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Abstract We exhibit, for arbitrary € > 0, subshifts admitting weakly mixing (probability)
measures with word complexity p satisfying limsupr(a)/q < 1.5 + €. For arbitrary f(gq) — oo,
said subshifts can be made to satisfy p(q) < g + f(q) infinitely often.

We establish that every subshift associated to a rank-one transformation (on a probability
space) which is not an odometer satisfies lim sup p(q) — 1.5¢ = oo and that this is optimal for
rank-ones.

Introduction

Hedlund and Morse [MH38] initiated the study of word complexity of symbolic systems: given an infinite
word = € A%, on some finite set A-the alphabet, the word complexity p(g) is the number of distinct
subwords of x of length ¢; more generally for a closed, shift-invariant X C A%, i.e. a subshift, the
complexity p(g) is the number of distinct subwords of length ¢ appearing in any of the z € X.

[MHA40] established the first lower bound on the word complexity in terms of the structure of the subshift:
if z is aperiodic then p(q) > g+1 for all g. A natural question, considering aperiodicity to be a weak form
of mixing-like behavior, is to what extent mixing-type properties impose lower bounds on complexity,
especially in light of recent results (e.g. [CFPZ19], [CK19], [CK20a], [CK20b], [DDMP16], [DOP21],
[OP19], [PS22]) regarding subshifts with low word complexity being highly structured.

[MHA40] also exhibited words with p(¢) = ¢ + 1, called Sturmian words, which can be encoded by
irrational rotations [CH73]. As irrational rotations are totally ergodic, the natural question is whether
weak mixing imposes any sort of stronger lower bound on word complexity. Topological mixing properties
were considered by Gao and Ziegler [GZ19] (see also Gao and Hill [GH16a], [GH16b]); here we address
the measure-theoretic question.

The lowest previously known complexity for a subshift admitting a weakly mixing (probability) measure,
due to Ferenczi [Fer95], is a subshift with complexity satisfying lim sup P(9)/q = 5/3 and lim inf P(a)/g = 1.5.
We exhibit subshifts, admitting weakly mixing (probability) measures, with lower complexity:

Theorem A (Theorem 5.9). For every € > 0, there exists a weakly mixing rank-one transformation (on
a probability space) such that the associated subshift has complexity lim sup?(9)/q < 1.5 + €.

Theorem B (Theorem 5.9). For any f(q) — oo, the subshifts can be made to satisfy p(q) < ¢+ f(q)
infinitely often.

Naturally, one wonders whether these bounds are sharp. Cassaigne [Cas98] showed that if p(¢) = ¢+ ¢
for some constant ¢ then it is the image of a Sturmian word (so cannot admit a weakly mixing measure);
this implies p(q) < ¢ + f(q) infinitely often is the best possible (see Proposition 1.6 for specifics).

The analogous question for strong mixing was first explored by Ferenczi [Fer96] who showed that the
classical staircase transformation (proved mixing by Adams [Ada98]) has quadratic complexity and con-
jectured that was the minimal possible. The author, Pavlov and Rodock [CPR22] disproved this conjec-
ture; recently the author [Cre22] showed that strong mixing manifests exactly at superlinear complexity:
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every strongly mixing subshift satisfies lim »(4)/¢ = oo and for any f(gq) — oo there exist strongly mixing
subshifts with lim »(@)/(¢f(q)) = 0.

We establish that lim supP(4)/q = 1.5 is optimal for rank-one transformations:

Theorem C (Theorem 3.3). Let T be a rank-one transformation (on a probability space) which is
not an odometer. Then the associated subshift has complexity satisfying lim sup p(¢) — 1.5¢ = oo (and
lim inf p(q) — ¢ = o).

While Sturmian words are encoded by irrational rotations (which are totally ergodic and rank-one), Rote
[Rot94] showed that the general word encoded by an irrational rotation has complexity p(q) = 2q so if
one treats an irrational rotation as a rank-one subshift then the complexity satisfies p(g) > 2q.

There appears to be a complexity distinction between totally ergodic and weakly mixing rank-one sub-
shifts, namely that we can exhibit examples of totally ergodic rank-one subshifts with strictly lower
complexity than any of our weakly mixing examples. Specifically, Theorem C is optimal:

Theorem D (Theorem 5.12). For every f(q) — oo, there exists a totally ergodic rank-one transformation
(on a probability space) such that the associated subshift satisfies p(q) < 1.5¢ + f(g) for all sufficiently
large ¢ and p(q) < ¢ + f(g) infinitely often.

It is worth remarking that lim sup p(q) —1.5¢ = oo distinguishing behavior in subshifts also appears in the
work of Ormes and Pavlov [OP19] who showed that if lim sup p(q) — 1.5¢ < oo then the words in question
are necessarily uniformly recurrent or bidirectionally eventually periodic. For rank-one transformations,
having bounded spacers implies uniform recurrence so their result and ours do not meaningfully overlap.
However, it is interesting that lim sup p(q) —1.5¢ < oo is exactly the bound that rules out total ergodicity
for rank-one subshifts as it is well-known that the lack of total ergodicity for rank-ones is equivalent to
factoring onto a finite cyclic permutation, which is similar in spirit to their conclusion.

In connection with other properties often discussed with rank-one transformations, if we replace p(q) <
q + f(q) infinitely often with a slightly weaker condition then work of Ryzhikov [Ryz13] gives:

Theorem E (Theorem 5.10). For every e > 0, there exists a subshift with complexity satisfying
limsupr(@/q < 1.5 + € and liminfr(@)/q < 1 4 € such that the associated rank-one transformation is
weakly mixing (on a probability space) and has minimal self-joinings (hence also has trivial centralizer
and is mildly mixing).

The proof of Theorem C is worth outlining briefly. First we establish that for a rank-one subshift with
limsupP(9)/q < 2, there is a rank-one subshift which generates the same language such that the spacer
sequence eventually takes on at most two values. Not being an odometer implies that both values must
occur infinitely often and one can arrange for both to occur at every level (this arranging can lead to the
cut sequence growing very rapidly).

The proof then proceeds by an analysis of all possible rank-one subshifts with exactly two spacer values.
We remark that finding our low complexity examples was a direct result of this examination, which both
indicated 1.5 ought to be the optimal bound and led to which subshifts were the correct candidates.

There remain questions regarding the precise nature of the complexity of subshifts admitting weakly mix-
ing measures; we discuss these in Section 6. The main question left open is whether there exists a subshift,
necessarily not rank-one, admitting a weakly mixing (probability) measure such that lim sup r(9)/¢ < 1.5.
We tentatively conjecture that this is not the case and a bit more: for every subshift admitting a weakly
mixing (probability) measure, we tentatively conjecture that limsupr(a)/q > 1.5.

Section 4 where the examples are constructed (and Section 5 where weak mixing is proved) may be read
independently; the reader primarily interested in the examples may opt to skip Sections 2 and 3 which
are aimed at proving Theorem C.

Acknowledgments The author would like to thank the referee for suggesting several welcome improve-
ments to the exposition and to thank R. Pavlov for a discussion that prompted the realization that the
results hold for all non-odometer rank-ones (rather than only for totally ergodic rank-ones as stated in
earlier drafts).
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1 Definitions and preliminaries

1.1 Symbolic dynamics

Definition 1.1. A subshift on the finite set A is any subset X C A% which is closed in the product
topology and shift-invariant: for x = (2, )nez € X and k € Z, the translate (x,1x)nez is also in X.

Definition 1.2. A word is any element of A’ for some ¢, the length of w, written fen(w). A word w
is a subword of a word or biinfinite sequence z if there exists k so that w; = z;4 for 1 <i < len(w). A
word u is a prefix of w if u; = w; for 1 <4 < fen(u) and a word v is a suffix of w if v; = W; ren(w)—ten(v)
for 1 <4 < len(v). A subword (or prefix or suffix) is proper when it is not the entire word.

For words v, w, we denote by vw their concatenation—the word obtained by following v immediately by
w. We also write such concatenations with product or exponential notation, e.g. [], w; or 0".

Definition 1.3. The language of a subshift X is £(X) = {w : w is a subword of some = € X}.

Definition 1.4. The word complexity function of a subshift X over A is the function px : N - N
defined by px(q) = |£(X) N A%, the number of words of length ¢ in the language of X.

When X is clear from context, we suppress the subscript and just write p(q).

1.1.1 Right-special words

All subshifts we consider are on the alphabet {0, 1} so it is natural to consider:
Definition 1.5. The set of right-special words is £%9(X) = {w € X : w0,wl € L(X)}.

Cassaigne [Cas97] showed the well-known: p(q) = p(m) + S0-1 [{w € LES : fen(w) = £}| for m < g.

1.1.2 Quasi-Sturmian words

An infinite x € AY is Sturmian when p,(q) = ¢+p.(1). Hedlund and Morse [MH40] exhibited examples
of such words and showed that if p,(q) < q or p.(¢+ 1) = p.(q) for any ¢ then z is periodic.

Cassaigne [Cas98] termed infinite words x such that p,(q) = g+ ¢ for some constant ¢ and all sufficiently
large ¢ quasi-Sturmian and showed such a word must be the image of a Sturmian word under a
morphism f : A* — A* which is nonperiodic.

Indeed, his result quickly gives a bit more:

Proposition 1.6. Let X be an aperiodic subshift such that px(q) < q + d for some constant d and
infinitely many q. Then X is quasi-Sturmian (in the sense that all x € X are quasi-Sturmian) hence
cannot admit a weakly mizing measure.

Proof. By the Hedlund-Morse theorem, we may assume p(¢ + 1) — p(¢) > 1 for all £ since otherwise the
subshift is periodic. For infinitely many g,
-1

q+d>p(q)=p(1)+ > PEl+1)—=p) >p(l)+q—1+[{f<q:p(l+1)—p()>2}
1

Q

~
Il

so for infinitely many ¢ we have [{¢ < ¢ : p({+1)—p(£) > 2}| < d meaning |[{¢: p(£+1) —p(¢) > 2}| < d.

Set c=p(1) =1+ 2, (p(f+1) — p(¢) — 1), which must be finite as there are only finitely many ¢ with
p({+1) —p(¢) > 1. Then for all ¢ > max{¢: p({ +1) — p(¢) > 2},

g—1

plg) =p(1) +q¢—1+Y (p(l+1)—p(t) 1) =q+c
=1
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Since Sturmian words can be encoded by irrational rotations, Sturmian (and therefore quasi-Sturmian)
subshifts cannot admit weakly mixing measures. O

1.2 Ergodic theory

Definition 1.7. A transformation T is a measurable map on a standard Borel or Lebesgue measure
space (Y, B, 1) that is measure-preserving: u(T~'B) = u(B) for all B € B.

Definition 1.8. Two transformations 7" on (Y, B, 1) and 77 on (Y', B, /) are measure-theoretically
isomorphic if there exists a bijective map ¢ between full measure subsets Yy C Y and Y] C Y’ where
wu(p~tA) = u'(A) for all measurable A C Yy and (¢ o T)(y) = (1" o ¢)(y) for all y € Yj.

Definition 1.9. A transformation 7T is ergodic when A = T—!A implies that ;(A4) = 0 or u(A¢) = 0.
Definition 1.10. A transformation T is totally ergodic when T* is ergodic for all k € N.

Definition 1.11. A transformation 7" on a probability space is weakly mixing when any of the following
equivalent conditions hold:

e for all measurable sets A, B, there exists {t,} such that u(T"* AN B) — u(A)u(B)

e there exists a density one {t,} such that u(Tt AN B) — u(A)u(B) for all measurable sets A, B
o T x T is ergodic

e for all measurable A, B there exists n such that u(T"ANA)u(T"ANB) >0

1.3 Rank-one transformations

A rank-one transformation is a transformation 7' constructed by “cutting and stacking”. Here Y
represents a (possibly infinite) interval, B is the induced o-algebra from R, and p is Lebesgue measure.
We give a brief description, referring the reader to [FGH™21] or [Sil08] for more details and to [Fer97]
for equivalent definitions.

The transformation is defined inductively on larger and larger portions of the space through Rohlin
towers or columns, denoted C),. Each column C,, consists of levels I, ; where 0 < j < h,, is the height
of the level within the column. All levels I, ; in C), are intervals with the same length, p(I,,), and the
total number of levels in a column is the height of the column, denoted by h,,. The transformation 7'
is defined on all levels I, ; except the top one I, },—1 by sending each I,, ; to I, ;11 using the unique
order-preserving affine map.

Start with C; = [0,1) with height h; = 1. To obtain C),41 from C,,, we require a cut sequence, {r,}
such that r,, > 1 for all n. Make r, vertical cuts of C), to create r,, + 1 subcolumns of equal width.

