Measure-Theoretically Mixing Subshifts of Minimal Word Complexity

Darren Creutz*

13 June 2023

Abstract

We resolve a long-standing open question on the relationship between measuretheoretic dynamical complexity and symbolic complexity by establishing the exact word complexity at which measure-theoretic strong mixing manifests: For every superlinear $f: \mathbb{N} \rightarrow \mathbb{N}$, i.e. $f(q) / q \rightarrow \infty$, there exists a subshift admitting a (strongly) mixing of all orders probability measure with word complexity p such that $p(q) / f(q) \rightarrow 0$. For a subshift with word complexity p which is non-superlinear, i.e. $\lim \inf p(q) / q<\infty$, every ergodic probability measure is partially rigid.

Introduction

Among measure-theoretic dynamical properties of measure-preserving transformations, strong mixing of all orders is the 'most complex': every finite collection of measurable sets tends asymptotically toward independence, necessarily implying a significant amount of randomness. Despite this, 'low complexity' mixing transformations exist-there are mixing transformation with zero entropy-raising the question of how deterministic a mixing transformation can be.
Word complexity, the number $p(q)$ of distinct words of length q appearing in the language of the subshift, provides a more fine-grained means of quantifying complexity in the zero entropy setting, leading to the question of how low the word complexity of a mixing transformation can be.

Ferenczi [Fer95] initially conjectured that mixing transformations' word complexity should be superpolynomial but quickly refuted this himself [Fer96] showing that the staircase transformation, proven mixing by Adams [Ada98], has quadratic word complexity. Recent joint work of the author and R. Pavlov and S. Rodock [CPR22] exhibited subshifts admitting mixing measures with word complexity functions which are subquadratic but superlinear by more than a logarithm. We exhibit subshifts admitting mixing measures with complexity arbitrarily close to linear:

Theorem A. For every $f: \mathbb{N} \rightarrow \mathbb{N}$ which is superlinear, $f(q) / q \rightarrow \infty$, there exists a subshift, admitting a strongly mixing probability measure, with word complexity p such that $p(q) / f(q) \rightarrow 0$.

Our examples, which we call quasi-staircase transformations, are mixing rank-one transformations hence mixing of all orders [Kal84], [Ryz93]. We establish their word complexity is optimal:

Theorem B. Every subshift of non-superlinear word complexity, $\lim \inf p(q) / q<\infty$, equipped with an ergodic probability measure is partially rigid hence not strongly mixing,

Non-superlinear complexity subshifts are conjugate to S-adic shifts (Donoso, Durand, Maass and Petite [DDMP21]). Named by Vershik and the subject of a well-known conjecture of Host, S-adic subshifts are quite structured (see e.g. [Ler12] for more information on S-adicity).
Our work may be viewed as saying there is a sharp divide in 'measure-theoretic complexity', precisely at superlinear word complexity, between highly structured and highly complicated: as soon as the word complexity is 'large enough' to escape the S-adic structure and partial rigidity, there is already 'enough room' for (strong) mixing of all orders.

[^0]Cyr and Kra established that superlinear complexity is the dividing line for a subshift admitting countably many ergodic measures: there exists subshifts with complexity arbitrarily close to linear which admit uncountably many ergodic measures [CK20b] and non-superlinear complexity implies at most countably many [CK19], [Bos85]. Our work implies that in the non-superlinear case, the at most countably measures are all partially rigid (with a uniform rigidity constant). Their result, like ours, indicates that superlinear word complexity is the line at which complicated measure-theoretic phenomena can manifest.
Beyond the structure imposed by S-adicity, linear complexity subshifts are known to be structured in various ways (e.g. [CFPZ19], [CK20a], [DDMP16], [DOP21], [PS22a], [PS22b]). Our work indicates there is no hope for similar phenomena in any superlinear setting.

1 Definitions and preliminaries

1.1 Symbolic dynamics

Definition 1.1. A subshift on the finite set \mathcal{A} is any subset $X \subset \mathcal{A}^{\mathbb{Z}}$ which is closed in the product topology and shift-invariant: for all $x=\left(x_{n}\right)_{n \in \mathbb{Z}} \in X$ and $k \in \mathbb{Z}$, the translate $\left(x_{n+k}\right)_{n \in \mathbb{Z}}$ of x by k is also in X.

Definition 1.2. A word is any element of \mathcal{A}^{ℓ} for some ℓ, the length of w, written $\|w\|$. A word w is a subword of a word or biinfinite sequence x if there exists k so that $w_{i}=x_{i+k}$ for all $1 \leq i \leq\|w\|$. A word u is a prefix of w when $u_{i}=w_{i}$ for $1 \leq i \leq\|u\|$ and a word v is a suffix of w when $v_{i}=w_{i+\|w\|-\|v\|}$ for $1 \leq i \leq\|v\|$.

For words v, w, we denote by $v w$ their concatenation-the word obtained by following v immediately by w. We write such concatenations with product or exponential notation, e.g. $\prod_{i} w_{i}$ or 0^{n}.

Definition 1.3. The language of a subshift X is $\mathcal{L}(X)=\{w: w$ is a subword of some $x \in X\}$.
Definition 1.4. The word complexity function of a subshift X over \mathcal{A} is the function $p_{X}: \mathbb{N} \rightarrow \mathbb{N}$ defined by $p_{X}(q)=\left|\mathcal{L}(X) \cap \mathcal{A}^{q}\right|$, the number of words of length q in the language of X.

When X is clear from context, we suppress the subscript and just write $p(n)$.
For subshifts on the alphabet $\{0,1\}$, we consider:
Definition 1.5. The set of right-special words is $\mathcal{L}^{R S}(X)=\{w \in X: w 0, w 1 \in \mathcal{L}(X)\}$.
Cassaigne [Cas97] showed the well-known: $p(q)=p(m)+\sum_{\ell=m}^{q-1}\left|\left\{w \in \mathcal{L}^{R S}:\|w\|=\ell\right\}\right|$ for $m<q$.

1.2 Ergodic theory

Definition 1.6. A transformation T is a measurable map on a standard Borel or Lebesgue measure space (Y, \mathcal{B}, μ) that is measure-preserving: $\mu\left(T^{-1} B\right)=\mu(B)$ for all $B \in \mathcal{B}$.

Definition 1.7. Two transformations T on (Y, \mathcal{B}, μ) and T^{\prime} on $\left(Y^{\prime}, \mathcal{B}^{\prime}, \mu^{\prime}\right)$ are measure-theoretically isomorphic when there exists a bijective map ϕ between full measure subsets $Y_{0} \subset Y$ and $Y_{0}^{\prime} \subset Y^{\prime}$ where $\mu\left(\phi^{-1} A\right)=\mu^{\prime}(A)$ for all measurable $A \subset Y_{0}^{\prime}$ and $(\phi \circ T)(y)=\left(T^{\prime} \circ \phi\right)(y)$ for all $y \in Y_{0}$.

Definition 1.8. A transformation T is ergodic when $A=T^{-1} A$ implies that $\mu(A)=0$ or $\mu\left(A^{c}\right)=0$.
Theorem 1.9 (Mean Ergodic Theorem). If T is ergodic and on a finite measure space and $f \in L^{2}(Y)$,

$$
\lim _{n \rightarrow \infty} \int\left|\frac{1}{n} \sum_{i=0}^{n-1} f \circ T^{-i}-\int f d \mu\right| d \mu=0
$$

Definition 1.10. A transformation T is mixing when for all $A, B \in \mathcal{B}, \mu\left(T^{n} A \cap B\right) \rightarrow \mu(A) \mu(B)$.

