk−1. The distance from (nk−mk)dk−1α to

the nearest integer is less than
nk|π(0)|

∏k−1
i=1 (ni−mi)

dk
, which again decays exponentially by Proposition 3.1.

Therefore, λ|(π◦ρk)(1)| approaches 1 with exponential rate as well.

From this, an essentially identical argument to that of Host from [Hos86] (see also p. 170-171 from
[Que10]) shows that λ is an eigenvalue (in fact a continuous one). (His argument was for a single
substitution τ , but the construction can be done virtually without change with τk replaced by π ◦ ρk.)

We can even represent α (and therefore λ) in terms of generalized continued fractions. If we defined
an alternate sequence (ek) by the same recursion with e−1 = 0 and e0 = 1, then ck

ek
is just the kth

- 15 -



Low complexity subshifts have discrete spectrum Darren Creutz and Ronnie Pavlov

convergent to the generalized continued fraction

β =
a1

b1 +
a2

b2 +
a3

b3 +
.. .

=
1

m1 +
n1 −m1

m2 +
n2 −m2

m3 +
.. .

.

In particular, ck
ek
→ β. Since c−1 = 1, c0 = 0, e−1 = 0, e1 = 1 and ck, dk and ek are all defined by the

same (linear) recursion, dk = d−1ck + d0ek for all k. Then, as d−1 = |π(1)| − |π(0)| and d0 = |π(0)|,

α = lim
ck
dk

= lim
(
d−1 + d0

(ek
ck
− 1
))−1

= (d−1 + d0(β−1 − 1))−1 =
β

|π(1)|β + |π(0)|(1− β)

Therefore, the eigenvalue λ can be written as exp
(

2πi
(

β
|π(1)|β+|π(0)|(1−β)

))
.

4 A weak mixing subshift with C = 3/2

Theorem 2. There exists an infinite transitive subshift X which is uniquely ergodic, has unique measure

which is weak mixing, and for which lim sup p(q)
q = 3

2 .

The complexity estimates in Theorem 2 will follow from a general formula for word complexity of subshifts
with the structure from Proposition 2.1, which may be of independent interest.

Proposition 4.1. Let X be the orbit closure of x(mk),(nk) for π and (τmk,nk
) satisfying the conclusions

of Proposition 2.1. Then there exists a constant K such that for k ≥ 2,

p(q) =

{
q +

∑k
j=2(nj −mj − 1)|vj |+K if |skvnk−2

k pk| ≤ q ≤ |sk+1v
mk+1−1
k+1 pk+1|

2q − |skvmk−1
k pk|+

∑k−1
j=2 (nj −mj − 1)|vj |+K if |skvmk−1

k pk| ≤ q ≤ |skvnk−2
k pk|.

Proof. We claim first that the words p∞ := lim skpk = lim s1v2 · · · vkvmk−1
k v

mk−1−1
k−1 · · · vm1−1

1 and

skv
nk−2
k pk for k > 0 are right-special.

Since vk+1 = vmk−1
k uk and uk+1 = vnk−1

k uk, pk+1 = vmk−1
k pk. By induction then pk+1 = vmk−1

k · · · vm1−1
1

as p1 is empty. By Lemma 2.6, skpk is a suffix of sk+1pk+1 = skv
mk−1
k ukv

mk−1
k pk. As |sk+1| > |sk|, this

shows p∞ exists and is left-infinite.

By definition of pk as the maximal common prefix, pkπ(0) and pkπ(1) are both in the language since each
of uk and vk must have one of them as a prefix and they cannot have the same one. So pk is right-special
for each k (as π(0) and π(1) begin with different letters) hence p∞ is right-special. That skv

nk−2
k pk is

right-special follows from Lemma 2.10.

Next we claim that every right-special word is a suffix of p∞ or of skv
nk−2
k pk for some k > 0.

Since every right-special word of length at least |s1vm1−1
1 | is a suffix of a concatenation of u1 and v1, any

right-special word with s2p2 = s1v
m1−1
1 u1v

m1−1
1 as a suffix is of the form xu1v

m1−1
1 where x is a suffix

of a concatenation of u1 and v1. If x were not a suffix of a concatenation of v2 and u2 then u1v
r
1u1 for

r 6= m1 − 1, n1 − 1 must appear somewhere in x but this is impossible by definition of τm1,n1 . So every
right-special word with s2p2 as a suffix is of the form xp2 where x is a suffix of a concatenation of v2 and
u2.