Denote a sublevel of C,, by IT[Z’]j where 0 < a < h,, is the height of the level within that column, and i
represents the position of the subcolumn, where ¢ = 0 represents the leftmost subcolumn and i = r,, is
the rightmost subcolumn. After cutting C), into subcolumns, add extra intervals called spacers on top
of each subcolumn to function as levels of the next column. The spacer sequence, {s, ;} such that
0 <i<r, and s,; > 0, specifies how many sublevels to add above each subcolumn. Spacers are the
same width as the sublevels, act as new levels in the column C, 1, and are taken to be the leftmost
intervals in [1, 00) not in C,,. After the spacers are added, stack the subcolumns with their spacers right
1-7[5’461] (4]

on top of left, i.e. so that is directly above I, ;. This gives the next column, Cy 1.

Each column C,, defines T on U;L;a 2 I,,.; and the partially defined map 7" on C),41 agrees with that of
C,, extending the definition of T' to a portion of the top level of C,, where it was previously undefined.
Continuing this process gives the sequence of columns {C,...,C,,Cy11,...} and T is then the limit of
the partially defined maps.

Though this construction could result in Y being an infinite interval with infinite Lebesgue measure,
Y has finite measure if and only if >, —— 3" s, < oo, see [CS10]. All rank-one transformations
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we define satisfy this condition, and for convenience we renormalize so that Y = [0,1). Every rank-one
transformation is ergodic and invertible.

The reader should be aware that we are making r, cuts and obtaining 7, + 1 subcolumns (following
Ferenczi [Fer96]), while other papers (e.g. [Cre21]) use 7, as the number of subcolumns.

1.4 Odometers

Definition 1.12. A rank-one transformation which can be constructed using a spacer sequence such
that there exists IV so that s, ; =0 for alln > N and 0 < i < r,, is an odometer.

Odometers have discrete spectrum and all their eigenvalues are rational in the sense that they are of the
form exp(2miq) for ¢ € Q.

1.5 Symbolic models of rank-one transformations

For a rank-one transformation defined as above, we define a subshift X (T") on the alphabet {0,1} which
is measure-theoretically isomorphic to 7"

Definition 1.13. The symbolic model X (T') of, or subshift associated to, a rank-one transformation
T is given by the sequence of words: B; = 0 and

T
Bus1 = Byl5 0B, 1% < By1%rn = [[ Bal™
1=0

and X (7T) is the set of all biinfinite sequences such that every subword is a subword of some B,,.

The words B,, are a symbolic coding of the column C,,: 0 represents C7 and 1 represents the spacers,
and h,, = len(B,,). There is a natural measure associated to X (T):

Definition 1.14. The empirical measure for a symbolic model X (T) of a rank-one transformation T
is the measure v defined by, for each word w,

v([w]) = lim {1 < j <len(B,) — len(w) : Bylj;len(w)] = w}
n=sc0 len(By) — Len(w)

where B, [j; ] denotes the subword of B,, starting at position j with length ¢.

Danilenko [Danl16] (combined with [dJ77] and [Kal84]) proved that the symbolic model X (T') of a rank-
one subshift, equipped with its empirical measure, is measure-theoretically isomorphic to the cut-and-
stack construction (see [AFP17]; see [FGHT21] for the full generality including odometers).

Due to this isomorphism, we move back and forth between rank-one and symbolic model terminology as
needed and write £(7T') for the language of X (T'), or simply £ if X(T) is clear from context, and define:

Definition 1.15. A rank-one subshift is the symbolic model of a rank-one transformation.
Likewise, when the measure is clear from text, such as the empirical measure for a rank-one subshift:

Definition 1.16. A (measure-theoretically) weakly mixing subshift is a subshift for which the
measure is weakly mixing.

2 Properties of rank-one subshifts

Lemma 2.1. Forn < m, By, has B, as a prefic and B,1°~™ as a suffix.

Proof. This is immediate from the construction. O
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Lemma 2.2. B, has 0 as a prefiz for all n.
Proof. By Lemma 2.1, B,, has By = 0 as a prefix. O

We next need a result of Danilenko:

Proposition 2.3 ([Danl9] Lemma 1.10). Every rank-one subshift is measure-theoretically isomorphic
to a rank-one subshift with s, ,, =0 and the two subshifts generate the same language.

Proposition 2.4. For a rank-one subshift on a finite measure space, hi inf{s,;:0<i<r,}—0.

Proof. Suppose inf{s,; : 0 < i < r,} > dh,, infinitely often for some § > 0. Then for such n, we have
w(Cryr1) > p(Cp) +inf{s,,; : 0 <i < rp}u(l,) > (1+5)u(Cy). So for any k, if we choose N such that at
least k values of n < N have inf{s,; : 0 <i < r,} > dh, then u(Cy) > (1 + 0)*u(Cp). Taking k — oo
shows the measure would then be infinite. O

2.1 Rank-one subshifts with at least three distinct spacer values

Proposition 2.5. For a rank-one subshift on a finite measure space with s, ,, = 0 for all sufficiently
large n, if the set {sm,:m >n,0 < i <1y} contains at least three distinct values for infinitely many n

then lim sup %q) > 2.

Proof. Choose n such that ¢, = inf{s,; : 0 < i < r,} has the property that ¢, = inf{s,,; : m > n,0 <
i < rm} (such an n must exist since otherwise there is a sequence {m,} along which inf{s,,, ; : 0 <i <
Tm, } is strictly decreasing which would contradict that s, ; > 0).

Let up,vp € {Sm,i : m > n,0 < i < ry} such that ¢, < w, < v,. Such must exist since otherwise
H{8m,i:m>n,0 <% <7y} =2 so the same holds for all n’ > n.

The word B, 1 B,, is a subword of B,,11. As B, has 0 as a prefix, B,1:»0 € £. As u,, > t, and B, 1%»
is a subword of B,,1%" which is a subword of B,,, this shows B, 1*» € £?5. Likewise B,1%" € L7,

Let N such that s, ,, =0 for n > N. Let ¢ > 1 such that By has 01°~! as a suffix (such ¢ < hy must
exist as By has 0 as a prefix). Since s, ,, = 0 for n > N, the word B, for all n > N, has By as a suffix
hence has 01¢~! as a suffix.

Therefore B,1*» has 01¢~ 1% ag a suffix and B,1%* has 01°~ 1% as a suffix meaning that for every
tn +c < L < h, +t,, the suffixes of B,1'" and B,1%" of length ¢ are distinct (as u, > t,).

Then p(¢ + 1) — p(f) = [{w € LB : len(w) = ¢}| > 2 for t, + ¢ < £ < h, + t, meaning that
p(hyn) > 2(hy, — t, — ¢) so, as Proposition 2.4 implies ItTn — 0, P(hL:) > 2(1 — %) — 2. O

2.2 Rank-one subshifts with the same language

Lemma 2.6. Let T be a rank-one subshift with cut sequence {r,} and spacer sequence {sy ;}.
Let N e N. Forn < N, set 7, =1y and 5, ; = Sp ;.

Set iy = (rxy +1)(rng1 +1) =1 and for 0 < a < ryyi1, set Sy a(ry+1)+b = SN for 0 < b <ry and set
gN,a(rNJrl)JrrN = SN,rn + SN+1,a-

Forn> N, set 7y, = rpq1 and 5y, = Spy1,i-

Then the rank-one subshift T generates the same language as T.

Proof. Clearly B, = B, for n < N. By design,

TN+1 TN

BN-H = H (HBngNwG(TNJrl)er)

a=0 b=0
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TN+1 ryv—1 TN+1

_ H (( H BleN,b)BleN,TN+5N+1,a,) _ H BN+118N+1,a _ BN+2
a=0 b=0 a=0
$0 B,, = By41 for all n > N. O

Proposition 2.7. Let T be a rank-one transformation such that sy, =0 and s,; =c, for 0 <i <7y,
for all sufficiently large n. If ¢, is not eventually constant then there exists a rank-one subshift T which
generates the same language as T', with the property that 5, 7, = 0 and 3,, ; is not constant over 0 < i < 7,
for infinitely many n.

Proof. 1f ¢, is not eventually constant then there exist infinitely many n < m such that ¢, # ¢, so there
exist infinitely many n such that ¢, # c,41.

If we apply Lemma 2.6 at such an n then 5, ; is not constant over 0 < i < 7, since 5, r,, = Sp,r, +5n+1,0 =
0+ Cn+1 7é Cn = §n,0 and §n,Fn = Sn,r, + Sn41,rpe1 — 0.

Let M be a set of n such that ¢, # ¢,11 such that N does not contain any pairs of consecutive integers.
Applying Lemma 2.6 for each n € N gives the claim. O

In fact, one can do a similar modification across multiple stages simultaneously:

Lemma 2.8. Let T be a rank-one subshift with cut sequence {r,} and spacer sequence {s, ;} and let
{n:} be a strictly increasing sequence with ny = 1. Fort > 1, set

ngp1—1

o= I ta+D)-1

n=ng

and, for 0 < j <ngp1 —ne and 0 <45 <7y,

Styio+it (T, +1)+i2(Tny+14+1) (P + 1)+ Fing g —ny—1(Tny g —1+1) - (rn, +1)

nip1—ng—1 . .
s .4 Z Sny+iiis if ik = Tn,4k for all0 <k <j
%0 - 0 otherwise
=

Then T and T generate the same language: By = B, forallt>1.

Proof. We have B; =0 = B; = B,,,, so we may assume B, = B, and then

Tt nyggp1—ng—1

~ ~ . +1-nt

Bt+1 — Btlst,a — Bn 15nt.i0 12]-:1 Snt+.7}ij]1ik:rnt+kwﬂ<j
a=0

9050 slny g —ng—1

r
™t ”1,+1*”1,*1

_ ( B 1snt,i0)1snt+1‘illzj:2 Snytgvig Vig=r,, g vk<i
= I | I I -

i17---;int+1771t71 i0=0

ngp1—ng—1

_ I | Snptl,iq 12mi=b Snytgyij Lig=r, | Vk<j
= Bnt-l-ll t 1] J ne+
ilv---yint+1—nt—1

Tryp+1
t ngpqp—ng—1

_ I | ( | | Bnt+115nt+l,i1)15nt+2,i2 123-:3 Sngtivig Lig=rp, 41 Vh<j

02,000y g —mg -1 11=0

Trgpq—ng—1
Snpp1—liin, g —ng—1
- B t41-m-l — B
nt+1—11

Ingpq—ng—1=0

MNi41
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Proposition 2.9. Let T' be a rank-one subshift such that s, ,, =0 for all sufficiently large n and that
there exists 0 < 4,9 < 1y, such that S, ; # Sn for infinitely many n . Then there exists a rank-one
subshift T, which generates the same language, such that for all sufficiently large n, 5, 7, =0 and there
exists 0 < 4,3 < 7, with §,; # Sn,i-

Proof. Let n; = 1 and {n;}¢>2 be the sequence of n for which s, ; 7# s, Lemma 2.8 then gives the
claim since sy, ; being nonconstant over 0 < % < r,,, implies 3; , is nonconstant over 0 < a < r,, hence
over 0 < a < 7. Clearly 8,7 = 0 for sufficiently large t as s, ,, = 0 for all sufficiently large n. O

Proposition 2.10. Let T' be a rank-one subshift such that s, ., = 0 for all sufficiently large n and that
for infinitely many n, sn0 = Snr,—1 = 0. Then there exists a rank-one subshift, which generates the
same language, such that 5, ., =0 and 5,0 = Sn7,-1 = Sn41,7,.1—1 = 0 for all sufficiently large n.

Proof. Let ny =1 and {n;};>2 be the sequence of n for which s, ¢ = sy, -1 = 0. Lemma 2.8 then gives
the subshift since ¢ 0 = s5,,0 = 0 and S 7,1 has i = rp, — 180 8¢ 7,—1 = Sn,r,,—1 = 0 and, likewise,
St4+1,Fpp1—1 = Snt+la7"nt+171 =u. O

Proposition 2.11. If a rank-one subshift has the property that s, ., = 0 for all sufficiently large n
and there exist constant nonnegative integers ¢ < d such that s, ; € {c,d} for all 0 < i <1, (with both
occurring) for sufficiently large n then there exists a rank-one subshift which generates the same language
such that sy, =0 and s,,; € {0,d — ¢} for all 0 <i < 1, (with both occurring) for all sufficiently large
n.

Proof. For all n set 7, = r,. Let N such that for all n > N, we have s, ; € {¢,d} for all 0 < i < r,, and
Snr, = 0. For n < N, set 5, ; = sy,

Set Sy =sn; for 0 <i<ryandSy,y, =c Forn>Nsets,;=s,;—cfor0<i<r,andS35,,, =0.