1.3 Rank-one transformations

A rank-one transformation is a transformation T constructed by "cutting and stacking". Here Y represents a (possibly infinite) interval, \mathcal{B} is the induced σ-algebra from \mathbb{R}, and μ is Lebesgue measure. We give a brief description, referring the reader to $\left[\mathrm{FGH}^{+} 21\right]$ or [Sil08] for more details.
The transformation is defined inductively on larger and larger portions of the space through Rohlin towers or columns, denoted C_{n}. Each column C_{n} consists of levels $I_{n, j}$ where $0 \leq j<h_{n}$ is the height of the level within the column. All levels $I_{n, j}$ in C_{n} are intervals with the same length, $\mu\left(I_{n}\right)$, and the total number of levels in a column is the height of the column, denoted by h_{n}. The transformation T is defined on all levels $I_{n, j}$ except the top one $I_{n, h_{n}-1}$ by sending each $I_{n, j}$ to $I_{n, j+1}$ using the unique order-preserving affine map.

Start with $C_{1}=[0,1)$ with height $h_{1}=1$. To obtain C_{n+1} from C_{n}, we require a cut sequence, $\left\{r_{n}\right\}$ such that $r_{n} \geq 1$ for all n. Make r_{n} vertical cuts of C_{n} to create $r_{n}+1$ subcolumns of equal width. Denote a sublevel of C_{n} by $I_{n, j}^{[i]}$ where $0 \leq a<h_{n}$ is the height of the level within that column, and i represents the position of the subcolumn, where $i=0$ represents the leftmost subcolumn and $i=r_{n}$ is the rightmost subcolumn. After cutting C_{n} into subcolumns, add extra intervals called spacers on top of each subcolumn to function as levels of the next column. The spacer sequence, $\left\{s_{n, i}\right\}$ such that $0 \leq i \leq r_{n}$ and $s_{n, i} \geq 0$, specifies how many sublevels to add above each subcolumn. Spacers are the same width as the sublevels, act as new levels in the column C_{n+1}, and are taken to be the leftmost intervals in $[1, \infty)$ not in C_{n}. After the spacers are added, stack the subcolumns with their spacers right on top of left, i.e. so that $I_{n, 0}^{[i+1]}$ is directly above $I_{n, h_{n}-1}^{[i]}$. This gives the next column, C_{n+1}.
Each column C_{n} defines T on $\bigcup_{j=0}^{h_{n}-2} I_{n, j}$ and the partially defined map T on C_{n+1} agrees with that of C_{n}, extending the definition of T to a portion of the top level of C_{n} where it was previously undefined. Continuing this process gives the sequence of columns $\left\{C_{1}, \ldots, C_{n}, C_{n+1}, \ldots\right\}$ and T is then the limit of the partially defined maps.

Though this construction could result in Y being an infinite interval with infinite Lebesgue measure, Y has finite measure if and only if $\sum_{n} \frac{1}{r_{n} h_{n}} \sum_{i=0}^{r_{n}} s_{n, i}<\infty$, see [CS10]. All rank-one transformations we define satisfy this condition, and for convenience we renormalize so that $Y=[0,1)$. Every rank-one transformation is ergodic and invertible.

The reader should be aware that we are making r_{n} cuts and obtaining $r_{n}+1$ subcolumns (following Ferenczi [Fer96]), while other papers (e.g. [Cre21]) use r_{n} as the number of subcolumns.

1.4 Symbolic models of rank-one transformations

For a rank-one transformation defined as above, we define a subshift $X(T)$ on the alphabet $\{0,1\}$ which is measure-theoretically isomorphic to T :

Definition 1.11. The symbolic model $X(T)$ of a rank-one transformation T is given by the sequence of words: $B_{1}=0$ and

$$
B_{n+1}=B_{n} 1^{s_{n, 0}} B_{n} 1^{s_{n, 1}} \cdots B_{n} 1^{s_{n, r_{n}}}=\prod_{i=0}^{r_{n}} B_{n} 1^{s_{n, i}}
$$

and $X(T)$ is the set of all biinfinite sequences such that every subword is a subword of some B_{n}.
The words B_{n} are a symbolic coding of the column C_{n} : 0 represents C_{1} and 1 represents the spacers. There is a natural measure associated to $X(T)$:

Definition 1.12. The empirical measure for a symbolic model $X(T)$ of a rank-one transformation T is the measure ν defined by, for each word w,

$$
\nu([w])=\lim _{n \rightarrow \infty} \frac{\left|\left\{1 \leq j \leq\left\|B_{n}\right\|-\|w\|: B_{n[j, j+\|w\|)}=w\right\}\right|}{\left\|B_{n}\right\|-\|w\|}
$$

Danilenko [Dan16] (combined with [dJ77] and [Kal84]) proved that the symbolic model $X(T)$ of a rank-
one subshift, equipped with its empirical measure, is measure-theoretically isomorphic to the cut-andstack construction (see [AFP17]; see $\left[\mathrm{FGH}^{+} 21\right]$ for the full generality including odometers).
Due to this isomorphism, we move back and forth between rank-one and symbolic model terminology as needed and write $\mathcal{L}(T)$ for the language of $X(T)$.

2 Quasi-staircase transformations

Definition 2.1. Given nondecreasing sequences of integers $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ tending to infinity such that $c_{1} \geq 1$ and $c_{n+1} \geq c_{n}+b_{n}$, a quasi-staircase transformation is a rank-one transformation with cut sequence $r_{n}=a_{n} b_{n}$ and spacer sequence $s_{n, t}=c_{n}+\left\lfloor\frac{t}{a_{n}}\right\rfloor$ for $0 \leq t<r_{n}$ and $s_{n, r_{n}}=0$.

The symbolic representation of a quasi-staircase is $B_{1}=0$ and

$$
B_{n+1}=\left(\prod_{i=0}^{b_{n}-1}\left(B_{n} 1^{c_{n}+i}\right)^{a_{n}}\right) B_{n}
$$

The height sequence of a quasi-staircase is $h_{1}=1$ and $h_{n+1}=\left(a_{n} b_{n}+1\right) h_{n}+a_{n} b_{n} c_{n}+\frac{1}{2} a_{n} b_{n}\left(b_{n}-1\right)$.

2.1 Quasi-staircase right-special words

Lemma 2.2. Let $01^{z} 0 \in \mathcal{L}(T)$. Then there are unique n and i with $0 \leq i<b_{n}$ such that $z=$ $c_{n}+i$. $01^{c_{n}+i} 0$ is not a subword of B_{m} for $m \leq n$ and every occurrence of $01^{c_{n}+i} 0$ is as a suffix of $1^{c_{n+1}}\left(\prod_{j=0}^{i-1}\left(B_{n} 1^{c_{n}+j}\right)^{a_{n}}\right)\left(B_{n} 1^{c_{n}+i}\right)^{q} 0$ for some $1 \leq q \leq a_{n}$ (adopting the convention that \prod_{0}^{-1} is the empty word).

Proof. As every B_{n} begins and ends with 0 , the only such words are of the form $01^{c_{n}+i} 0$. Since $c_{n+1} \geq$ $c_{n}+b_{n}$, such n and i are unique. This also gives that $1^{c_{n}}$ is not a subword of B_{n}.
The word $01^{c_{n}+i} 0$ only occurs inside B_{n+1} due to $c_{n+1} \geq c_{n}+b_{n}$, and only as part of the $\left(B_{n} 1^{c_{n}+i}\right)^{a_{n}}$ in its construction, and B_{n+1} is always preceded by $1^{c_{n+1}}$

Proposition 2.3. If $w \in \mathcal{L}^{R S}(T)$ then at least one of the following holds:
(i) $w=1^{\|w\|}$
(ii) w is a suffix of $1^{c_{n}+i-1}\left(B_{n} 1^{c_{n}+i}\right)^{a_{n}}$ for some n and $0 \leq i<b_{n}$
(iii) w is a suffix of $1^{c_{n}+b_{n}-1} B_{n} 1^{c_{n}}$ for some n
(iv) $w=1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{a_{n}}$

Proof. Let $w \in \mathcal{L}^{R S}(T)$. Since $c_{1} \geq 1$, the word $00 \notin \mathcal{L}(T)$ so w does not end in 0 . If $w=1^{\|w\|}$ then w is of form (i) so from here on, assume that w contains at least one 0 .