Assume that any word with skpk as a suffix is necessarily of the form xpk where x is a concatenation of
uk and vk. Let w be a word which has sk+1pk+1 as a suffix. Since sk+1pk+1 = skvk+1v

mk−1
k pk which

has skpk as a suffix, w = xvk+1v
mk−1
k pk where x is a suffix of a concatenation of uk and vk. If x were

not a suffix of a concatenation of uk+1 and vk+1 then somewhere in xvk+ there must appear ukv
r
kuk for

r 6= nk − 1,mk − 1 or vtk for t > nk − 1. But this is impossible by definition of τmk,nk
. By induction,

then for all k, any word with suffix skpk is of the form xpk where x is a suffix of a concatenation of uk
and vk.
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Since vk is a suffix of uk for k > 1, write uk = u′kv
`k
k for `k ≥ 1 maximal. Note that sk has v`kk as a suffix.

Let w be a right-special word with |w| ≥ |s1p1|. Take k ≥ 1 maximal so that w has skpk as a suffix.
By the above, w = xpk is where x is a suffix of a concatenation of uk and vk in any left-infinite word.
Choose t ≥ 0 maximal so that vtkpk is a suffix of w.

Suppose w is not a suffix of skv
t−`k
k pk. Then ukv

t−`k
k pk must be right-special since all letters to the left of

sk are forced to come from uk by maximality of `k. As the pk must appear as a prefix of both vk and uk,
then ukv

t−`k
k uk and ukv

t−`k
k vk are in the language so t− `k = mk − 1. But then w has vmk−1

k pk = pk+1

as a suffix, contradicting the maximality of k.

So w is a suffix of skv
t−`k
k pk. Suppose t − `k ≥ nk − 1. Then w has vnk−1+`k

k pk as a suffix. As w is

right-special, this requires vnk−1+`k
k vk be in the language. But that is only possible if uk has v`k+1

k as a
suffix, contradicting the maximality of `k.

So t− `k ≤ nk − 2. Then w, being a suffix of skv
t−`k
k pk, is a suffix of skv

nk−2
k pk.

Finally, we establish the complexity function is as claimed. Since p∞ has sk+1pk+1 = skvk+1v
mk−1
k pk

as a suffix, by Lemma 2.6, it has skukv
mk−1
k pk as a suffix. By Lemma 2.7, the maximal common

suffix of p∞ and skv
nk−2
k pk is then skv

mk−1
k pk. Likewise the maximal common suffix of skv

nk−2
k pk and

sk′v
nk′−2
k′ pk′ for k′ > k is skv

mk−1
k pk as vk+1 has uk as a suffix. Therefore each skv

nk−2
k pk provides

(nk − 2 − (mk − 1))|vk| right-special words (with lengths in (|skvmk−1
k pk|, |skvnk−2

k pk|]) which are not
suffixes of p∞. Set K = p(|s2p2|)− |s2p2| and the claim follows.

Proof of Theorem 2. Define any increasing (nk), (mk) so that nk = 2mk for all k, m1 = 1, and the
sum

∑
k(nk)−1 < ∞. Then define π to be the identity, define τmk,nk

, ρk, ak, bk, ck, dk as in the proof
of Proposition 3.1, and note that ak+1 = nk − mk = mk = bk for all k and

∑
k(bk)−1 < ∞. Just as

before, dk = |ρk(0)| for all k, and we wish to impose the additional condition that dk is prime for every
k > 1. This is easily achieved via induction. First, d0 = d1 = 1, so d2 = b2d1 + a2d0 = m2 + 1, which
can clearly be chosen prime. Then, assume that dk is prime, and recall that dk+1 = bk+1dk + ak+1dk−1.
Both ak+1 = bk and dk−1 are positive and less than the prime dk (since dk = bkdk−1 + akdk−2 and dk−2
is positive for k > 1), meaning that dk and ak+1dk−1 are positive and coprime. Then by Dirichlet’s
theorem, there exist infinitely many choices of bk+1 so that dk+1 is prime. As long as the sequence (bk)
is chosen large enough at each step, we will maintain the condition

∑
k(bk)−1 <∞.

Let X be the orbit closure of x(mk),(nk). X is minimal by construction so by [Bos92], X is uniquely
ergodic with unique measure µ.

Suppose for a contradiction that X is not weak mixing, and so there is an eigenvalue λ 6= 1 with
measurable eigenfunction f . Our method is again based on the Host’s arguments from [Hos86], where
he showed that the existence of an eigenfunction can be used to obtain Diophantine conditions involving
the lengths of substitution words, which can be viewed as heights of Rokhlin towers.

One can define Rokhlin towers by Bk = [ρk(0)], hk = |ρk(0)|, and Tk =
⋃hk−1
j=0 σjBk; since mk, nk →∞,

µ(Tk)→ 1. By Remark 2.12, X is uniquely decomposable so the levels of the towers are disjoint. Then,
for each k, define

fk(x) =

hk−1∑
j=0

1

µ(Bk)

(∫
σjBk

f dµ
)
1σjBk

(x)

i.e., fk(x) = (µ(Bk))−1(
∫
σjBk

f dµ) for x ∈ σjBk and fk(x) = 0 for x /∈ Tk.