Clearly B,, = B,, for n < N. Observe that

TN—l
By = ( H BN1°%#)By1¢ = By411¢
i=0
If B, = B,1¢ then
Tn—1 ’I‘,Lfl
Bupr = ( [] Bal™)Bn=( [ Bal1 %) B,1° = Byyal°
1=0 =0
$0 B, = By1¢ for alln > N meaning they generate the same language. O

2.3 Totally ergodic rank-one subshifts

Proposition 2.12. Let T be a rank-one transformation such that there exists ¢ so that for all sufficiently
large n, it holds that s, ; = c for all 0 < i <1, and s, ,, =0. Then T is an odometer.

Proof. Let N > 1 such that for all n > N, s,; = cforall 0 < i <, and s,,, = 0. Let S,[f}j for

1 < j < ¢ be the spacer levels added above C’,[f] for 0 < i < r, (we do not add spacers above C,[Lr”] as

Sn,r, = 0). Since T(Sy[ch) =" fr0<i< Ty, and since In 0 C I][V]O7 we have that T(S,[f]c) - I[O} for

n,0

alln > N and all 0 <4 < r,. Since I][VJZ] I |_|7"”_1 _, this means ThN+C(IN 0) =1Inp-

Define Inpy = Lpsn Lo<icr, Sii- Then T(Inpy-1) = INJ,,N and T°(Ix.ny) = Ino. Define the

column C} = |_]hN ! In ;U |_]C LTi /(Inhy) and the columns C' ., via cutting and stacking starting
from C using Cut sequence 7y, = N4y and spacer sequence s;m» = 0. The resulting odometer is the
same map as X so X is an odometer. O
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Proposition 2.13. Let T be a rank-one transformation on a finite measure space which is mot an
odometer. Iflimsupp(q)/q < 2 then there exists a rank-one subshift, which generates the same language
as T, such that there exists a constant positive integer d so that for all sufficiently large n it holds that
Spr, =0 and sy ; € {0,d} for all0 < i < ry, and there exists 0 < i,i’ < r, so that s,; =0 and s, ; = d.

Proof. By Proposition 2.3, T' is measure-theoretically isomorphic to a transformation T which generates
the same language and has 5, 7, = 0 for all n. By Proposition 2.12, T has the property that for every n
and 0 <4 < r, there exists m > n and 0 <4’ < rp, such that s, ; # s,

By Proposition 2.5, if limsupy [{sn; : » > N,0 < i < r,}| > 3 then limsup %q) > 2. So there exists
N such that [{s;; : m > N,0 < i < rp}| < 2. Therefore [{s;m; : m > n,0 < i < r,} =2 for all
sufficiently large n.

Proposition 2.7 gives a rank-one subshift generating the same language such that s, , = 0 for all
sufficiently large n and s, ; # sy, for infinitely many n. Proposition 2.9 then gives a rank-one subshift
generating the same language with that property for all sufficiently large n. Finally, Proposition 2.11
gives a rank-one subshift, still generating the same language, such that s, ; € {0,d} and 0 <i < r,, and
Sn.r, = 0 for all sufficiently large n. O

3 Subshifts with exactly one nonzero spacer value

Theorem 3.1. Let p be the complexity function for a rank-one subshift such that for all sufficiently large
n, the spacer sequence satisfies s,; € {0,d} for some constant positive integer d and s, , =0 and that
Sn,i s not constant over 0 <i < r,. Then limsupp(q) — 1.5¢ = co.

This is a quick consequence of:

Theorem 3.2. Let p be the complexity function for a rank-one subshift such that for all sufficiently large
n, the spacer sequence satisfies sy; € {0,d} for some constant positive integer d and s, ., =0 and that
Sn, 15 not constant over 0 < ¢ < 7y,.

Then there exists a constant C' such that for all sufficiently large n, there exists q, > h, such that
p(Qn) > 1.5¢, + (p<hn) - hn) -C.

Proof of Theorem 8.1 from Theorem 3.2. Let N such that for all n > N, there exists ¢, > h,, such that
p(gn) > 1.5¢,, + (p(hy) — hy) — C. Let m > n such that h,, > ¢,. As s,; > 0 for i < r, implies
aperiodicity, p(¢ + 1) — p(£) > 1 for all £ so p(h,,) > h, and p(h.,) — p(gn) > hm — ¢n. Then

and therefore p(g,) — 1.5¢m > p(hym) — by — C — 0. O

Before proving Theorem 3.2, we show how Theorem 3.1 implies:

Theorem 3.3. Let T be a rank-one transformation (on a probability space) which is not an odometer.
Then the associated subshift has complexity satisfying limsup p(q) —1.5¢ = oo (and liminf p(q) —q = o0).

Proof. By Proposition 2.13, either limsupp(q)/q > 2 or there exists a rank-one subshift which generates
the same language with the property that there exists a constant nonnegative integer d such that for all
sufficiently large n, s,,; € {0,d} for all 0 <4 < r,, and s, = 0 and such that there exists 0 < ¢,7' <,
with s, ; = 0 and s,, ;s = d. Theorem 3.1 applied to that subshift then gives that lim sup p(¢q) —1.5¢ = occ.
Proposition 1.6 ensures lim inf p(q) — ¢ = oo as otherwise p(q) = g + ¢ for a constant ¢ for all sufficiently
large q. O

The remainder of this section is the proof of Theorem 3.2.
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3.1 Some notation and basic facts

Write 1 to represent 1%,

We use repeatedly the facts that 0 is a prefix of every B,, (Lemma 2.2) and that B, is a suffix of B,,, for
m > n for sufficiently large n (due to s,, = 0).

We also use repeatedly the fact that B, B, and B,ﬁBn are subwords of B, ; due to s,; not being
constant over 0 <7 < r,,.

Lemma 3.4. There exists a constant ¢ > 1 such that for alln > N, the words B,% and B,ﬁBn differ on
suffizes of length at least h, + c.

Proof. Choose c such that By has 01¢7! as a suffix (possi/l\)le as By has 0 as a prefix). Since B, B,, has
Bn B, as a suffix, B, B,, has 01°"'B,, as a suffix. As B,1B,, has 1°°'1?B,, as a suffix, this shows the
words differ on the suffixes 01¢~1B,, and 1¢B,,. O

3.2 Counting via right-special words

Lemma 3.5. B,, € L% for all n.
Proof. B,,1+1 contains B, B, and BnT as subwords. B, has 0 as a prefix so B,, € £1*5. O]

Lemma 3.6. Write f,, = p(h,) — hy,

If there are t,, distinct right-special words, all of length at least h,, and less than q,, which are not suffixes
of Byntm for any m > 1 then
P(qn) = qn + fr +1tn

Proof. Since p(gn) — p(hn) = |[{w € LES : h,, < len(w) < g, }|, and since by Lemma 3.5 we have at least
Gn — hy, suffixes of some By, 1., of length at least h,, and less than g,, which are right-special and distinct

from the t,, hypothesized, p(¢,) > p(hn) + ¢n — hpn + tn. O

The proof of Theorem 3.2 will proceed by establishing the existence of right-special words which are not
suffixes of any B, t,,. To this end, rewrite the defining words as

Zn—1

Bupr = (][ Br DB
j=1
where a,_; > 1 and 2z, > 2 and a,,; > 2 for at least one j as 0 and d both occur in {s,; : 0 <i <r,}.

3.3 The (straightforwardly) 5/3 cases

Throughout this section, let N such that s,,; € {0,d} and s, ,, = 0 and s,; is not constant over
0<i<r,foralln>N.

Proposition 3.7. If for n > N one of the following holds

®a,., >2anday; =1, te. BnT BEL
e a,,. =1anday,; >2, ie. BZ TBn
e ay. =1anda,1 =1 and a,; > 3 for some j, i.e. BnT Bf’L TBn

then there exists g, > hy, such that p(g,) > %qn + fn —c.

Lemma 3.8. Words of the form B,1B,1
Forn> N, if an1 = an2 =1 then BnTBnTBn e RS,

- 10 -
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Proof. Let j minimal such that a, ; > 2.

If j > 3 then B,y has the subword By *1Bp™ *1B,"'1By™’ = B,1B,1B,1B;"’ which has
B, 1B, 1B, 1B2 as a prefix.

If j = 3 then the word By, +11B, 41 has the subword By™*" 1B 1By *1B5"* as a subword which has
B, 1B, 1B, 1B2 as a subword.

Then B,1B,1B,, € LS as B,1B,1B,1 and B, 1B, 1B, B, are both subwords of B,1B,1B,1B2. O

Lemma 3.9. Words of the form B,1B2 —— B2
Forn> N, ifan,., >2 and a,1 =1 and ap2 > 2 then BTQLTB,L e LRS,

Proof. BnHTBnH € £ implies Be"*1Be™*1Be™* € L so B?ﬁBn/l\ € L as ap,,, >2and ap1 = 1.
Byy1Bny1 € L implies Bp™ ™" Bi*TBI™* € L. Since ap,2 > 2 this gives B?ﬁBﬁ SO B%TBHO eLl. O

Lemma 3.10. Words of the form B21
Forn > N, if an,1 = 2 then BnTBfL € LS,

Proof. Bomam - T Bamn B [ ag it is a subword of By+1Bp41 80,88 ap 2, —1 > 1 and ay ;, +an1 > 3,
also B,1B; € L. By " 1By;™"1 is a subword of B,,111By41 80, as a,_., > 1, also B,1B%1 € L. O

Lemma 3.11. Words of the form B} or B
Forn> N, if an1 > 2 or a,,; > 3 for some j then B3 € LES,

Proof. 1f a,,; > 4, since Bfl”‘j/l\ is a subword of By, 11 so is B;ﬁ. If a,,.1 > 3 then since By BZ”’li is a
subword of B,,1Bp+1 and ay, -, + an,1 > 4, also BXleL. O]

Lemma 3.12. Words of the form B,1 1B31 1B,
Forn > N, if an1 = Gn,z, =1 and a, ; = 3 for some j > 1 then BnTBZ e LhS,

Proof. The word By, 41Bp+1 € L s0 B 11 B BT € [ 50 BnTB%T € L. As Bui-'1Be™I € L,
also B,LIB?L cL. O

Proof of Proposition 3.7. First consider when a,, ., > 2 and a,,; = 1. If a, 2 = 1 then Lemma 3.8 gives
D, = B,1B,1B,, € L7 Since B, 11 has B2 as a suffix, every suffix of D,, of length at least h,, +c is not
a suffix of B,,11 (Lemma 3.4) and is right-special. If a,, » > 2 then Lemma 3.9 gives D,, = BTQLTBn e ]S
which likewise has the property that every suffix of D,, of length at least h,, + ¢ is right-special and not
a suffix of B;,41.

Now consider when a,, ., =1 and a1 > 2. If a,,; = 2 then Lemma 3.10 gives D,, = BnTBEL € LRSS, As

TBn is a suffix of B,,41 in this case, again every suffix of D,, of length at least h,, 4+ ¢ is not a suffix of
B,4+1 and is right-special. If a,, 1 > 2 then Lemma 3.11 gives D,, = B3 which has the same property.

Last consider the case when a, ,, =1 and a,; =1 and a,,; > 3 for some j. If a,, ; = 3 then Lemma
3.12 gives D,, = B,1B2 € L% and as 1B,, is a suffix of B,,;; in this case, D,, has the same property as
above. If a,, ; > 3 then Lemma 3.11 gives D,, = B3 with the same property.

In all cases, we have a word D,, of length at least 3h,, with every suffix of length at least h,, 4+ ¢ being

right-special and not a suffix of B,11, so 2h,, — c right-special words which are not suffixes of B,,;; all
of length less than 3h,,. By Lemma 3.6, then p(3h,) > 3h, + fn + 2h, —c= %(Bhn) + fn—c O

- 11 -
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3.4 Words of the form B2 —— B2

Proposition 3.13. If a,1 > 2 and a,,., > 2 and any1,z,,, > 2 then there ewists q, > h, such that
p(‘]n) > 1.5¢n + fn — 3c.
These subshifts include the examples studied in [Fer95] defined by B,,+1 = BE1BZ for p,q > 1.

The proof of Proposition 3.13 is a series of lemmas. Write
By = B81uBf
for some word u which is either empty or ends in 1. Then a, > 2.

Lemma 3.14. If o # (3 then there exists g, > hy, such that p(qn) > 1.5¢, + fn — c.