Let $z \geq 1$ such that w has 01^{z} as a suffix. Then $w 0$ has $01^{z} 0$ as a suffix so $z=c_{n}+i$ for some unique $n \geq 1$ and $0 \leq i<b_{n}$ by Lemma 2.2. As $w 0$ has $01^{c_{n}+i} 0$ as a suffix, $w 0$ shares a suffix with the word $1^{c_{n+1}}\left(\prod_{j=0}^{i-1}\left(B_{n} 1^{c_{n}+j}\right)^{a_{n}}\right)\left(B_{n} 1^{c_{n}+i}\right)^{q} 0$ for some $1 \leq q \leq a_{n}$.
First consider the case when $i>0$. If w is a suffix of $1^{c_{n}+i-1}\left(B_{n} 1^{c_{n}+i}\right)^{a_{n}}$ then it is of form (ii) so we need only consider w that have $01^{c_{n}+i-1}\left(B_{n} 1^{c_{n}+i}\right)^{q}$ as a suffix. For such w, the word $w 1$ has the suffix $01^{c_{n}+i-1}\left(B_{n} 1^{c_{n}+i}\right)^{q-1} B_{n} 1^{c_{n}+i+1}$ but that word is only in $\mathcal{L}(T)$ if $q-1=a_{n}$ which is impossible.
Now consider the case when $i=0$, i.e. $z=c_{n}$. If w is a suffix of $1^{c_{n}-1}\left(B_{n} 1^{c_{n}}\right)^{a_{n}}$ then it is of form (ii) so we may assume that w has $1^{c_{n}-1}\left(B_{n} 1^{c_{n}}\right)^{q}$ as a strict suffix for some $1 \leq q \leq a_{n}$. Since $B_{n} 1^{c_{n}}$ is always preceded by $1^{c_{n}}$ (possibly as part of some $1^{c_{n+1}+i}$ or $1^{c_{n}+i}$), w cannot have $01^{c_{n}-1} B_{n} 1^{c_{n}}$ as a subword so w has $1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{q}$ as a suffix for some $1 \leq q \leq a_{n}$.
Take q maximal so that w has $1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{q}$ as a suffix.

Consider first when w has $1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{a_{n}}$ as a suffix, i.e. when $q=a_{n}$. If $w=1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{a_{n}}$ then it is of form (iv). If w has $01^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{a_{n}}$ as a suffix then $w 0 \notin \mathcal{L}(T)$ as $0\left(1^{c_{n}} B_{n}\right)^{a_{n}} 1^{c_{n}} 0 \notin \mathcal{L}(T)$. If w has $11^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{a_{n}}$ as a suffix then $w 1$ has $1^{c_{n}+1}\left(B_{n} 1^{c_{n}}\right)^{a_{n}-1} B_{n} 1^{c_{n}+1}$ as a suffix but that is not in $\mathcal{L}(T)$.

So we may assume $q<a_{n}$. Since $1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{q}$ is then of form (ii), we may assume $1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{q}$ is a strict suffix of w.

Consider when w has $01^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{q}$ as a suffix. As $01^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{q}$ only appears as a suffix of $B_{n} 1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{q}$ and that word is always preceded by $1^{c_{n}}$ (possibly as part of some $1^{c_{n+1}+i}$), w then shares a suffix with $1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{q+1}$. As q is maximal, then w is a suffix of $1^{c_{n}-1}\left(B_{n} 1^{c_{n}}\right)^{q+1}$ and, as $q<a_{n}$, this means w is of form (ii).
We are left with the case when w has $1^{c_{n}+1}\left(B_{n} 1^{c_{n}}\right)^{q}$ as a suffix for some $1 \leq q<a_{n}$. If $q \geq 2$ then $w 1$ has $1^{c_{n}+1}\left(B_{n} 1^{c_{n}}\right)^{q-1} B_{n} 1^{c_{n}+1}$ as a suffix but that is not in $\mathcal{L}(T)$ for $q-1 \geq 1$. So we are left with the situation when w shares a suffix with $1^{c_{n}+1} B_{n} 1^{c_{n}}$. So $w 0$ shares a suffix with $1^{c_{n}+1} B_{n} 1^{c_{n}} 0$ which must share a suffix with $1^{c_{n+1}} B_{n} 1^{c_{n}} 0$, meaning that w shares a suffix with $1^{c_{n+1}} B_{n} 1^{c_{n}}$. If w is a suffix of $1^{c_{n}+b_{n}-1} B_{n} 1^{c_{n}}$ then it is of form (iii). If not then w has the suffix $1^{c_{n}+b_{n}} B_{n} 1^{c_{n}}$ so $w 1$ has suffix $1^{c_{n}+b_{n}} B_{n} 1^{c_{n}+1}$ which is not in $\mathcal{L}(T)$ since $B_{n} 1^{c_{n}+1}$ is always preceded by $B_{n} 1^{c_{n}}$ or $B_{n} 1^{c_{n}+1}$.

Lemma 2.4. $1^{\ell} \in \mathcal{L}^{R S}(T)$ for all ℓ.
Proof. For n such that $\ell<c_{n}$, as the word $1^{c_{n}} B_{n}$ is a subword of B_{n+1}, so are $1^{\ell+1}$ and $1^{\ell} 0$ since $\ell<c_{n}$ and B_{n} starts with 0 .

Lemma 2.5. If w is a suffix of $1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{a_{n}}$ then $w \in \mathcal{L}^{R S}(T)$.
Proof. B_{n+2} has $1^{c_{n+1}} B_{n+1}=1^{c_{n+1}-c_{n}} 1^{c_{n}} B_{n+1}$ as a subword which has $1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{a_{n}} B_{n}$ as a subword which gives $1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{a_{n}} 0 \in \mathcal{L}(T)$. B_{n+1} has $\left(B_{n} 1^{c_{n}}\right)^{a_{n}} B_{n} 1^{c_{n}+1}$ as a prefix which has suffix $1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{a_{n}-1} B_{n} 1^{c_{n}+1}$ and that word is $1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{a_{n}} 1$ giving $1^{c_{n}-1}\left(B_{n} 1^{c_{n}}\right)^{a_{n}} 1 \in \mathcal{L}(T)$.

Lemma 2.6. If w is a suffix of $1^{c_{n}+i-1}\left(B_{n} 1^{c_{n}+i}\right)^{a_{n}}$ for $0<i<b_{n}$ then $w \in \mathcal{L}^{R S}(T)$.
Proof. B_{n+1} has $1^{c_{n}+i-1}\left(B_{n} 1^{c_{n}+i}\right)^{a_{n}} B_{n}$ as a subword which gives $1^{c_{n}+i-1}\left(B_{n} 1^{c_{n}+i}\right)^{a_{n}} 0 \in \mathcal{L}(T)$. When $i<b_{n}-1, B_{n+1}$ has $\left(1^{c_{n}+i} B_{n}\right)^{a_{n}} 1^{c_{n}+i+1}$ as a subword which gives $1^{c_{n}+i-1}\left(B_{n} 1^{c_{n}+i}\right)^{a_{n}} 1 \in \mathcal{L}(T)$; when $i=b_{n}-1, B_{n+2}$ has the subword $\left(1^{c_{n}+b_{n}-1} B_{n}\right)^{a_{n}} 1^{c_{n+1}}$ so $1^{c_{n}+b_{n}-2}\left(B_{n} 1^{c_{n}+b_{n}-1}\right)^{a_{n}} 1^{c_{n+1}-c_{n}-b_{n}+1} \in \mathcal{L}(T)$ so $1^{c_{n}+b_{n}-2}\left(B_{n} 1^{c_{n}+b_{n}-1}\right)^{a_{n}} 1 \in \mathcal{L}(T)$ as $c_{n+1} \geq c_{n}+b_{n}$.