By the Lebesgue Differentiation Theorem, as µ(Tk) → 1 and µ(σjBk) → 0, fk converge almost every-
where to f .

Observe that σdk = σ|ρk(0)| takes every occurrence of ρk(0) to an occurrence of ρk(0) except for those
which are immediately prior to an occurrence of ρk(1) in some ρk+1(0) or ρk+1(1). Then for all t > 0,
σdk+t takes all occurrences of ρk(0) appearing in a ρk+t(0) to an occurrence of ρk(0) except possibly for
those appearing in a ρk+t(0) immediately prior to a ρk+t(1).

Let {ik} be any sequence such that 0 < ik < 0.5(mk+1 − 1). Then as above, for all t > 0, σik+tdk+t

takes all occurrences of ρk(0) in a ρk+t(0) to an occurrence of ρk(0) except possibly for those appearing
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in a ρk+t(0) less than ik+t occurrences before a ρk+t(1) in some ρk+t+1(0) or ρk+t+1(1). We also note
that since nk+t+1 = 2mk+t+1, at least one-third of the ρk(0) appearing in any x ∈ X are part of some
ρk+t(0). Therefore,

µ(σik+tdk+t [ρk(0)] ∩ [ρk(0)]) ≥ mk+t − 1− ik+t
mk+t − 1

(
1

3
µ([ρk(0)])

)
so, since ik+t < 0.5(mk+t − 1),

µ(σik+tdk+t(σjBk) ∩ (σjBk)) >
1

6
µ(σjBk).

Then fk(σik+tdk+tx) = fk(x) for a set of measure at least 1
6µ(Tk). Since fk → f almost everywhere and

µ(Tk) → 1, there is then a positive measure set such that for any sufficiently small ε > 0 and almost
every x in the set, there exists k so that for all t, |f(σik+tdk+tx)− f(x)| < ε. Therefore λikdk → 1.

We will prove that this is impossible. Define r ∈ (0, 1) by λ = e2πir; then 〈ikdkr〉 → 0 whenever
0 < ik < 0.5(mk+1 − 1), which implies that for large enough k (say k ≥ k0), 〈dkr〉 < 0.05(mk+1 − 1)−1.
Clearly r cannot be rational, since all dk are 1 or prime. Since 5nk+1 = 10mk+1 < 20(mk+1 − 1),
for k ≥ k0, 〈dkr〉 < 0.2(nk+1)−1. This implies that for all k ≥ k0, there exists c′k ∈ Z, so that∣∣∣r − c′k

dk

∣∣∣ < 0.2(dknk+1)−1 < 0.2(dk+1)−1. (Recall that dk+1 = bk+1dk + ak+1dk−1 < 2bk+1dk = nk+1dk.)

We will prove the following: for all k > k0,

c′k+1 = bk+1c
′
k + ak+1c

′
k−1. (5)

Assume that k > k0, and denote the right-hand side of (5) by c′′k+1. Then,∣∣∣∣r − c′k
dk

∣∣∣∣ < 0.2(dk+1)−1 and

∣∣∣∣r − c′k−1
dk−1

∣∣∣∣ < 0.2(dk)−1, (6)

and so ∣∣∣∣dk+1r − c′k
dk+1

dk

∣∣∣∣ < 0.2. (7)

We can simplify∣∣∣∣c′k dk+1

dk
− c′′k+1

∣∣∣∣ =

∣∣∣∣c′k (bk+1 +
ak+1dk−1

dk

)
− bk+1c

′
k − ak+1c

′
k−1

∣∣∣∣ =

∣∣∣∣c′kak+1
dk−1
dk
− ak+1c

′
k−1

∣∣∣∣ . (8)

By the second inequality in (6),∣∣ak+1dk−1r − ak+1c
′
k−1
∣∣ < 0.2ak+1dk−1

dk
=

0.2bkdk−1
dk

< 0.2. (9)

Similarly, by the first inequality in (6),∣∣∣∣ak+1dk−1r − c′kak+1
dk−1
dk

∣∣∣∣ < 0.2ak+1dk−1
dk+1

=
0.2bkdk−1
dk+1

< 0.2. (10)

Therefore, by the triangle inequality and (8)-(10),∣∣∣∣c′k dk+1

dk
− c′′k+1

∣∣∣∣ < 0.4.

Combining with (7) via the triangle inequality yields∣∣dk+1r − c′′k+1

∣∣ < 0.6. (11)
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Recall that by definition,∣∣∣∣r − c′k+1

dk+1

∣∣∣∣ < 0.2(dk+2)−1, and so
∣∣dk+1r − c′k+1

∣∣ < 0.2
dk+1

dk+2
< 0.2. (12)

Finally, (11) and (12) imply that c′k+1 = c′′k+1 (since they are both integers), completing the proof that
(5) holds for k > k0.