Proof. The word By,41Bpny1 has 1B@™P1 as a subword so B@T#~1 ¢ £BS The word B, 41 has 1B’
as a suffix so our word differs from B,,+1 on suffixes of length at least Sh, + ¢ (Lemma 3.4, which we
henceforth use implicitly) and so gives at least (o — 1)h,, — ¢ right-special words which are not suffixes
of B,y1 with length less than (o + 8 — 1)h,,. Then by Lemma 3.6,

p((a—i—ﬁ—l)hn)2(a—|—ﬁ—1)hn—|—fn+(oz—l)hn—c=g(a—kﬂ—l)hn—i—%(a—l—ﬁ)hn—kfn—c

Ifa>p+1then 3(a+B—1hy+s(@—1+B)hn+ fa—c>3(a+B—1)h, + fn—c.

Now consider when a < 3. Let o/ minimal such that 1BO‘ Tisa subword of 1Bn+1 Then a <a<p.
If o/ < o then BO‘ 1Ba Tis a subword of Bn+1 as o is mmlmal S0_ BO‘ must precede lBO‘ 1in B, .
If o/ = « then, as a < 5, the word B”‘ lBO‘ 1 is a subword of Bn+11Bn+1 (with the first 1 in our word
being the middle 1 in Bn+1 1Bn+1) Since o’ is mlmmal B,,4+1 has BY 1B’8 as a suffix and, as o’ < f3,
that word has B2 1B B,, as a subword. Then BX1B% e LS.

Since B, 41 has BS/H as a suffix, our word gives at least o’h,, + d — ¢ right-special words which are not
suffixes of B, 1 with length less than 2a’h,, + d. Then by Lemma 3.6 (which we will henceforth use
implicitly),

3 1
p(2a'hy, +d) > 20 hy, +d+ fro+ ' hy+d—c= 5(za’thrd) + §d—c+fn O

From here on, assume o = 3.

Lemma 3.15. IfTij is a subword of Byy1 for some t # B and t # 20 then there exists q, > hy such
that p(g,) > 1.5q, + frn — c.

Proof. As By,41 has Bfﬁ as a prefix, there is some ¢’ # 3,23 such that BfﬁBf;T is a subword of B, 41.

Suppose first that there is such a ¢ < 8. As BS1B? is a subword of B,;11B,.1, then BF1B! e £BS,
Since B!t is a suffix of B, 11 (as t' < ), this gives at least Sh, + d — c right-special suffixes that are
not suffixes of By41, all of length less than (8 + t')h,, +d. Then as t’ < 3,

p((B+ )y +d) > (B+ )y +d+ fo + Bhn +d—c
= ;((ﬁ-l—t')hn—l—d)—i—%(ﬁ—t’)hn+%d+fn—c> g((5+t/)hn+d)+fn—c

So we may assume that for all ¢ such that TBt/l\ is a subword of B,,;1, we have t > 3.

Suppose now that 8 < ¢’ < 28. As B, has BﬁlBﬂ as a suffix (since we have ruled out t < f),
the word By,41Bpny1 has BS1B2% as a subword. Then BﬁlBt € LR as t' < 2f. This gives at least
B+t —pBh, +d—c rlght spec1al suffixes which are not suﬂixes of Bpy1 (which ends in 1B?) all of
length less than (8 + t')h,, + d. Then, as t' > §,

p((B+t ), +d) > B+t hy+d+ frn+t'hy+d—c

- 12 -
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= g((6+t’)hn+d)+%(t’fﬁ)hn+%d—c+fn > g((ﬂ+t/)hn+d)+%dfc+fn

If ¢ > 23 then B?f“i € L so B2? ¢ L7 which gives at least 3h,, — ¢ right-special suffixes which are
not suffixes of B;, 11, all of length less than 28h,,. Then

P(2hn) > 2hn + fut Bl — ¢ = 3 (2ha) + fo —c 0

We are left with the case when every TBZT in Bp41 hast = ort=24.

Lemma 3.16. IfTB,QfT is a subword of Byy1 then there exists g, > hy such that p(gn) > 1.5¢, + fr, —2c.

Proof. First observe that B2°~! € £ which gives at least (8 — 1)h,, — c right-special suffixes of length
less than (28 — 1)h,, which are not suffixes of B, ;.

Choose z,y > 1 so that B, has (BP1)*B2F as a prefix and B2?(1B?)Y as a suffix.

Then B, 11B,;1 has the subword (BZ1)*+¥+1B2% which means that (B1)**¥BS € £BS. This gives
at least x(Bh, + d) — ¢ right-special suffixes which are not suffixes of B, 11 of length less than (z +y +
1)Bhy, + (x4 y)d. As there is no overlap between these and the suffixes of B28~1, this gives a total of at
least ((z 4+ 1)8 — 1)h,, + zd — 2¢ right-special suffixes of length less than (z +y + 1)B8h, + (x + y)d which
are not suffixes of B, +1. Then

p((x+y+1)Bhy +(x+y)d) > (z+y+1)hy+ (@+y)d+ fn+ ((x+1)8 —1)h, + zd — 2¢
= %((x+y+1)5hn+(x+y)d) + %(erl —y)Bhn — by + %(:c—y)d—zﬁfn

and, as 8 > 2, this means that if © > y then

p((z+y+ 1)Bh, + (z+y)d) > g((x +y+ 1)fh, + (x+y)d) + %ﬂhn —hp —2¢+ fn

> ;((erer Bh, + (z +y)d) —2¢+ fn

So we may assume from here on that = < y.
Write B4 = (Hle(BET)IBELBT) (BP1)»~'BP for some s > 1 and x; > 1 with 2; = 2. Choose 7’ such
that z;s is minimal and ¢ is the minimal such i.

First we considgr thei case Wllen ZIA > 1. ThAen xy < x since otherwise we would haAve choAsen i’ = 1. Since
By111 has B2P1(BE21)% B2°1(B21)Y~1 B1 as a suffix, it also has (B21)* 1 B28(1B2)¥1 as a suffix since
T >z Asy >y, then (BS1)2v *1B28(1BS)=v+11 € L.

Since i’ > 1, By11 has (BS1)%' - B2 (1B2)*1B2° as a subword. Then (B{1)**+'B2%(1BS)*"1B2%° € L
as wy_1 > xy + 1 by the choice of 7/, so (B21)*# 1 B28(1B5)*# 182 is right-special.

Since z;; < x < y implies y < y — 1 and B, 41 has /I\(Bﬁ/l\)yleﬁ as a suffix, this gives at least
(zi + 2)Bhy, + (zi + 1)d — ¢ right-special words which are not suffixes of Bj,41, all of length less than
(2zy + 4)Bh, + 2z + 2)d. Therefore

p((2zy +4)Bhy, + 2z + 2)d) > 2z + 4)Bhyn + 224 +2)d + fr, + (x4 +2)Bhy + (i + 1)d — ¢
3
= 5(Qay +4)phn + (22 +2)d) —c+ fu
Now consider when i = 1, i.e. z; > « for all i. Here By41 By, has B2F1(BS1)v—1B2A1(BP1)* 1 B2 as

a subword and §n+11\ has (B£1)* B21(BP1)v~'Bf1 as a subword. As z < y and & < x,, this means
(B21)*B2P1(B21)*~1BS € £BS.

This gives at least (z + 1)Bh,, + xd — ¢ right-special words which are not suffixes of B, 11, all of length

- 13-
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less than (2z 4 2)Bh,, + 2zd. Therefore

p((2242)Bhy, + 2xd) > (224 2)Bhy + 22d+ fr + (x+1)Bhy +2d—c = g((2x+2)[3hn+2zd)+fn —c D

3.4.1 Proof of Proposition 3.13

Proof of Proposition 3.13. By Lemmas 3.14, 3.15 and 3.16, we are left with the situation when B,, ;1 =
(BS1)EBS for some L > 1.

Since B2 has B, +1Bn+1 as a suffix, and since Proposition 3.7 then covers the case when B, ;s has
B,111 as a prefix, we may assume that B, o = Bf:_ﬁlluBfr{l for some ay, 41, Bnr1 > 2 where u is

either empty or ends with 1. Lemmas 3.14 and 3.15 applied to n+1 mean we may assume n,+1 = Sn41-

As Bn12Bn42 € L, the word B,Qﬁ_”l“f € L. Then BZi"’l“_l € LRS. As B, has 1BL"" as a suffix, this
gives at least (8,41 — 1)hp41 — c right-special words of length less than (28,41 — 1)h,+1 which are not

suffixes of By, 2.

As Bn+2TBn+2 € L and Bj, 42 has B, 1B, 11 as a prefix, BnHTBnH has BnHTBnHBE as a subword.
Then By 11B,41B? = (BP1)2L+1B26 ¢ £. Therefore (B1)2£BP € LS. As B, 12 has By, y1Bny1 as
a suffix and that word has B2(1B?)L as a suffix, this gives at least (L3 — 1)h, + Ld — ¢ right-special
words of length less than (2L + 1)(8h,, + d) which are not suffixes of B, 1.

As BT is a subword of By, 41Bp41, this means B2°~1 € £S5 which gives at least (3 — 1)h,, — ¢ right-
special words of length less than (25 — 1)h,, which are not suffixes of B,,+1 hence not of By, 12 as Bj,+1
has 1B? as a suffix.

As none of these right-special words overlap with one another, the three cases above provide at least
(Bnt1 — Dhpy1 + (LB — 1)y + (B — 1)hy + Ld — 3c right-special words which are not suffixes of B4
all of length less than (26,411 — 1)hnq1.

Since hp+1 = (L + 1)Bh, + Ld, we then have (Bp41 — Dhpnt1 + (LB — 1+ 8 — Dh, + Ld — 3¢ =
Bnr1hnie1 —2hy — 3¢ = Bpr1hne1 — ﬁ(hn+1 — Ld) — 3¢ extra right-special words of length at most

(28p+1 — 1)hpy1. Therefore, since L > 1 and 8 > 2 so ﬁ < %, we have
2
26,41 — Dh, > (28p+1 — Dhpa1 + fn + Bns1hner — —————hpa1 — 3cC
P((2Bns1 — Dhny1) > (2Bns1 — Dhnyr + fro + Bag1hnta T+ 1a
= 3281 — Vhoss + f +(1 L)h 3
= 5 n+1 n+1 n 2 (L + 1)6 n+1 C
3
> 5(26n+1 - l)hn+1 + fn —3c O
3.5 Words of the form B, 1 1B21 1B, with B3 never appearing

This section handles the most difficult case when a1 = ay ., = 1 and a, ; < 2 for all j. This difficulty
is likely unavoidable as this case contains the examples we exhibit which are near 1.5¢ in complexity.

Proposition 3.17. If for infinitely many n > N, it holds that an1 = ap 2, = Gpi1,z,, = 1 and apj < 2
for all j and ay ; = 2 for at least one j then for all sufficiently large n there exists g, > hy, such that
p(qn) > 1.5¢, + frn — 2¢.

Let n > N such that an1 = an,z, = anz,,, =1 and a,; <2 for all j and a, ; = 2 for at least one j.

Then we may write N N R R
Buy1 = (B, 1)*(B21)Pu(B21)"(B, 1) B,

for some word u, which has prefix BnT and suffix TBnT, and where «, 8,7,k > 1, or else u is empty and
k=0and a, 3,7 > 1. Then

Bni1Bny1 = —— B?1(B,1)""'B*1(B,1)* 1 (B*1)’B,1

- 14 -
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Bpi11Bny1 = —— B21(B,1)"t*(B21)°B,1

The proof of Proposition 3.17 is a series of lemmas.

Lemma 3.18. There are at least a(hy, + d) — ¢ right-special words which are not suffizes of Bp11 and
with length less than (o + 4+ 1)(hy, + d), all of which do not contain B2 as a subword.

Proof. By, 1(B,1)7T*B2 is a subword of By411Bny1 so (Ba1)Y B, € L£BS. Since B,41 has suffix
B21(B, 1) !B, every suffix of (B,1)7T*B, at least ¢ longer than (B, 1)?B,, is not a suffix of B, 41. O

Lemma 3.19. If o =1 and v =1 then there exists ¢, > h, such that p(q,) > 1.5q, + fn — 2c.

Proof. First consider the case when s = 0 and u is empty. Here B, 1 = (B,1)*(B21)? (Bn 1) !'B,

B,1(B21)’B,,. Since Unt1,20s, = 1 and apq1; > 2 for some j, we have Bn+1Bn+11 € L. Slnce
Bpi1Bnyil = B,1(B21)28+1 B, 1, we then have B,1(B21)%/B,, € L7S.