Lemma 2.7. If w is a suffix of $1^{c_{n}+b_{n}-1} B_{n} 1^{c_{n}}$ then $w \in \mathcal{L}^{R S}(T)$.
Proof. B_{n+2} has $B_{n+1} 1^{c_{n+1}} B_{n+1}$ as a subword which has $B_{n+1} 1^{c_{n+1}} B_{n} 1^{c_{n}} B_{n}$ as a prefix, and that word has $1^{c_{n}+b_{n}-1} B_{n} 1^{c_{n}} 0$ as a subword since $c_{n}+b_{n}-1<c_{n+1}$. Also B_{n+2} has $B_{n+1} 1^{c_{n+1}}$ as a subword which has $1^{c_{n}+b_{n}-1} B_{n} 1^{c_{n+1}}$ as a suffix which then has $1^{c_{n}+b_{n}-1} B_{n} 1^{c_{n}} 1$ as a subword.

2.2 The level- n complexity functions

Definition 2.8. For a word w, define the tail length $z(w)$ such that $w=u 01^{z(w)}$ for some (possibly empty) word u with the conventions that $z\left(1^{\|w\|}\right)=\infty$ and $z(u 0)=0$.

Definition 2.9. For $1 \leq n<\infty$, the set of level- n generating words is

$$
W_{n}=\left\{w \in \mathcal{L}^{R S}(T): c_{n} \leq z(w)<c_{n+1}\right\}
$$

Proposition 2.10. $\mathcal{L}^{R S}(T)=\left\{1^{\ell}: \ell \in \mathbb{N}\right\} \sqcup \bigsqcup_{n=1}^{\infty} W_{n}$.
Proof. $\left\{c_{n}\right\}$ is strictly increasing so the W_{n} are disjoint. Lemma 2.4 says $1^{\ell} \in \mathcal{L}^{R S}(T)$ for all ℓ and as every word in W_{n} has 0 as a subword, these are disjoint from the W_{n}. If $z(w)<c_{1}$ then $w 0 \notin \mathcal{L}(T)$ by Lemma 2.2 so all right-special words with 0 as a subword are in some W_{n}.

Definition 2.11. The level- n complexity is $p_{n}(q)=\left|\left\{w \in W_{n}:\|w\|<q\right\}\right|$.
By definition, $p_{n}(\ell+1)-p_{n}(\ell)=\left|\left\{w \in W_{n}:\|w\|=\ell\right\}\right|$.
Proposition 2.12. The complexity function p satisfies $p(q)=1+q+\sum_{n=1}^{\infty} p_{n}(q)$.
Proof. Using Proposition 2.10 and that $p(\ell+1)-p(\ell)=\left|\left\{w \in \mathcal{L}^{R S}:\|w\|=\ell\right\}\right|$,

$$
\begin{aligned}
p(q)-p(1) & =\sum_{\ell=1}^{q-1}(p(\ell+1)-p(\ell))=\sum_{\ell=1}^{q-1}\left|\left\{w \in \mathcal{L}^{R S}(T):\|w\|=\ell\right\}\right| \\
& =\sum_{\ell=1}^{q-1}\left(\sum_{n=1}^{\infty}\left|\left\{w \in W_{n}:\|w\|=\ell\right\}\right|+\left|\left\{1^{\ell}\right\}\right|\right)=\sum_{\ell=1}^{q-1}\left(\sum_{n=1}^{\infty}\left(p_{n}(\ell+1)-p_{n}(\ell)\right)+1\right) \\
& =\sum_{n=1}^{\infty}\left(\sum_{\ell=1}^{q-1}\left(p_{n}(\ell+1)-p_{n}(\ell)\right)\right)+q-1=\sum_{n=1}^{\infty}\left(p_{n}(q)-p_{n}(1)\right)+q-1
\end{aligned}
$$

All words in W_{n} have length at least $1+c_{n}>1$ so $p_{n}(1)=0$. The claim follows as $p(1)=2$.

2.3 Counting quasi-staircase words

Lemma 2.13. If $w \in W_{n}$ then exactly one of the following holds:
(i) w is a suffix of $1^{c_{n}+i-1}\left(B_{n} 1^{c_{n}+i}\right)^{a_{n}}$ and $\|w\|>c_{n}+i$ for some $0 \leq i<b_{n}$;
(ii) w is a suffix of $1^{c_{n}+b_{n}-1} B_{n} 1^{c_{n}}$ and $\|w\|>h_{n}+2 c_{n}$; or
(iii) $w=1^{c_{n}}\left(B_{n} 1^{c_{n}}\right)^{a_{n}}$

Proof. The only words in Proposition 2.3 which have $c_{n} \leq z(w)<c_{n+1}$ are of the stated forms; Lemmas $2.5,2.6$ and 2.7 state that these words are in $\mathcal{L}^{R S}(T)$. The forms do not overlap due to the restriction on $\|w\|$ in form (ii).

Lemma 2.14. Fix $0 \leq i<b_{n}$. For $c_{n}+i<\ell<a_{n} h_{n}+\left(a_{n}+1\right)\left(c_{n}+i\right)$ there is exactly one word in W_{n} of form (i) for that value of i; for ℓ not in that range, there are no words of form (i) for that i in W_{n}.

Proof. For $w \in W_{n}$ of form (i), $w=u 1^{c_{n}+i}$ where u is a nonempty suffix of $1^{c_{n}+i-1}\left(B_{n} 1^{c_{n}+i}\right)^{a_{n}-1} B_{n}$. The word u is unique if it exists which is exactly when $c_{n}+i=\left\|1^{c_{n}+i}\right\|<\|w\| \leq\left\|1^{c_{n}+i-1}\left(B_{n} 1^{c_{n}+i}\right)^{a_{n}}\right\|=$ $a_{n} h_{n}+\left(a_{n}+1\right)\left(c_{n}+i\right)-1$.

Lemma 2.15. For $h_{n}+2 c_{n}<\ell<h_{n}+2 c_{n}+b_{n}$ there is exactly one word in W_{n} of form (ii); for ℓ not in that range, there are no words of form (ii) in W_{n}.

Proof. To be of that form, $w=u 1^{c_{n}}$ where u is a nonempty suffix of $1^{c_{n}+b_{n}-1} B_{n}$ that has $1^{c_{n}+1}$ as a prefix. The word u is unique if it exists and it exists exactly when $h_{n}+2 c_{n}+1=\left\|1^{c_{n}+1} B_{n} 1^{c_{n}}\right\| \leq\|w\| \leq$ $\left\|1^{c_{n}+b_{n}-1} B_{n} 1^{c_{n}}\right\|=h_{n}+2 c_{n}+b_{n}-1$.

Lemma 2.16. If $\ell \leq c_{n}$ then $p_{n}(\ell+1)-p_{n}(\ell)=0$.
Proof. Every $w \in W_{n}$ has subwords $1^{c_{n}}$ and 0 so $\|w\| \geq c_{n}+1$.
Lemma 2.17. If $c_{n}<\ell<c_{n}+b_{n}$ then $p_{n}(\ell+1)-p_{n}(\ell)=\ell-c_{n}$.
Proof. Lemma 2.14 applies for $0 \leq i<\ell-c_{n}$ but not for $\ell-c_{n} \leq i<b_{n}$. Lemma 2.15 does not apply.
Lemma 2.18. If $c_{n}+b_{n} \leq \ell \leq h_{n}+2 c_{n}$ then $p_{n}(\ell+1)-p_{n}(\ell)=b_{n}$.

Proof. Lemma 2.14 applies for all $0 \leq i<b_{n}$ and Lemma 2.15 does not apply.
Lemma 2.19. If $h_{n}+2 c_{n}<\ell<h_{n}+2 c_{n}+b_{n}$ then $p_{n}(\ell+1)-p_{n}(\ell)=b_{n}+1$.
Proof. Lemma 2.14 applies for all $0 \leq i<b_{n}$ and Lemma 2.15 applies.
Lemma 2.20. If $h_{n}+2 c_{n}+b_{n} \leq \ell<a_{n} h_{n}+\left(a_{n}+1\right) c_{n}$ then $p_{n}(\ell+1)-p_{n}(\ell)=b_{n}$.
Proof. Lemma 2.14 applies for all $0 \leq i<b_{n}$ and Lemma 2.15 does not apply.
Lemma 2.21. $p_{n}\left(a_{n} h_{n}+\left(a_{n}+1\right) c_{n}+1\right)-p_{n}\left(a_{n} h_{n}+\left(a_{n}+1\right) c_{n}\right)=b_{n}+1$.
Proof. Lemma 2.14 applies for all $0 \leq i<b_{n}$ and Lemma 2.15 does not apply. Lemma 2.13 form (iii) gives one additional word in W_{n}.