Since r is irrational and
c′k
dk
→ r, we may also assume without loss of generality (by increasing k0) that

c′k0

dk0
6= c′1+k0

d1+k0
. Then, it is easily proved by induction that for all k > k0,∣∣∣∣ c′kdk − c′k+1

dk+1

∣∣∣∣ = |c′1+k0dk0 − c
′
k0d1+k0 |

a1+k0 . . . ak+1

dkdk+1
.

We abbreviate Q = |c′1+k0dk0 − c
′
k0
d1+k0 |, and note that Q 6= 0 by the assumption that

c′k0

dk0
6= c1+k0

d1+k0
. We

can now bound the distance from above using that aj+1dj−1 ≤ dj :∣∣∣∣ c′kdk − c′k+1

dk+1

∣∣∣∣ =
Qa1+k0 . . . ak+1

dkdk+1
=

Q

dk0−1dk+1

k∏
j=k0

aj+1dj−1
dj

>
Q

dk0−1dk+1

∞∏
j=k0

aj+1dj−1
dj

. (13)

Note that

dj
aj+1dj−1

=
bj
aj+1

+
ajdj−2
aj+1dj−1

≤ bj
aj+1

+
bj−1dj−2
aj+1dj−1

<
bj + 1

aj+1
<

bj
aj+1 − 1

=
bj

bj − 1
=
(
1− b−1j

)−1
.

Therefore, the product
∏∞
j=k0

aj+1dj−1

dj
is greater than

∏∞
j=k0

(
1− 1

bj

)
, which converges to a positive

limit L by the assumption that
∑
b−1k < ∞. Combining with (13) yields that there exists a positive

constant K = QL
dk0−1

so that for all k > k0,∣∣∣∣ c′kdk − c′k+1

dk+1

∣∣∣∣ > K

dk+1
. (14)

However, recall that |r − c′k
dk
| < 0.2(dknk+1)−1 meaning |rdk+1nk+1 − c′knk+1| < 0.2 so c′knk+1 is the

closest integer to rdk+1nk+1. Since 〈0.25nk+1dkr〉 → 0, this implies there exists k1 > k0 such that

|rdk+1nk+1 − c′knk+1| < 0.5K. Then |r − c′k
dk
| < 0.5K(nk+1dk)−1. Since dk+1 < nk+1dk, then |r − c′k

dk
| <

0.5K(dk+1)−1. Then for k > k1,∣∣∣∣r − c′k
dk

∣∣∣∣ < 0.5K(dk+1)−1 and

∣∣∣∣r − c′k+1

dk+1

∣∣∣∣ < 0.5K(dk+2)−1 < 0.5K(dk+1)−1,

which contradicts (14) by the triangle inequality. Therefore, our original assumption is false and X is
weak mixing.

It remains only to show that the complexity function satisfies the claimed bounds. Since |p1| = 0 and

by Remark 2.11, pk+1 = vmk−1
k pk, we have |pk| =

∑k−1
j=1 (mj − 1)|vj | and therefore, since nj −mj = mj ,

k∑
j=1

(nj −mj − 1)|vj | =
k∑
j=1

(mj − 1)|vj | = (mk − 1)|vk|+ |pk|.

By Proposition 4.1, then

p(|skv2mk−2
k pk|) = |skv2(mk−1)

k pk|+ (mk − 1)|vk|+ |pk|+K = 1.5|skv2mk−2
k pk| − 0.5(|sk| − |pk|) +K.

Since |pk|+ |sk| < 3|vk| and mk →∞, lim
p(|skv

2mk−2

k pk|)
|skv

2mk−2

k pk|
= 1.5. Proposition 4.1 implies that the limsup

of p(q)
q is achieved along some subsequence of |skvnk−2

k pk|, so lim sup p(q)
q = 1.5.
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Remark 4.2. The examples in Theorem 2 also satisfy p(q)− 1.5q → −∞ and lim inf p(q)q = 1. For any

f(q)→∞, such a subshift exists which also satisfies p(q) < q + f(q) infinitely often.

Proof. By Remark 2.11, sk+1 = skvk+1, so we have |sk|−|pk| ≤ |sk|−|vk| = |sk−1| → ∞ so p(q)−1.5q →
−∞. By Proposition 4.1,

p(|vmk−1
k pk|) = |vmk−1

k pk|+
k−1∑
j=1

(nj −mj − 1)|vj |+K = |vmk−1
k pk|+ |pk|+K

and |pk| < 3|vk| so since mk → ∞, lim inf p(q)q = 1. Now let f(q) → ∞ be arbitrary. For all k, if vk
and pk are given, we can choose bk = mk large enough so that f((mk − 1)|vk|+ |pk|) > |pk|+K, which
implies that p(|vmk−1

k pk|) < |vmk−1
k pk|+ f(|vmk−1

k pk|).
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