Since Bj4+2 has Bn+1/1\B,L+1 as a suffix, it has TBnTBn/l\(BfL/I\)BBn as a suffix. This means our right-
special word gives at least (48+2)h,, + (26+1)d— (28+2)h,, — (8+1)d — ¢ = 28h,, + Bd — ¢ right-special
words which are not suffixes of B, 12, all of length less than (28 4 1)(2h,, +d). As Lemma 3.18 gives at
least h,, + d — c additional right-special words which are not suffixes of B, ;2 and do not contains B2,
we conclude that

p((28 4+ 1)(2hy + d)) 2 (28 +1)(2hn +d) + fr + (26 + 1)hy + (B + 1)d — 2¢
- §(2ﬁ+ 1)(2hn +d) + %d+ fo -2

We now consider when x > 1 and « is nonempty.

Here By, 11Bny1 = —— BnT(B?ﬁ)""’HBBnT meaning that BnT(BELT)B*‘”Bn e LRS. As
By has suffix 1B, 1(B21)*B,,, every suffix of our word of length at least (2x + 2)h,, + (k + 1)d + ¢
is not a suffix of B,,+1. So there are at least 28h,, + Sd — c right-special words of length less than
2(k+ B8+ Dh, + (k+ B+ 1)d which are not suffixes of By,y;.

Lemma 3.18 in this case also gives h,, + d — ¢ right-special words of length less than 3(h,, + d) which are
not suffixes of B,, ;1 and do not contain B2. So,

p2(k+B+Dhy+(B+r+1)d) >2(k+B+Dhy+ (B+K+1)d+ fu+ (28+ Dh, + (B+1)d — 2¢

205+ B Do (B 54 D)+ S+ (B = W)t (B — i 1)d — 2

T2
so if B > k then

pRk+ B8+ Dhy+(B+r+1)d) > =2(k+ B+ Dhy + (B+r+1)d) + fn —2¢

N W

So from here on, assume 8 < k.

Observe that if (B,1)*B,, € L then necessarily (B,1)*B2 € L asy =1, so (B,1)3B,, € LS. As B,
has B?1B,, as a suffix, every suffix of our word of length at least 2h,, + d + ¢ is not a suffix of B, 1.
This gives at least 2h,, + 2d — ¢ right-special words of length less than 4h,, + 3d which are not suffixes of
B+1. Then

1
p(4hn+3d)24hn+3d+fn+2hn+2d—c:g(4hn+3d)+fn+§d—c

So, from here on we assume that 1B, 1B,1B,1 ¢ L.

Suppose that leB 1B2 is a subword of By, 1. Then B, 132 1B, 1B,0 € L as the initial 321 is preceded
by B, 1. Also, Bn+1an+1 ‘has the subword B, 1leB 1B,,1 where the next-to-last 1 is the 1 appearing
between the Bjy1 in Byi11Bpy1. Then B, 13213 1B, € LS,
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As By, 41 has B?LTB,L as a suffix, our word gives at least 3h,, + 2d — c right-special words which are not
suffixes of By, 11, all of length less than 5h,, + 3d. Therefore

8 1
p(5hs +3d) = 5hy +3d+ f + 3ha +2d — ¢ = = (5h, +3d) + Zd + fu —c

So, from here on assume also that B,QLTBnTBZ is not a subword of B, ;1. Therefore we can write

Bo = BA([(B2D)"(8,1)7)(821) B,
=1

for some y > 1 (since u is nonempty) and 8; > 1 and 8; = 5 < k.
Suppose first that 5, < 8. Set m = min{j;}. Take i such that ; = m then 8; < 8, < 8soi > 1. Then
B,1(B21)%-1(B,1)%(B21)% B,1 € L. This means B, 1(B21)™(B,1)2(B21)"B,1 € L as m < f;_1.
B, 1(B21)Pv(B,1)2(B21)" B, is a suffix of B, {1, so B,1(B21)™(B,1)%(B21)"B2 € L since m < 3, and
m < B < k. Therefore B,1(B21)"(B,1)2(B21)"B,, € LBS.
This gives at least (2m + 2)h,, + (m + 2)d — ¢ right-special words which are not suffixes of B,1, all of
length less than (4m + 4)h,, + (2m + 3)d. Therefore

p((4m + 4)h, + (2m + 3)d) > (4m + 4)hy, + (2m + 3)d + f,, + (2m + 2)hy, + (M + 2)d —
g((élm + Dh, + 2m+3)d) + fn, + %d —c

So, we may assume that 8, > 3.

Bypi11B,,41 has the subword (B21)"B,1B,1(B21)’B,1. As 8 < k, B,1(B21)’B,1B,1

By11Bn41 has the subword B, 1(B21)% (B, 1)2(B21)* B, B, which has B,1(B21)% (B,
as a subword.

As B, > f, then B,1(B21)?(B,1)2(B21)?B,, € LF5. Since § < &, this gives at least 2(8 + 1)h, + (8 +
2)d — ¢ right-special words which are not suffixes of B, 1, all of length less than (45 +4)h,, + (26 + 3)d.
Therefore

p((48 + 4)hn + (26 + 3)d) = (48 + 4)hn + (26 + 3)d + fu +2(8 + Dhn + (6 + 2)d -

= 2B+ b+ (2B 43+ ot pd e .

1B, 1eL.

1(B;
1)*(B21)° B, B,

Lemma 3.20. If « =1 and v > 1 then there exists q, > hy, such that p(q,) > 1.5q, + fn — c.

Proof. n this case, By, 1Bp41 contains the subword B21(B,1)""1(B21)’+1B,, and Bn+1iBn+1 contains
B21 (B, 1)7(B21)?B,1. Therefore (B,1)Y(B21)?B2 appears in By, 1Bn1 and (Bp 1)7(B21)’B,1 in
B an+1 As Bj41 has 1B,1B, as a suffix (as v > 1), every suffix of (B, 1) (B21 )5B longer than
011 B, 1B, is not a suffix of B, 11 and is right-special. This gives at least (y+28—1)h,+(y+58—1)d—c
right-special words which are not suffixes of By, 1 of length less than (y+28+1)h,, + (7+5)d. Therefore,
asy+26—-3>2+2-3,

p((v+28 + Dhy, + (v + B)d)
>(y+286+Vh+(v+B8)d+ fn+(y+28—Dh,+(y+8—-1)d—
= 2(( 426 Do+ (4 B)d) + 5 (v + 28— D+ S (v + B =D+ fu —c

3
>5((7"’2/8_"1)}1'”+(7+ﬂ)d)+fn_c O
Lemma 3.21. If o > v > 1 then there exists g, > hy, such that p(q,) > 1.5¢, + fn — c.

Proof. Lemma 3.18 states there are at least a(h,, + d) — ¢ right-special words which are not suffixes of
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By, +1 all of length less than (a + v + 1)(hy, + d). Since o > v+ 1,
P+ + 1D (hn +d)) = (@ +7+1)(hn +d) + fr + alhn +d) —c

O D Ny e

(a+vy+1)(hp+d)+ frn—c m

3
§(a+7+ )(hy +d) +
5 3
2

Lemma 3.22. Ifa > 1 andy > 1 and 8 > 1 then there exists g, > hy, such that p(q,) > 2q, + fn — 2¢.

Proof. The word (B, 1)YB21B,1 is a subword of By11Bp 41 since a > 1. The word (B, 1>t B21B2 is
a subword of Bn+1an+1 since 8 > 1. Therefore (B, 1)“’B2 1B,, € £BS.

Since v > 1, B,,4+1 has suffix 1B, 1B,, so there are at least (v + 1)h,, + vd — ¢ right-special words which
are not suffixes of B,y with length less than (y + 3)h,, + (7 + 1)d. By Lemma 3.18, there are at least

a(hy+d)—cright-special words which are not suffixes of B,, 11 and with length less than (a+v+1)(hn+d)
and all with suffix 1B 1B and which do not contain B2 so there is no overlap with the right-special
words already identified.

Therefore there are at least (v + 1 + a)hy, + (7 + a)d — 2¢ right-special words which are not suffixes of
By, +1 all of length less than (v 4+ 1+ a)hy, + (7 + a)d (as a > 2 implies v+ 1 + « > v+ 3). Then
p(y+a+1Dh,+(v+a)d) > (y+a+Dh,+ (v +a)d+ fu+ (v + 14+ a)h, + (v + a)d — 2¢
=2((v+a+Dhy + (v +a)d) + fn — 2 O

Lemma 3.23. If a > 1 and v > 1 and B,%TB?LT € L then there exists ¢, > h, such that p(g,) >
1.5¢, + fn —c.

ProoAf, If the word (B21)2 e L then necessarily B, 1(B2 1)2B,1 € L since somewhere to the right of
(B21)? in B,y must be B,1 as v > 1. Then B,1B2 1B € LBS which gives at least 2h,, +d — ¢
right-special words of length less than 4h,, + 2d which are not suffixes of B;, ;1. Then

p(4hn+2d)24hn+2d+fn+2hn+d—c:g(4hn+2d)+fn—c O

3.5.1 The 1 < o <~ and B21B? ¢ L case

From here on, we assume B,QL/I\BZ ¢ L. Therefore we can write
L
Bpi1 = H ((B,1)**B21))(B,1)""'B,
t=1

for some oy > 1 and L > 1 where av; = o and we write ap41 =v — 1.

Lemma 3.24. If1 < a < v and ay < v —1 for some t > 2 then there exists q, > h, such that
p(gn) > 1.5¢n + fn — c.

Proof. Observe that B,1(B,1)* B21(B,1)*+'B2 € L forall 1 < k < L since, in the case when k > 1,
it is a; subword of B, 1 and, in the case when k = 1, it is a subword of B, 1Bn+1 which is a subword of
Bn+1an+1

If apy1 < aggr for some 1 < ¢k < L then the word B, 1(B 1)@ B21(B,1)*+1 B2 has the sub-
word B, 1(B;, 1) akB21LB D@+ B,1. As B,1(B,1)*B21(B,1)*+ B2 € L, this implies that the word
B, 1(B,1)™m(enen) B21(B, 1)+ B, € L7,

Since By, 41 ends in BZ(IBH)W, if ag4+1 < v — 1 then suffixes of our right-special word which are longer
than 0171 B, 1(B,,1)*+1 B,, are not suffixes of B, 1. This gives at least (min(c, o) +2)(hy, +d) —d—c
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right-special words which are not suffixes of B,,11 which have length less than (min(oy, ag) + a1 +
4)(hy, + d) — 2d.

By hypothesis min{a; : t > 2} < y—1. Let ¢ such that a;y; = min{oy : ¢ > 2}. Then there exists k such
that ay11 < a1 since the last oy is followed by v — 1 > ayyq. Write m = min(as, ax). Then a1 < m
since it is chosen to be minimal. We then have, as m — ay4+1 > 0,

p((aer1 +m+4)(hy, +d) —2d) > (411 +m+4)(hy, +d) —2d+ fr + (m+2)(h, +d) —d—c¢

(@ o+ ) +-d) = 20) + 5 m = 1) o+ )+ =

3
2
3
5((0{,&4_1 +m—|—4)(hn—|—d)—2d)—|—fn—c ]
Lemma 3.25. If1 < o < v and oy > v — 1 for all t > 2 then there exists q, > hy such that
p(gn) > 1.5¢, + fn —c.

Proof. The word By, 11B,+1 contains B, (1B,)"11B21(B,1)* B2 as a subword, so, as a < v, the word
(B,1)*B21(B,1)*"'B,0 € L.

In the case L = 1, the word B,11 = (Bn1)*B2(1B,)"1 so (Bn 1)*B21(B, ) B,1 € L since a < 7.
In the case when L > 1, since ap, > v — 1 > o, the word B, 411 ends in (B,1)** 7%( )71 which has
(B, 1)*B21(B,1)*"'B,1 as a subword.

So (B,1)*B21(B,1)*"'B,, € LS. As B, 41 has (1B,,)" as a suffix, our word gives at least (o + 1)(h,, +
d) — d — ¢ right-special words which are not suffixes of B4 all of length less than (2ac+1)(h,, +d) —d
Then

p((?(){—l— 1)(hn +d) - ) (20[4— 1)(hn +d) - d"’fn + (Oé—|— 1)(hn +d) —d—c
g((2a+1)(hn+d)—d)+%hn+fn—c O

Lemma 3.26. Ifa=~v>1 and a; > v —1 for all t > 2 and for some t > 2, ay > v with ay # 2y then
there exists qn > hy such that p(q,) > 1.5q, + frn — 2c.