Lemma 2.22. If $a_{n} h_{n}+\left(a_{n}+1\right) c_{n}+1<\ell<a_{n} h_{n}+\left(a_{n}+1\right)\left(c_{n}+b_{n}-1\right)$ then $p_{n}(\ell+1)-p_{n}(\ell) \leq b_{n}$.
Proof. Lemma 2.14 applies for some subset of $0 \leq i<b_{n}$ and Lemma 2.15 does not apply.
Lemma 2.23. $p\left(a_{n} h_{n}+\left(a_{n}+1\right) c_{n}+\left(a_{n}+1\right)\left(b_{n}-1\right)\right)-p\left(a_{n} h_{n}+\left(a_{n}+1\right) c_{n}\right)=\frac{1}{2}\left(a_{n}+1\right) b_{n}\left(b_{n}-1\right)+1$.
Proof. For each $0 \leq i<b_{n}$, Lemma 2.14 applies for $\ell=a_{n} h_{n}+\left(a_{n}+1\right) c_{n}+y$ exactly when $0 \leq y<$ $\left(a_{n}+1\right) i$, therefore there are a total of $\left(a_{n}+1\right) \frac{1}{2} b_{n}\left(b_{n}-1\right)$ words in W_{n} of the enclosed lengths from Lemma 2.14. Lemma 2.15 does not apply and Lemma 2.13 form (iii) gives one additional word.

Lemma 2.24. If $a_{n} h_{n}+\left(a_{n}+1\right)\left(c_{n}+b_{n}-1\right) \leq \ell$ then $p_{n}(\ell+1)-p_{n}(\ell)=0$.
Proof. Neither Lemma 2.14 nor 2.15 apply.

2.4 Bounding the complexity of quasi-staircases

Since $p_{n}(\ell+1)-p_{n}(\ell)=0$ for $\ell \geq a_{n} h_{n}+\left(a_{n}+1\right)\left(c_{n}+b_{n}-1\right)$, we define:
Definition 2.25. The post-productive sequence is

$$
m_{n}=a_{n} h_{n}+\left(a_{n}+1\right)\left(c_{n}+b_{n}-1\right)
$$

Lemma 2.26. $p_{n}\left(m_{n}\right)=h_{n+1}-h_{n}$
Proof. By Lemma 2.16, $p_{n}\left(c_{n}\right)=\sum_{\ell=0}^{c_{n}-1}\left(p_{n}(\ell+1)-p_{n}(\ell)\right)=0$.
By Lemma 2.17, $p_{n}\left(c_{n}+b_{n}\right)-p_{n}\left(c_{n}\right)=\sum_{\ell=c_{n}}^{c_{n}+b_{n}-1}\left(\ell-c_{n}\right)=\frac{1}{2} b_{n}\left(b_{n}-1\right)$.
By Lemma 2.18, $p_{n}\left(h_{n}+2 c_{n}+1\right)-p_{n}\left(c_{n}+b_{n}\right)=\left(h_{n}+c_{n}+1-b_{n}\right) b_{n}$.
By Lemma 2.19, $p_{n}\left(h_{n}+2 c_{n}+b_{n}\right)-p_{n}\left(h_{n}+2 c_{n}+1\right)=\left(b_{n}+1\right)\left(b_{n}-1\right)$.
By Lemma 2.20, $p_{n}\left(a_{n} h_{n}+\left(a_{n}+1\right) c_{n}\right)-p_{n}\left(h_{n}+2 c_{n}+b_{n}\right)=\left(\left(a_{n}-1\right) h_{n}+\left(a_{n}-1\right) c_{n}-b_{n}\right) b_{n}$.
By Lemma 2.23, $p_{n}\left(m_{n}\right)-p\left(a_{n} h_{n}+\left(a_{n}+1\right) c_{n}\right)=\frac{1}{2}\left(a_{n}+1\right) b_{n}\left(b_{n}-1\right)+1$. Therefore

$$
\begin{aligned}
p_{n}\left(m_{n}\right)= & \frac{1}{2} b_{n}\left(b_{n}-1\right)+\left(h_{n}+c_{n}+1-b_{n}\right) b_{n}+\left(b_{n}+1\right)\left(b_{n}-1\right) \\
& \quad+\left(\left(a_{n}-1\right) h_{n}+\left(a_{n}-1\right) c_{n}-b_{n}\right) b_{n}+\frac{1}{2}\left(a_{n}+1\right) b_{n}\left(b_{n}-1\right)+1 \\
= & a_{n} b_{n} h_{n}+a_{n} b_{n} c_{n}+\frac{1}{2} a_{n} b_{n}\left(b_{n}-1\right)+b_{n}\left(b_{n}-1\right)+b_{n}-b_{n}^{2}+b_{n}^{2}-1-b_{n}^{2}+1=h_{n+1}-h_{n}
\end{aligned}
$$

Definition 2.27. For $q \in \mathbb{N}$ define

$$
\alpha(q)=\max \left\{n: m_{n} \leq q\right\} \quad \text { and } \quad \beta(q)=\min \left\{n: q<c_{n+1}\right\}
$$

Lemma 2.28. $\alpha(q) \leq \beta(q)$
Proof. If $\beta(q) \leq \alpha(q)-1$ then $m_{\alpha(q)} \leq q<c_{\beta(q)+1} \leq c_{\alpha(q)-1+1}=c_{\alpha(q)}<m_{\alpha(q)}$ is impossible.
Lemma 2.29. If $q<c_{n}$ then $p_{n}(q)=0$. If $c_{n} \leq q<m_{n}$ then $p_{n}(q) \leq\left(q-c_{n}+1\right) b_{n}$. If $m_{n} \leq q$ then $p_{n}(q)=h_{n+1}-h_{n}$.

Proof. Lemma 2.16 gives $p_{n}(\ell+1)-p_{n}(\ell)=0$ for $0 \leq \ell<c_{n}$. Lemmas 2.17, 2.18, 2.19, 2.20 and 2.22 all give $p_{n}(\ell+1)-p_{n}(\ell) \leq b_{n}$ for $c_{n} \leq \ell<m_{n}$ except for Lemma 2.19 which gives $p_{n}(\ell+1)-p_{n}(\ell)=b_{n}+1$ for exactly $b_{n}-1$ values of ℓ and Lemma 2.21 which gives one additional word. Then, for $c_{n} \leq q<m_{n}$,

$$
p_{n}(q)=\sum_{\ell=0}^{q-1}\left(p_{n}(\ell+1)-p_{n}(\ell)\right)=\sum_{\ell=0}^{c_{n}-1} 0+\sum_{\ell=c_{n}}^{q-1}\left(p_{n}(\ell+1)-p_{n}(\ell)\right) \leq\left(q-c_{n}\right) b_{n}+b_{n}
$$

Lemma 2.24 says $p_{n}(\ell+1)-p_{n}(\ell)=0$ for $\ell \geq m_{n}$ so when $q \geq m_{n}, p_{n}(q)=p_{n}\left(m_{n}\right)$ and Lemma 2.26 gives the final statement.

Proposition 2.30. $p(q) \leq q\left(2+\sum_{n=\alpha(q)}^{\beta(q)} b_{n}\right)$ for all q.
Proof. For n such that $\beta(q)<n$, by Lemma 2.16, $p_{n}(q)=0$. Proposition 2.12 and Lemma 2.29 give, using that $h_{1}=1$ so $1+\sum_{n=1}^{\alpha(q)}\left(h_{n+1}-h_{n}\right)=h_{\alpha(q)+1}$,

$$
\begin{aligned}
p(q) & =q+1+\sum_{n=1}^{\alpha(q)} p_{n}(q)+\sum_{n=\alpha(q)+1}^{\beta(q)} p_{n}(q)+\sum_{n=\beta(q)+1}^{\infty} p_{n}(q) \\
& \leq q+1+\sum_{n=1}^{\alpha(q)}\left(h_{n+1}-h_{n}\right)+\sum_{n=\alpha(q)+1}^{\beta(q)}\left(q-c_{n}+1\right) b_{n}+0 \leq q+h_{\alpha(q)+1}+\sum_{n=\alpha(q)+1}^{\beta(q)} q b_{n}
\end{aligned}
$$

and

$$
\begin{aligned}
h_{\alpha(q)+1} & =h_{\alpha(q)}+b_{\alpha(q)}\left(a_{\alpha(q)} h_{\alpha(q)}+a_{\alpha(q)} c_{\alpha(q)}+\frac{1}{2} a_{\alpha(q)}\left(b_{\alpha(q)}-1\right)\right) \\
& \leq h_{\alpha(q)}+b_{\alpha(q)} m_{\alpha(q)} \leq m_{\alpha(q)}\left(1+b_{\alpha(q)}\right) \leq q\left(1+b_{\alpha(q)}\right)
\end{aligned}
$$

3 Quasi-staircase complexity arbitrarily close to linear

Proposition 3.1. Let $\left\{d_{n}\right\}$ be a nondecreasing sequence of integers such that $d_{n} \rightarrow \infty$ and $d_{1}=d_{2}=1$ and $d_{n+1}-d_{n} \in\{0,1\}$ and $d_{n+1}-d_{n}$ does not take the value 1 for consecutive n.
Let $\left\{b_{n}\right\}$ be a nondecreasing sequence of integers such that $b_{n} \rightarrow \infty$ and $b_{1}=3$ and $b_{n} \leq n+2$.
Set $a_{n}=2 n+2$. Set $c_{1}=1$ and for $n>1$,

$$
c_{n}= \begin{cases}m_{n-d_{n}} & \text { when } d_{n}=d_{n-1} \\ c_{n-1}+b_{n-1} & \text { when } d_{n}=d_{n-1}+1\end{cases}
$$

Then $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ define a quasi-staircase such that $\sum \frac{a_{n} b_{n}^{2}+a_{n+1} b_{n+1}+c_{n+1}}{h_{n}}<\infty$.
Proof. Since $r_{n}=a_{n} b_{n}$, we have $6 n+6 \leq r_{n} \leq(2 n+2)(n+2)$. Then $\prod_{j=1}^{n-1}\left(r_{j}+1\right) \geq n$! so $h_{n} \geq$ $\prod_{j=1}^{n-1}\left(r_{j}+1\right) \geq n!$ so $\sum \frac{a_{n} b_{n}^{2}+a_{n+1} b_{n+1}}{h_{n}} \leq \sum \frac{(2 n+2)(n+2)^{2}+(2 n+4)(n+3)}{n!}<\infty$.

For n such that $d_{n}=d_{n-1}+1$, we have $c_{n}=c_{n-1}+b_{n-1}$ and $d_{n-1}-d_{n-2}=0$ since $\left\{d_{n}\right\}$ never increases for two consecutive values, so $c_{n-1}=m_{n-1-d_{n-1}}$. As $n-d_{n}=n-1-d_{n-1}$, then $c_{n}=$ $m_{n-1-d_{n-1}}+b_{n-1}=m_{n-d_{n}}+b_{n-1}$. So $m_{n-d_{n}} \leq c_{n} \leq m_{n-d_{n}}+b_{n-1}$ for all n.
Since $b_{n} \geq 3$, we have $r_{n} \leq \frac{1}{2} r_{n}\left(b_{n}-1\right)$. As $b_{n} \leq a_{n}+1$ and $a_{n}+1 \leq a_{n} b_{n}$,

$$
m_{n}=a_{n} h_{n}+\left(a_{n}+1\right) c_{n}+r_{n}+b_{n}-a_{n}-1 \leq\left(a_{n} b_{n}+1\right) h_{n}+a_{n} b_{n} c_{n}+\frac{1}{2} r_{n}\left(b_{n}-1\right)=h_{n+1}
$$

and therefore, since $d_{n} \geq 1$ so $n-d_{n}+1 \leq n$,

$$
c_{n} \leq m_{n-d_{n}}+b_{n-1} \leq h_{n-d_{n}+1}+b_{n-1} \leq h_{n}+b_{n-1} \leq 2 h_{n}
$$

meaning that, as $r_{n}+b_{n} \leq h_{n}$,

$$
m_{n}=\left(a_{n}+1\right) c_{n}+a_{n} h_{n}+r_{n}+b_{n}-a_{n}-1 \leq 2\left(a_{n}+1\right) h_{n}+a_{n} h_{n}+h_{n} \leq 3\left(a_{n}+1\right) h_{n}
$$

We now claim that $c_{n+1} \geq c_{n}+b_{n}$ for all n. The case when $c_{n}=m_{n-d_{n}}$, which occurs when $d_{n}=d_{n-1}$, is all we need to check. Since $d_{2}=d_{1}=1$, we have $c_{2}=m_{1} \geq c_{1}+b_{1}$. Since $d_{n} \leq \frac{n}{2}$, we have $a_{n-d_{n}-1}=2\left(n-d_{n}-1\right)+2 \geq 2\left(\frac{n}{2}-1\right)+2=n$. As $b_{n} \leq n+2$ and $b_{n} \geq 3$,

$$
\begin{aligned}
c_{n}-c_{n-1}-b_{n-1} & \geq m_{n-d_{n}}-\left(m_{n-d_{n-1}-1}+b_{n-2}\right)-b_{n-1}=m_{n-d_{n}}-m_{n-d_{n}-1}-b_{n-2}-b_{n-1} \\
& \geq a_{n-d_{n}} h_{n-d_{n}}-3\left(a_{n-d_{n}-1}+1\right) h_{n-d_{n}-1}-n-(n+1) \\
& \geq a_{n-d_{n}} a_{n-d_{n}-1} b_{n-d_{n}-1} h_{n-d_{n}-1}-3\left(a_{n-d_{n}-1}+1\right) h_{n-d_{n}-1}-2 n-1 \\
& =\left(a_{n-d_{n}} a_{n-d_{n}-1} b_{n-d_{n}-1}-3\left(a_{n-d_{n}-1}+1\right)\right) h_{n-d_{n}-1}-2 n-1 \\
& \geq\left(3 a_{n-d_{n}} a_{n-d_{n}-1}-3 a_{n-d_{n}-1}-3\right) h_{n-d_{n}-1}-2 n-1 \\
& \geq 3 a_{n-d_{n}-1}\left(a_{n-d_{n}}-2\right) h_{n-d_{n}-1}-2 n-1 \geq 3 n(n-2)-2 n-1>0
\end{aligned}
$$

for $n \geq 3$. Then $c_{n+1} \geq c_{n}+b_{n}$ for all n so $\left\{c_{n}\right\},\left\{a_{n}\right\},\left\{b_{n}\right\}$ define a quasi-staircase transformation. Now observe that

$$
\sum_{n} \frac{c_{n}}{h_{n}} \leq \sum_{n} \frac{m_{n-d_{n}}+b_{n-1}}{h_{n}} \leq 3 \sum_{n} \frac{\left(a_{n-d_{n}}+1\right) h_{n-d_{n}}}{h_{n}}+\sum_{n} \frac{b_{n}}{h_{n}}
$$

and the second sum converges as shown at the start of the proof.
As $h_{n} \geq h_{n-d_{n}} \prod_{j=n-d_{n}}^{n-1}\left(r_{j}+1\right)$,

$$
\begin{aligned}
\sum_{n} \frac{\left(a_{n-d_{n}}+1\right) h_{n-d_{n}}}{h_{n}} & \leq \sum_{n} \frac{a_{n-d_{n}}+1}{\prod_{j=n-d_{n}}^{n-1}\left(r_{j}+1\right)}=\sum_{n} \frac{a_{n-d_{n}}+1}{r_{a_{n-d_{n}}}+1} \frac{1}{\prod_{j=n-d_{n}+1}^{n-1}\left(r_{j}+1\right)} \\
& \leq \sum_{n} \frac{1}{\left(r_{n-d_{n}+1}+1\right)^{d_{n}-1}}=\sum_{n}\left(r_{n-d_{n}+1}+1\right)^{1-d_{n}}
\end{aligned}
$$