Proof. First consider the case when oy > 2. As B21(B,1)** B2 is a subword of B, and a; > 2y + 1,
this means (B, 1)27t2B2 € £. Then (B,1)>*!'B,, € LR, Since B, 41 has B21(B,1)""'B, as a suffix,
there are at least (y + 1)h, + (v 4+ 1)d — ¢ right-special suffixes of our word all of length less than
(2v +2)h,, + (2y+ 1)d. Then

p((27 4+ 2)hn + (27 +1)d) = (27 + 2)hn + 2y + Dd + fr + (v + Dhn + (v +1)d —

= g((2fy +2)hn + 2y+1)d) + fu + %d —c
Next consider when ay < 2. Then B, 1(B,1)7~ 1321(3 1) B2 is a subword of By since oy g >y —1.
As the word (B,1)YB21(B,1)? is a subword of B,11B, 1, this means (B,1)YB21(B,1)* B, € L7S.
Slnce ay > v —1and B, has B2 1(B, 1) !B, as a suffix, our word gives at least (y +2+ oz +1 —

— Dhy, + (v + a¢ — v)d — c right-special suffixes which are not suffixes of B,,;1, all of length less than
(*y + ot + 3)hy, + (v + ar + 1)d. Then, as ay > 7,

p(v+ar+3)hp+(y+ar+1D)d) > (y+ar + )by + (v +ar + Dd+ fro+ (ar +2)hp + (ar + 1)d — 2¢

3 1 1
:f((7+at+3)hn+(v+at+1)d)+§(at—w+1)hn+§(at—v+1)d+fn72c

NJ\C»J

(y+ar+3)hp + (v + o +1)d) + fr, — 2¢ O

Lemma 3.27. Ifa =~ > 1 and oy € {y — 1,2y} for all t and oy = 2 for some t then there erists
Gn > hy such that p(qn) > 1.5¢, + fn — 2c.
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Proof. Here we can write
By = B,j( [[(®B.1) B2~ (Bﬁ)%Bfﬁ) ((B,1)~'B21)*(B,1)""'B,
i=1
for some s > 1 and y;,2 > 0 and y1 > 1 (as @ = v > 1). Rearranging the grouping and writing
D,, = (B,1)"By,

Byt = Bud( [T(Ba1) " Ba BaD)" (B 1) By Ba1)((Ba1)""' By Bal)*(Ba1)" B,

=1
= (TT(BD By (BB, ) ((Bu1) Ba)**!
i=1
_ (H DY DnTDn)D;H - Dgﬁli( I1 Dgi“T) Di+?
i=1 =2

Write k,, = fen(D,,).
First consider when y; > 2. Since B, 4+1B,+1 has the subword Df{”D%ﬁlT and D,, has 0 as a prefix
(as B, does), then D¥1+*+2 ¢ L7 Since D,, has B,, as a suffix, this word disagrees with B, y; on

suffixes longer than 1°71DZ+2. We then have at least y1k, — ¢ right-special words of length less than
(y1 + 2z + 2)k,, which are not suffixes of By, 11.

Lemma 3.18 states there are at least yh,, + vd = k,, — h,, right-special words of length less than (2v +
1)h,, + 2vd which are not suffixes of B, ;1 and which do not contain BEL as a subword, hence do not
overlap with the words above.

Then, as y; > z+ 1 (and k,, > 2h,, since v > 1),

p((y1 +2z+2)kn) > (y1+ 2+ 2)kn + fo +v1kn —c+ kp — hp — ¢
3 1

§(y1+z+2)kn+§(y1fz)knfhn+fn72c

3 1 3

Z§(y1+z+2)kn+§kn7hn+fn7202§(y1+z+2)kn+fn72c

Now consider the case when y; < z for some 1 <14 < s. Set m = min{y; : 1 <14 < s} so that m < z and
take ¢+ minimal such that y; is minimal.

Since By,i1 has D¥t21DZ2 as a suffix, then D™21D2+2 ¢ £. When i > 1, as DY ' IDY+2T is a
subword of By, 1, then DrT+2TD7T+2,1\ € Lasy;_1 > y;+1 asi was taken minimal. Then D™21D™m+2 ¢
LTS as m < z. As this word disagrees with suffixes of B, ;1 on words longer than 171 D™*2 this gives
at least (m + 2)k,, + d — c right-special words of length less than 2(m + 2)k,, + d which are not suffixes
of By+1. Then

3 1
p(2(m + 2)k, +d) Z2(m+2)kn+d—|—fn+(m—|—2)kn+d—c:5(2(m+2)kn—|—d)+§d+fn—c

When i = 1, as By,41 has DY t21Dt2 as a suffix (or D¥T11DZ+2 in the case s = 1), we have
D™Dz € L. The word B, 11B,41 has the subword Dzt21D¥ 41T which has D™ 1D+
as a subword. As m < z, this means D1 TD™+! € £RS, This word disagrees with suffixes of B,,;; on
words longer than 171 D™*1 5o there at least (m + 1)k, + d — ¢ right-special words of length less than
2(m + 1)k, + d which are not suffixes of B;,,11. Then

3 1
P(2Am + Dk 4 d) = 2(m + Dk +d+ fo+ (m+ Dko +d == S2m+ Dk +d) + 5d + fu—c

From here on, assume that y; > z for all i. We are left with the case when y; = z.

Since BnHTBnH has the subword DZ+2TD,-’41+1T = be“‘zinl‘*‘l/l\ (as y1 = z) and B,y has suffix
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D¥=+21D=+2 which has the subword DZt21DZt1D,, (as y, > z), this gives DZ21Dz+1 € £BS | This word
disagrees with suffixes of B,, 1 on words longer than 1¢~*DZ*! meaning there are at least (z+2)k, +d—c
right-special words of length less than (2z + 3)k,, + d which are not suffixes of B,;1. Then

p((22 4+ 3)ky, +d) > 22+ 3)kp, +d+ fn+ (2 +2)kn+d—c¢

3 1 1 3
= 5(2e+ Dk +d) + Shn+ gd+ fo—c> (22 +3)kntd) + fa—c D

Lemma 3.28. I[fa=v>1and oy =~ —1 for all t > 2 and By 12 has Bn+1TBn+1 as a suffix then
there exists qn, > hy, such that p(q,) > 1.5¢, + fn — 2c.

Proof. We are left with B, 41 = (B,1)YB21((B,1)" " 'B21)L~Y(B,1)" !B, = ((B,1)"B,)“ .

Since B,H_}\BHH must occur sAomewhere in §n+2 and not as a suffix, Bn+1Bn+1T € L, and since
Bni1Bni1l = ((Bn1)YB,)?E421 we have ((B,1)7B,,)?lt € LBS. Since hy, 1 = (L+1)((y+1)h, +7d),
our right-special word has length

(2L + 1)((y + Dhp +vd) = 2hpi1 — ((v + )hn + 7d)

Since B, ;2 has BnHTBnH as a suffix, this word disagrees with B, 2 on suffixes of length at least
hnt1+c. Therefore there are at least hy, 11 — ((y+1)hy, +vd) — ¢ right-special suffixes of our word which
are not suffixes of B, 2.

Lemma 3.18 states there are also at least y(h, + d) — ¢ right-special words which do not have B2 as
a subword, hence do not overlap with those above nor with suffixes of B,,;2, all of length at most
(274 1)(hy 4+ d). Then, as v > 1,

P(2hnt1 — (v + Dhy, +7d))
> 2hnp1 — (v + Dhp +5d) + fr + hngr — (v + Dhn +7d) —c+y(hn +d) — ¢

3 1 1
= 5(2hn+1 - ((’V + ]-)hn + ’Yd)) + 5(7 - ]-)hn + i'yd"'_ fn —2c

w

3.5.2 Proof of Proposition 3.17

Proof of Proposition 3.17. Lemma 3.19 gives ¢,, > h,, such that p(q,) > 1.5¢, + fr, —2c when oo = v = 1.

Lemma 3.20 takes care of @« =1 and v > 1. When a > v > 1, Lemma 3.21 gives such a ¢,.

We are left with the case when v > a > 1. Lemma 3.22 covers a,y > 1 and S > 1 so we proceed with
B = 1. Lemma 3.23 covers the situation when B21B21 € L so we can assume that word does not appear
from here on so B,,;1 is of the form written above Lemma 3.24. That Lemma handles when oy < v — 1

so we may assume «; > v — 1 for all .

Lemma 3.25 then covers the case when o < v so we may proceed with o = 4. Then Lemma 3.26 shows
that if ¢ > v with ay # 27 for some ¢ then we have such a ¢, so we may assume «; € {7y — 1,27} for all
t. Lemma 3.27 handles the case when a; = 2v for some ¢ so we can assume oy = v — 1 for all ¢.

By hypothesis, an11,2,,, = 1 meaning that B, 12 ends with Bn+1TBn+1. Lemma 3.28 then guarantees
the existence of such a ¢,.

There are then g,, > h,, with p(g,) > 1.5¢, + fn — 2¢ for infinitely many, hence all sufficiently large n. [

3.6 Proof of Theorem 3.2

Proof of Theorem 3.2. Set C' = 3c. Every n > N satisfies one of (1) an,1 =1 and ay, -, > 2; (2) ap,1 > 2
and an ., =1; (3) an,1 = an», =1 and a, ; > 3 for some j; (4) an1,an,z, > 2; 0r (5) an1 = ans, = 1,
an,; <2 and a,; =2 for some j. At least one of those cases happens infinitely often. For cases (1)-(3),
Proposition 3.7 gives the result.
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For case (4), by Proposition 2.10, there exists a rank-one subshift generating the same language such
that a,,1 > 2 and ay -, > 2 and api1,z,,, > 2 for infinitely many n. Proposition 3.13 applied to that
subshift gives the claim.

If cases (1)—(4) all do not happen infinitely often then for all sufficiently large n, we are in case (5) in
which case Proposition 3.17 gives the claim. O

4 Low complexity weakly mixing rank-one subshifts

Consider the following class of rank-one subshifts:

Definition 4.1. Let L,, > 1 and =, > 1 for all n. Define the rank-one subshift with B; = 0 and
Bn+1 - ((Bn]-)’yan)Ln

Observe that h,1 = Ln((Yn + 1)y +vn) and Byy1Buy1 = ((Bp1)' B,)?t» and
Bni11Bi1 = ((Bo1)" B, 1(B,1)»" 1B, ((B,1)" B,)E» !

4.1 Right-special words

Lemma 4.2. Let w € £ with 1B,, as a suffiv. Then w is a suffiv of (B,1)>""B,, or w is a suffiz of
Byy1 or w has B,41 as a proper suffix.

Proof. Observe that 1B,, is always preceded by B,, so w shares a suffix with B,1B5,,.

First consider when w has 0B,1B,, as a suffix. As B, 1 is always preceded by B,, or 1, in this case w
shares a suffix with B21B,,. Since 1B,0 only appears as a prefix of 1B2, having w0 € £ would then
mean B21B2 € £ but that word is not in £ since 7,, > 1.

So w has 1B,,1B,, as a suffix (or else is a suffix of B,,1B,, which is a suffix of B,,;1) and therefore shares
a suffix with B, 1B,1B,,. Following the same logic, if w shares a suffix with 0(B,1)!B,, then w0 shares
a suffix with 0(B,1)!B,0 which can only occur as a subword of B21(B,1)!~!B2, requiring that ¢t > .

So w shares a suffix with B,1(B,1)" B, = (B,1)"B,. As B,1 is always preceded by 1 or B, we
have two cases to consider (if w is a suffix of (B, 1)" B,, then it is a suffix of B,41).

First consider when w has 1(B,,1)" B,, as a suffix. The only occurrence of that word is in By, +11B,,4+1 and
it is always preceded by (B, 1)"" B,, so w must share a suffix with (B,,1)>"*1B,,. Since 1(B,1)*"B,1 ¢
L as (B,1)*»*! is always preceded by B, (as L, > 1) and since wl € L, either w is a suffix of
(B,1)> B,, or w has 0(B,1)*'"B,, as a suffix. Since 0(B,1)*"B,0 ¢ L because B,,(B,1)*"" B, B, =
B21(B,1)2" B2 ¢ L as v, > 1, it must be that w is a suffix of (B, 1) B,.

Now consider when w has 0(B,1)™ B,, as a suffix. Then w shares a suffix with B, (B,1)"™ B,,. Since
(B,1)"" B, is always preceded by (B, 1)’ B, or 1, then w shares a suffix with ((B,1)B,)2. Then wl
shares a suffix with ((B,,1)7B,)?1 and since ((B,1)YB,)?1 is always a suffix of B, 1, this shows that
w shares a suffix with B, ;1. Then either w is a suffix of B, ;1 or w has B,, ;1 as a proper suffix. O

Lemma 4.3. Let w € L with 0B,, as a suffi. Then w is a suffiz of (Bp_11)"~B,_1)*—171B,
andn > 1.

Proof. Since 0B; = 00 and 000 = B} ¢ L, we have n > 1.