Since $r_{n-d_{n}+1} \geq 2\left(n-d_{n}+1\right) \geq 2(n-n / 2+1) \geq n$, we have $\left(r_{n-d_{n}+1}+1\right)^{1-d_{n}} \leq n^{1-d_{n}}$. Then, as $d_{n} \geq 3$ eventually, $\sum\left(r_{n-d_{n}+1}+1\right)^{1-d_{n}} \leq \sum n^{1-d_{n}}<\infty$. Therefore $\sum \frac{c_{n}}{h_{n}}<\infty$.
Now observe that

$$
\sum_{n: c_{n+1}=c_{n}+b_{n}} \frac{c_{n+1}}{h_{n}} \leq \sum_{n} \frac{c_{n}+b_{n}}{h_{n}}<\infty
$$

and, since $d_{n} \geq 3$ implies $m_{n-d_{n}} \leq m_{n-3} \leq 2 a_{n-3} h_{n-3}$,

$$
\sum_{n: c_{n+1}=m_{n-d_{n}, d_{n} \geq 3}} \frac{c_{n+1}}{h_{n}} \leq \sum_{n} \frac{2 a_{n-3} h_{n-3}}{h_{n}}<\sum_{n} \frac{2 a_{n-3} h_{n-3}}{a_{n-1} a_{n-2} a_{n-3} h_{n-3}}=\sum_{n} \frac{2}{2 n(2 n-2)}<\infty
$$

and $d_{n} \geq 3$ eventually so $\sum \frac{c_{n+1}}{h_{n}}<\infty$.
Lemma 3.2. If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(q) \rightarrow \infty$ then there exists $g: \mathbb{N} \rightarrow \mathbb{N}$ which is nondecreasing such that $g(1)=1$ and $g(q) \leq f(q)$ and $g(q+2)-g(q) \leq 1$ for all q and $g(q) \rightarrow \infty$.

Proof. Set $f^{*}(q)=\inf _{q^{\prime} \geq q} f\left(q^{\prime}\right)$. Then $f^{*}(q) \rightarrow \infty$ and $f^{*}(q)$ is nondecreasing and $f^{*}(q) \leq f(q)$ for all q. Set $g(1)=1 \leq f^{*}(1)$. For $n \geq 0$, set $g(2 n+2)=g(2 n+1)$ and for $n \geq 1$ set

$$
g(2 n+1)=g(2 n)+ \begin{cases}1 & \text { when } f^{*}(2 n+1)>f^{*}(2 n-1) \\ 0 & \text { otherwise }\end{cases}
$$

Then g is nondecreasing and $g(q+2)-g(q) \leq 1$ for all q. Since f^{*} is integer-valued, if $f^{*}(2 n+1)-$ $f^{*}(2 n-1) \neq 0$ then $f^{*}(2 n+1)-f^{*}(2 n-1) \geq 1$. Then $g(2 n+1)-g(2 n-1) \leq f^{*}(2 n+1)-f^{*}(2 n-1)$ so for all n we have
$g(2 n+1)=g(1)+\sum_{m=1}^{n}(g(2 m+1)-g(2 m-1)) \leq f^{*}(1)+\sum_{m=1}^{n}\left(f^{*}(2 m+1)-f^{*}(2 m-1)\right)=f^{*}(2 n+1)$
so, as $g(2 n+2)=g(2 n+1) \leq f^{*}(2 n+1) \leq f^{*}(2 n+2)$, we have $g(q) \leq f^{*}(q) \leq f(q)$ for all q. If $g(q) \leq C$ for all q then $f^{*}(2 n+1)=f^{*}(2 n-1)$ eventually, contradicting that $f^{*}(q) \rightarrow \infty$. Therefore $g(q) \rightarrow \infty$.

Theorem 3.3. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be any function such that $f(q) \rightarrow \infty$. There exists a quasi-staircase transformation with $\sum \frac{a_{n} b_{n}^{2}+a_{n+1} b_{n+1}+c_{n+1}}{h_{n}}<\infty, \frac{b_{n}}{a_{n}} \rightarrow 0$ and complexity satisfying $\frac{p(q)}{q f(q)} \rightarrow 0$.

Proof. By Lemma 3.2, we may assume f is nondecreasing and that $f(n+2)-f(n) \leq 1$ for all n. Then $f(n+1)-f(n) \in\{0,1\}$ and is never 1 for two consecutive values. We may also assume $f(1)=1$.
Set $d_{1}=d_{2}=1$ and $d_{n}=\lfloor\sqrt[3]{f(n)}\rfloor$ for $n>2$. Then $d_{n} \rightarrow \infty$ is nondecreasing. Also $d_{n+1}-d_{n} \in\{0,1\}$ and is never 1 for two consecutive values.
Set $b_{n}=3$ for all n such that $\sqrt[3]{f(n)}<3$ and $b_{n}=\lfloor\sqrt[3]{f(n)}\rfloor$ for n such that $\sqrt[3]{f(n)} \geq 3$. Then $b_{n} \rightarrow \infty$ is nondecreasing and $b_{n} \leq f(n)+2 \leq n+2$ as $f(n) \leq n$ since $f(1)=1$ and $f(n+2)-f(n) \leq 1$ imply $f(n) \leq 1+\frac{n}{2}$.
Take the quasi-staircase transformation from Proposition 3.1 with defining sequences $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$.
As $a_{n}=2 n+2$ and $b_{n}=\max (3, \sqrt[3]{f(n)}) \leq \sqrt[3]{n}$, we have $\frac{b_{n}}{a_{n}} \rightarrow 0$.
Since $0 \leq d_{n+1}-d_{n} \leq 1$, the sequence $n-d_{n}$ is nondecreasing and attains every value in \mathbb{N}. For each q, let n_{q} be the largest n such that $m_{n-d_{n}} \leq q$. Then $q<m_{n_{q}+1-d_{n_{q}+1}}$ so $n_{q}+1-d_{n_{q}+1}>n_{q}-d_{n_{q}}$ and so $1>d_{n_{q}+1}-d_{n_{q}}$ meaning that $d_{n_{q}+1}=d_{n_{q}}$. Therefore $c_{n_{q}+1}=m_{n_{q}+1-d_{n_{q}+1}}=m_{n_{q}-d_{n_{q}}+1}$.
So $\alpha(q)=n_{q}-d_{n_{q}}$ as $m_{n_{q}-d_{n_{q}}} \leq q<m_{n_{q}+1-d_{n_{q}+1}}=m_{n_{q}-d_{n_{q}}+1}$ and $\beta(q) \leq n_{q}$ since $q<m_{n_{q}-d_{n_{q}}+1}=$ $c_{n_{q}+1}$. By Proposition 2.30, since $q \geq n_{q}$ and f is nondecreasing to infinity and $n_{q} \rightarrow \infty$,

$$
\begin{aligned}
\frac{p(q)}{q f(q)} & \leq \frac{2+\sum_{n=\alpha(q)}^{\beta(q)} b_{n}}{f(q)} \leq \frac{2+\sum_{n=n_{q}-d_{n_{q}}}^{n_{q}} b_{n}}{f(q)} \leq \frac{2+\left(d_{n_{q}}+1\right) b_{n_{q}}}{f\left(n_{q}\right)} \\
& \leq \frac{2+\left(\sqrt[3]{f\left(n_{q}\right)}+1\right) \sqrt[3]{f\left(n_{q}\right)}}{f\left(n_{q}\right)}=\frac{2}{f\left(n_{q}\right)}+\frac{1}{\sqrt[3]{f\left(n_{q}\right)}}+\frac{1}{\left(\sqrt[3]{f\left(n_{q}\right)}\right)^{2}} \rightarrow 0
\end{aligned}
$$

4 Mixing for quasi-staircase transformations

Proposition 4.1. Let T be a quasi-staircase transformation given by $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ with height sequence $\left\{h_{n}\right\}$ such that $\sum \frac{c_{n}+b_{n}}{h_{n}}<\infty$. Then T is on a finite measure space.