Every occurrence of B,, appears either as 1B,1 or 1B, B,1. The word 0B,, is not a subword of 15,1
and occurs as a subword of 1B, B, 1 at L,_; + 1 distinct starting locations.

The word 0B,,1 only appears as a suffix of 1B,,B,,1 since it must appear somewhere in 1B,, B, 1 and the
only appearance of B,1 in that word is as a suffix as B,1 = ((B,_11)"™1B,_1)¥"-17Y(B,_11)7m-1+!
and (B,,_11)"-1*1 is not a subword of B, B,, = ((Bn_11)""~1B,,_1)*n-1.
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So w1 shares a suffix with B, B, 1 so w shares a suffix with B,,B,,. Since B,,0 must be a prefix of B2
and B3 ¢ L, then B, B,,0 ¢ L. As w0 € L, w is then a proper suffix of B,, B,,.

Suppose w has 0((B,_11)"1B,_1)!»171B,, as a suffix. As that word only appears as a subword of
B, B,, when the leading 0 is the tail 0 of the first (B,,_11)"~1B,_1 in the first B, of B2, the word
0((Bp_11)"1B,_1)¥-171B,0 ¢ L as 0((B,_11)"-'B,,_1)*»-1~1B,, must be a suffix of B, B, hence
be followed by a 1. But then w0 ¢ L.

Suppose that w has 1((B,_11)"-1B,,_1)l»-171B, as a suffix. As 1B,,_; is always preceded by B, _1,
then w would share a suffix with B,,_11((B,,_11)"-1B,,_1)*»-*~1B,, but that contains (B,,_;1)¥»-1+!
as a subword which is not a subword of B, B,, = (B,,_11)"-1B,,_;)?Ln—1+,

Therefore w must be a suffix of ((B,_11)1B,_;)l»171B,. O

Proposition 4.4. Let w € L7 with fen(w) > 1. Then there exists a unique n such that ezxactly one of
the following holds (and for m # n, none of them hold):

e w is a suffix of Bny1 and h, < len(w) < hpyq
e w is a suffir of (Bn1)*" B, and (yn + 1)hn + 9 < Len(w) < (29, + 1Ay, + 27,
e wis a suffiv of (Bn_11)"1B,_1)"17'B, and h, < fen(w) < h,(2 — Ln171) andn > 1

In all three cases, hy,, < len(w) < hpy1.

Proof. As 11 ¢ £, w must end in 0. Let n be the largest integer such that w has B,, as a proper suffix
(such n exists since B; = 0). Then w has either 0B,, or 1B,, as a suffix.

Lemma 4.2 states that if w has 1B, as a suffix then either w is a suffix of (B,1)?>™ B, or is a suffix
of B,,4+1, which are the second and first cases of the proposition, respectively, or else w has B, ;1 as a
proper suffix which would contradict the choice of n.

Lemma 4.3 states that if w has 0B,, as a suffix then n > 1 and w is a suffix of ((B,_11)7"-1B,,)f»171B,,.
This puts us in the third case as (yn—1 + 1)hn—1 + Yn-1 = %hn.

n—1

Suffixes of (B,,1)?™ B,, of length less than or equal to (7, + 1)h, + v, are suffixes of (B, 1) B,, which
is a suffix of B, 11 but all suffixes longer than that are not suffixes of B, 1 as B, 11 has 0(B, 1) B,, as
a suffix. Suffixes of ((B,,_11)" 1 B,_1)*"~17'B, of length at least h,, + 1 have 0B,, as a suffix so are
not suffixes of B, 11 as B,41 has 1B,, as a suffix. Clearly there is no overlap between the second and
third cases as the second has 1B,, as a suffix and the third has 0B,, as a suffix. Therefore the length
restrictions make the cases a partition of £75.

Since (2 — ﬁ)hn < (29 + Dhy + 270 < 2((0n + Dhn +70) < Ln((Yn + 1Ay +72) = hyi1, in all three
cases h,, < len(w) < hyy1. O

4.2 The complexity function

Proposition 4.5. The complezity function satisfies p(ha+1) = ho(1+ L%) +1 and for ¢ > hs, choosing
n to be the unique integer such that h, < q < hpy1,

2 when h, < q¢<(2-— Lnl,l)h”

when (2 = 2—=)hn < ¢ < (9 + 1)hn + 7
when (Vo + Dhn + 70 < g < (290 + Dhn + 27
when (27, + Dhy, + 29, < ¢ < hpta

p(g+1) —plg) =

— N

Proof. In Proposition 4.4, there is no overlap among n since h,, < fen(w) < h,4; for all three cases.
Recall that p(q + 1) — p(q) = [{w € L : len(w) = ¢}|.

Let g and n such that h,, < ¢ < h,41. There is exactly one suffix of B;, 11 of length ¢q. There is a suffix of
the second form in Proposition 4.4 of length ¢ precisely when (v, + 1)hn + 70 < ¢ < (295 + 1) hy + 2795
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There is a suffix of the third form in Proposition 4.4 of length ¢ precisely when h, < ¢ < (2 — £ 171 Vhn
and n > 1.

For 1 < ¢ < hg, Proposition 4.4 applies with n = 1 and the third case is vacuous. Then p(¢g+1)—p(q) =1
forl<g< (m+Dhi+7 =21 +1. For2y1+1 < qg < (291 +1)hy + 271 = 491 + 1, we have
plg+1) —p(g) = 2 and for 4v; +1 < ¢ < hg, p(¢+ 1) — p(¢) = 1. Therefore, as p(2) = 3 and
ho = Li((y1 + 1)hi +71) = L1(2y1 + 1),

plho +1) =p(2) + (P21 + 1) = p(2)) + (p(471 + 1) = (271 + 1) + (p(h2 + 1) — p(4y1 + 1))

1
:3+(271—1)+2(271)+(h2—471)=h2+271+2=h2+L—h2+1 O
1

Theorem 4.6. The transformations in Definition 4.1 satisfy p(hpy1) = (14 Li)hnﬂ.
If F= — 0 then they also satisfy

1
lim inf M =1+ liminf
q max(Ly—1,vn + 1)
plg) 3 1

. B
msup T = s e T o £ 1) — 2

Proof. For n > 2, by Proposition 4.5,

p((Z_Ll

n—1

Vo +1) = p(hn +1) =2(1 - i)hn

n—1

1

PO+ Do 4730+ 1) = (2= = b+ 1) = (0= L o o 20

(290 + Dhn 4+ 270 + 1) = (V0 + D)hn + v + 1) = 2(vnhn + )
p(hn—H + 1) - p((27n + 1)hn + 2771 + 1) = hn-i-l - (2'771 + 1)hn - 2771

n—1

and therefore

2 1
p(hn+1+1)—p(hn+1):(2_L _|_fyn_1+L

n—1 n—1

1 1
:hn+1+ (’Yn_7)hn+7n:hn+l+(7n+1)hn+7n_hn_ I
Ln,1 Lnfl
1 1
= h, —hpa1—hy — —hy
i * Ln i Ln—l
which implies that
plhngr+1) =plha + 1)+ > (p(hmsr +1) = phm + 1))
m=2
1 " 1 1 1
~1 (1 —)h ((1 —)hm —(1 )hm):l (1 —)hn
(11 2+7§::2 + 7 ) hm S + (145 ) e

Since p(hn1 4+ 1) = p(hpy1) = 1, then p(hpi1) = (1 + 72-)hnsr.

Combining this with our initial observations,

1 1 1 1
2 )h 1—1:(1 )h 2(1— )h,:(s— )h
p(< Lnfl nt ) M Lnfl nt Lnfl ' Lnfl ' (T)
1 1
p((%+1)hn+%+1) - ]- = (3_ 7)hn+ (’Vn - 1+ 7)hn+7n = (’Yn+2)hn+'7n
Ln—l Ln—l
P((27n + Dhp + 290 +1) = 1 = (Y0 + 2)hpy + V0 + 290hn + 290 = (3vn + 2)hn + 37 (1)
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and so
p(hn) 1
=1
hn * Lnfl
1 1 1 1
p((Qan_l)hn+1)7l 737L"_1 73 2 Tn1 73+ 1
1 - 1 o Ty 1 T o T ur o
(2 T Lna )h” 2- Lp—1 2 2- Lp—1 2 ALn—1—2
p((77L+1)h7L+’Y7L+1)_1 o (7n+2)hn+7n _ 1

(Yn + 1)ha + T (A Dhatm 1
P+ Dhn +2v%+1) =1 By +2)hn+31m _ 3 3
(29 + Dhn + 295 Y0+ Dhn +27m 2 2y, + 142

Now observe that, since 1 < p(¢+ 1) — p(q) < 2 for all ¢, the function p(q) is increasing when p(q+ 1) —
p(q) = 2 and decreasing when p(q + 1) — p(q) = 1. Therefore the liminf and lim sup are attained along
sequences of the four above-mentioned values. Provided ;= — 0, then

1 1
imint 29— fim inf min (1 n 1+ )
q q n Lp_1 Yn+1
and (@) 3 131
. p\q .
tmsup 20 ) (IS T SO .
1mqsup P 1mnsup max 5 + AL, 1 —2°2 + T £ 2

4.3 Complexity nearing 1.5q
Theorem 4.7. Let € > 0 and f(q) — oo. Then there exists v, = v > 1 and L, — oo such that the
transformation in Definition 4.1 satisfies

3
lim sup pla) <3 +e and — p(hyp) < hp + f(hy)
q

Proof. Choose v > 1 such that ﬁ < €.

Given h,,, choose ¢, such that for all ¢ > g,, we have f(q) > (v + 1)h,, +~. Then choose L, such that
L,((y+ 1)h, +7) > qn. Then by Theorem 4.6,

1
Plhn1) = (1 + f)hnﬂ =hn1+ (Y + Dhn +7 < hngr + f(qn) < hnga + f(Ans1)
n
Since L,, — oo, lim sup # =32+ 74’#2 <2te 0

5 Weak mixing for rank-one transformations

Theorem 5.1. Let T be a rank-one transformation with bounded spacers (there exists k such that s, ; < k
for all 0 < i <r, and alln) and k > 0 such that for all sufficiently large n,

Hsn,i=0:0<i<r,} >k(r,+1) and Hsni=1:0<i<ry,} >k(r,+1)
Then T is weakly mizing on a finite measure space.

We adapt the proof that Chacon’s transformation is weakly mixing from [Sil08].

Lemma 5.2 (Lemma 2.7.3 [Sil08]). For any measurable set A and € > 0, there exists N such that for
alln > N there exists Q C {0,..., h, — 1} such that p(AA quQ I,4) <e.

Lemma 5.3 (Lemma 3.7.3 [Sil08]). For any positive measure set A and € > 0, there exists N such that
for alln > N there exists 0 < a < hy, such that p(ANI,q) > (1 —€)p(ln,a)-
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Lemma 5.4. Let I a level and A a measurable set such that p(ANI) > %u([). For any 0 < § < 1,
there exists N such that for allmn > N, if I = |_|qu 1,4 is the partition of I into sublevels in C,, then

|{q €Q: ,U(A N In,q) > 6N<In,q)}| > %‘Ql

Proof. Choose a > 0 such that o < $(1+4)7! so that ¢ + a+ 1 < 1. Let A; = ANI. By Lemma
5.2, there exists N such that for any n > N there is Q" C @ such that if we set I’ = | |,/ In,a then

(A1 AT') < ap(I). Now observe that p(I'AI) < p(I' AAy) + p(A1 AT) < ap(I) + 2p(I).
Set Q" ={a € Q : p(lna\ A1) < ou(lng)} and I"” = |—|aEQ” Ip,.q. Since 0p(In,q) < p(lna \ A1) for
ac@Q\Q,

op(I' A"y = op(I'\1") = Z 6p(In,a) < Z f(Ina \ A1) < p(I"\ A1) < ap(I)
aeQ\Q" acQ\Q”

so p(I"AI) < p(I"AT') + p(I'AT) < Sp(I) + (o + H)p() < 2p(I). Then u(I” NI) > $u(I) which
means |Q"] > 3|Q|. O

Lemma 5.5. If T is on a finite measure space and there exists k > 0 and {t, ¢} such that for any two
levels I and J in C,, with J being £ levels below I, u(T*¢IN1I) > k*u(l) and p(T¢INJ) > &‘u(J)
then T is weakly mizing.

Proof. Let A and B be any positive measure sets. By Lemma 5.3, there exist levels I3 and J; in some
column Cy such that u(AN1I) > %M(h) and (BN Jy) > %M(Jl). Let 0 < ¢ < hy such that I; is ¢
levels above J; (interchanging the roles of A and B if necessary).

Set § = %E By Lemma 5.4, there exists n > N such that if I; = quQ1 Iy,q and J; = quQz I, 4 then

{ae Qi : (AN, g) > (1 =8)ullng)} > 5|Qi] and [{g € Qo : u(BN Ing) > (1= 8)u(lng)} > 51Q2].
Since I is £ levels above Jq, ¢ € Q1 if and only if ¢ — ¢ € Q2 and |Q1| = |Q2|. Therefore

0 € Qu (AN L) < (1= Olng) 08 (B Igo) < (1= ()} < 51Q1] + 51@] = Q1]

meaning there exists ¢ € Q1 such that I = I, , and J = I, ;¢ satisfy p(ANI) > (1 —6)u(l) and
w(BNJ) = (1 =0)ul]).

By hypothesis, u(Tt¢INIT) > k‘u(I) = 35u(I) and u(Tt*INJ) > k‘u(J) = 36u(I). Set Ay = AN
and By = BN J so that pu(I'\ A1) < dp(I) and p(J \ By) < éu(I). Then

p(T0 Ay 0 By) = (T T 0T) = p(I\ Ar) — u(J \ By) > 38u(D) — 8p(1) — 5u(I) = 6p(I) > 0
and similarly

p(TH Ay VA 2 (T TN ) = (T Av) = (I \ Av) 2> 30u(1) = 0u(I) = du(I) = du(l) > 0

Hence for all positive measure sets A and B there exists ¢ such that u(T*AN A) > pu(T*A; N A1) > 0
and pu(T*AN B) > 0, which is equivalent to weak mixing ([Fur81]). O

Lemma 5.6. Let £ >0 and n € N and set t,, y = Z,1 hptt. Assume
Hsn,i=0:0<i<r,} >k(r,+1) and Hsni=1:0<i<ry,} >k(r,+1)
Let I and J be levels in C,, with J being ¢ levels below I. Then

w(Te1NI) > & u(T) and (TN J) > k()

Proof. Write I = I, , for some 0 < a < h,,. As T 1, , D Licr, s, =0 L[i-gl], applying this twice,
pttn, s ) weers (][] s
10:8n,ig =0 10:8n,ig =0 11:8n+1,i; =0
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where I, L HJ I has the obvious meaning: it is the 5% sublevel of the i*" sublevel of I,, , meaning I,LL](L] Iy
level in Cn+2. Continuing this process:

T R A |_| |_| |_| ot i +1] - lie—1+1]
10:Sn,ip=0  41:Sp41,i; =0 1e—11Snte—1,i,_; =0
Therefore
- -1
W(TZ=ohnse L AT, ) > Z Z M(I,[f?aﬂ]m[”*ﬁ”) > (H KTt + 1)),u([n+g,a)
10:8n,ig =0 14—1:8n40-1,ip_; =0 t=0
(Hm Pogt + 1) )(H #) (Ina) = K 1(Ip.0)
Tyt +1 ' '
Similarly, Th"In,a D |_|Z<rn - I[H'l]1 SO
T 20 hnﬂjn’a S I—I |_| . |_| Iy[Zc;-&-l[][u-ﬁ-l] fie—1+1]
10:8n,ig=1  91:Sn,i; =1 Te—1:Sntl—i,ip_q =1
As J =1I,, 4—¢ since J is £ levels below [ in C,,,
M(TZf;é hnHIn,a n J) 2 Z T Z (]7[;(;4;12] fie- 1+1]> > “Zﬂan}aff) O

©0:8n,ig=1 10—1:Sn40—1,ip_, =1

Proposition 5.7. Let T be a rank-one transformation. If there exists a constant k such that s, ; < k
for all 0 < i <, for all sufficiently large n then T is on a finite measure space.

Proof. Writing S, for the spacers added above the n'" column C,,, we have u(S,) = 30" spipt(Int1) <

b D) = k(L) = (G Since hy > [IZL(ry41) 2 271, then p(Coan) < (1t s n(Co)
so lim u(Cr) < pu(Co) [Tzl + QL”) < 00.

O

Proof of Theorem 5.1. Lemmas 5.5 and 5.6 and Proposition 5.7.

O

5.1 Weak mixing for low complexity transformations

Corollary 5.8. The subshifts in Definition 4.1 are weakly mizing (on finite measure spaces) provided
that lim sup vy, < co.

Proof. Since By11 = ((Bn1)"B,)E, we have {0 < i <71, :8,; =0} =L, —1and [{0<i<r,:
Sni =1} = Lpyn. As vy +1= L, (v, + 1), this means

HO<i<rp:s,; =0}  L,—1 < 1 1
T+ 1 C Lpy(Ynt+1) T+l 02

Likewise {7 : sp,i = 1}/(Tn + 1) = /(7 +1). As 7y, is bounded, Theorem 5.1 gives weak mixing. [

Theorem 5.9. For every e > 0, there exists a weakly mizing rank-one transformation (on a probability
space) such that the associated subshift has complexity limsupr(@)/q < 1.5 + €.

For any f(q) — oo, the subshifts can be made to satisfy p(q) < q + f(q) infinitely often.
Proof. Corollary 5.8 and Theorem 4.7. O
Theorem 5.10. For every € > 0, there exists a subshift with complezity satisfying limsupr(9)/q <

1.5+ € and liminf r(9)/q < 14 € such that the associated rank-one transformation is weakly mixzing (on a
probability space) and has minimal self-joinings (hence also has trivial centralizer and is mildly mizing).
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Proof. For € > 0, let v > 1 such that T < €. Then the transformation in Definition 4.1 with v, = ~v
and L, = v+ 1 satisfies, by Theorem i 6,

1 1
()71+7<1+€ and limsupM7§+ <§+e

p
lim inf
v+1 q dv—-2 2

and Corollary 5.8 gives weak mixing. As {r,} is bounded, Ryzhikov’s theorem [Ryz13] gives minimal
self-joinings (the transformations are non-rigid since the s, ; are not constant over 0 <4 < r,, hence are
not “flat” in the sense of Theorem 2 in [Ryz13]). O

Remark 5.11. The examples with p(¢) < ¢+ f(q) such that L,, — oo are most likely not mildly mixing,
hence do not have minimal self-joinings. In essence, any alternative construction of those examples
(where f(q)/q — 0 so L, — oo) which has bounded spacers necessarily involves constructing B,,,; =
((B,1)7B,,)" with £, uniformly bounded followed by B,,+1 = (B],,)*"/%. As the second step involves
adding no spacers, the construction is “flat” and therefore should admit a rigid factor.

5.2 Totally ergodic subshifts with limsupr(9)/q = 1.5

Theorem 5.12. For any f(q) — oo, there exists a totally ergodic rank-one subshift (on a probability
space) satisfying p(q) < 1.5q + f(q) for all sufficiently large q and p(hy,) < hy, + f(hy) for all n > 2.

Proof. Let f*(q) = inf{f(¢’) : ¢ > ¢q}. Then f*(q) is nondecreasing and f*(q) — co.

Set 1 = L1 = 2. Given 7,1 and L,_; (and therefore h,,), choose v, such that %hn < f*(9n)- Then
choose L,, = my! for some m,, > n such that (v, + 1)h, + v, < f*(Ln).

As hpt1 = Ly (90 + Dhy + ), we then have %ﬂhn+1 < f*(Ly) < f*(hnyt1). Theorem 4.6 gives that

p(hn) = (14 =)l < o+ £*(h) < B + ()

1
Ln—l

The count (T) in the proof of Theorem 4.6 gives that

1 1 3 1 11
29— )hn 1 :( _ )hn 1:7(277)% S h 41
p(( Ln—l N ) s Ln 1 N 2 Ln—l * 2Ln—1 M

B+ 1)+ (2= — Vo +1)
) (2-7

n—1

LRt SIe I

and the count (1) in the proof of Theorem 4.6 gives

P((27n + Dhp 4+ 27, +1) =

—~

3 1
39m + 2 + 37 + 1= Z((29 + Dhn +290) + ghn + 1

< (29 + Dhp +290) + () + 1

W N W

< 5((2% + Dhp + 2y + 1)+ (29 + Dhp + 27, + 1)

As p(q) — 1.5¢ is maximized at one of these two lengths in each range h,, < ¢ < hy41, for all ¢ > ha,

pg) <1.5¢ + f*(q) < 1.5¢+ f(q)
It remains to show total ergodicity (as Proposition 5.7 puts it on a finite measure space).

Let A be a positive measure set and ¢ € N such that 7A = A. For € > 0 and n > ¢ such that 7211
define the sets

< €,

Qnle) = {O <J<hp: M(In,j NA)>(1- €)U(In,j)}

If for some fixed € > 0, it holds that @, = @ for infinitely many n then u(A) = 0 (Lemma 5.3) so we
can also define j,(€) = min{j € @, (¢)} for sufficiently large n.
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Observe that for j > ¢,
It VA) = (T Ty N A) = p(Ln; NTTA) = p(Ln 5 N A)
and so if j € Qy(€) with j >t then j —t € Q,(€). Therefore j,(¢) < t. Now observe that, for j > 0,

Jul)

1
mt1

; 0<i<rp:sp;=1
N AT AR S R R U, = (1

r 1
i<TpiSp,i=1 nt

since s, ; = 1 for L,y, values of ¢ and r,, +1 = L, (7, +1). Then for 1 < s <t and j > s,

s—1
M(TShnIn,jAInJ—s) < ZM(T(S_U)hn nJ—uAT(S_u_l)hn nJ—U—l)
u=0
s—1 2s
= Thol, i WALy iy 1) < I, ;
uz:%/’[’( »J 2] 1) ’yn+1/jl( ’J)
and therefore
. 2s 2t
p(T*" Ly N L) > (1 et 1>H(In,j) =z (1 Yt 1)M(In,j) > (1= e)ulln,;)

Since L1 = myp—1! and L,_q divides h, = L,—1((7n-1 + 1)An—1 + Yn-1) and m, > n > t, we have
that ¢ divides h,, so T*"» A = A. Then, for 1 <s <t and 0 < j < h,, — s with j € Q.(n),
(I jys VA) = p(T" (I s N A)) = (T Iy j s N A)
> ,u(TShn n,j+s N In,j N A) > ,u(TShnIn,]‘-ﬁ-s N In,j) - ,u(]n,j \A) > (1 - €)M(In,j) - eu'(ln,j)
meaning that if j € Q,(€) with j < h,, — s then j + s € @, (2¢).

Since j € Qn(¢) implies j € @, (2¢), this means that j,(e) + kt +s € Qn(2¢) forall k > 0and 0 < s < ¢
such that j,,(€) + kt + s < hy,. So Qn(2¢€) contains all j,(€) < j < hy,. Then |Q,(2¢)| > h, —t so

t
n(A) > Z (AN T, ;) > [Qn(2€)|(1 — 26)pu(Ln,;) > (1 o }T)(l —26)u(Cr) — 1 —2¢
JEQn(2¢) "
As € > 0 was arbitrary, we conclude that u(A) = 1. O

Remark 5.13. Our proof of weak mixing does not apply when =, is unbounded and we strongly suspect
our transformations with v, — oo are not weakly mixing.

6 Attaining specific complexities

We conclude with a brief discussion of the main open question:

Question 6.1. For what pairs of values 1 < a < 8 < 2 does there exists a weakly mixing (rank-one or
not) subshift with lim inf @ = « and lim sup %q) =p7

Obviously the most interesting question is whether there exists a weakly mixing subshift, necessarily not
rank-one, with § < 1.5. We tentatively conjecture that our examples are the best possible:

Conjecture 6.2. Every subshift admitting a weakly mixing (probability) measure has complexity such
that limsupr(@)/q > 1.5.

Heinis [Hei02] showed that § > 3 — % for every subshift with lim sup @ < 2. Our work shows that
B > 1.5 is necessary for total ergodicity in the rank-one setting.
The values o« =1 and 8 = ﬁ for v € N, v > 2, are attained by our examples as they have complexity

satisfying lim inf @ =1 provided L,, — oo, and lim sup @ =15+ ﬁ.

- 928 -



Word complexity of weakly mixing rank-one subshifts Darren Creutz

Ferenczi [Fer95] showed that the weakly mixing rank-one subshift given by B, = B21B2 has a = 1.5
and 8 = 5/3 (this is the example that was the previously known lowest complexity).

Our examples can be adapted to attain more pairs: for all 2 < m < M, by setting vy = M —1 and L = m,
Theorem 4.6 gives a weakly mixing subshift such that
p(q) 1 plg) _3 1

liminszl—kM and limsupT=§+4m_2

Since M > 3 and m > 2, all of these examples satisfy a < 4/3 and 8 < 5/s.
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