Proof. Writing S_{n} for the spacers added above the $n^{\text {th }}$ column,

$$
\mu\left(S_{n}\right)=\left(c_{n} r_{n}+\frac{1}{2} r_{n}\left(b_{n}-1\right)\right) \mu\left(I_{n+1}\right)=\left(c_{n} \frac{r_{n}}{r_{n}+1}+\frac{1}{2} \frac{r_{n}\left(b_{n}-1\right)}{r_{n}+1}\right) \mu\left(I_{n}\right) \leq \frac{c_{n}+b_{n}}{h_{n}} \mu\left(C_{n}\right)
$$

and therefore $\mu\left(C_{n+1}\right)=\mu\left(C_{n}\right)+\mu\left(S_{n}\right) \leq\left(1+\frac{c_{n}+b_{n}}{h_{n}}\right) \mu\left(C_{n}\right)$. Then $\mu\left(C_{n+1}\right) \leq \prod_{j=1}^{n}\left(1+\frac{c_{j}+b_{j}}{h_{j}}\right) \mu\left(C_{1}\right)$,
meaning that $\log \left(\mu\left(C_{n+1}\right)\right) \leq \log \left(\mu\left(C_{1}\right)\right)+\sum_{j=1}^{n} \log \left(1+\frac{c_{j}+b_{j}}{h_{j}}\right)$. As $\frac{c_{n}+b_{n}}{h_{n}} \rightarrow 0$, since $\log (1+x) \approx x$ for $x \approx 0, \lim _{n} \log \left(\mu\left(C_{n+1}\right)\right) \lesssim \log \left(\mu\left(C_{1}\right)\right)+\sum_{j=1}^{\infty} \frac{c_{j}+b_{j}}{h_{j}}<\infty$.

For the remainder of this section, all transformations are on probability spaces.
Recall that a sequence $\left\{t_{n}\right\}$ is mixing when for all measurable sets A and $B, \mu\left(T^{t_{n}} A \cap B\right) \rightarrow \mu(A) \mu(B)$.
Notation 4.2. For measurable sets A and B, write

$$
\lambda_{B}(A)=\mu(A \cap B)-\mu(A) \mu(B)
$$

So $\left\{t_{n}\right\}$ is mixing when $\lambda_{B}\left(T^{t_{n}} A\right) \rightarrow 0$ for all measurable A and B. The following is left to the reader:
Lemma 4.3. If A and A^{\prime} are disjoint then

$$
\lambda_{B}\left(A \sqcup A^{\prime}\right)=\lambda_{B}(A)+\lambda_{B}\left(A^{\prime}\right) \quad \text { and } \quad\left|\lambda_{B}(A)\right| \leq \mu(A)
$$

and, writing $\chi_{B}(x)=\mathbb{1}_{B}(x)-\mu(B)$, for $n \in \mathbb{Z}, \lambda_{B}\left(T^{n} A\right)=\int_{A} \chi_{B} \circ T^{n} d \mu$.
For a rank-one transformation T, a sequence $\left\{t_{n}\right\}$ is rank-one uniform mixing when for every union of levels $B, \sum_{j=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{t_{n}} I_{n, j}\right)\right| \rightarrow 0$. Rank-one uniform mixing for a sequence implies mixing for that sequence [CS04] Proposition 5.6.

Notation 4.4. For $h_{n} \leq j<h_{n}+c_{n}$, let $I_{n, j}=T^{j-h_{n}+1} I_{n, h_{n}-1}$ be the union of the $\left(j-h_{n}\right)^{\text {th }}$ stage of the c_{n} spacer levels added above every subcolumn. Write

$$
\tilde{h}_{n}=h_{n}+c_{n}
$$

Lemma 4.5. Let T be a rank-one transformation, B a union of levels in some column C_{N} and $n \geq N$. Then for any $0 \leq j<\tilde{h}_{n}$ and $0 \leq i \leq r_{n}$,

$$
\lambda_{B}\left(I_{n, j}^{[i]}\right)=\frac{1}{r_{n}+1} \lambda_{B}\left(I_{n, j}\right)
$$

Proof. Since B is a union of levels in C_{N}, either $I_{n, j} \subseteq B$ or $I_{n, j} \cap B=\emptyset$. If $I_{n, j} \subseteq B$ then $\mu\left(I_{n, j}^{[i]} \cap B\right)=$ $\mu\left(I_{n, j}^{[i]}\right)=\frac{1}{r_{n}+1} \mu\left(I_{n, j}\right)=\frac{1}{r_{n+1}} \mu\left(I_{n, j} \cap B\right)$ and if $I_{n, j} \cap B=\emptyset$ then $\mu\left(I_{n, j}^{[i]} \cap B\right)=0=\frac{1}{r_{n}+1} \mu\left(I_{n, j} \cap B\right)$.

Lemma 4.6. Let T be a quasi-staircase transformation. Then for any n and $0 \leq \ell<b_{n}$ and $k, i \geq 0$ such that $i+k \leq a_{n}$ and any $j \geq k \ell$,

$$
T^{k \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}=I_{n, j-k \ell}^{\left[\ell a_{n}+i+k\right]}
$$

Proof. There are $c_{n}+\left\lfloor\frac{\ell a_{n}+i}{a_{n}}\right\rfloor=c_{n}+\ell$ spacers above $I_{n, j}^{\left[\ell a_{n}+i\right]}$ so $T^{\tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}=I_{n, j-\ell}^{\left[\ell a_{n}+i+1\right]}$. Since $i+k \leq a_{n}$, there are also $c_{n}+\ell$ spacers above each $I_{n, j-v \ell}^{\left[\ell a_{n}+i+v\right]}$ for $1 \leq v<k$ so applying $T^{h_{n}+c_{n}}$ repeated k times, the claim follows.

Lemma 4.7. Let T be a quasi-staircase transformation, $k \in \mathbb{N}, B$ a union of levels in some C_{N} and $n \geq N$. If $k<a_{n}$ and $k b_{n}<h_{n}$ then

$$
\sum_{j=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{k \tilde{h}_{n}} I_{n, j}\right)\right| \leq \int\left|\frac{1}{b_{n}} \sum_{\ell=0}^{b_{n}-1} \chi_{B} \circ T^{-k \ell}\right| d \mu+\frac{k+1}{a_{n}}+\frac{k b_{n}}{h_{n}}
$$

Proof. By Lemma 4.6 and then Lemma 4.5, for $k b_{n} \leq j<h_{n}$,

$$
\left|\lambda_{B}\left(T^{k \tilde{h}_{n}} I_{n, j}\right)\right|=\left|\sum_{\ell=0}^{b_{n}-1} \sum_{i=0}^{a_{n}-1} \lambda_{B}\left(T^{k \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}\right)+\lambda_{B}\left(T^{k \tilde{h}_{n}} I_{n, j}^{\left[r_{n}\right]}\right)\right|
$$

$$
\begin{aligned}
& \leq\left|\sum_{\ell=0}^{b_{n}-1} \sum_{i=0}^{a_{n}-k-1} \lambda_{B}\left(T^{k \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}\right)\right|+\left(b_{n} k+1\right) \mu\left(I_{n+1}\right) \\
& =\left|\sum_{\ell=0}^{b_{n}-1} \sum_{i=0}^{a_{n}-k-1} \lambda_{B}\left(I_{n, j}^{\left[\ell a_{n}+i+k \ell\right]}\right)\right|+\left(b_{n} k+1\right) \mu\left(I_{n+1}\right) \\
& =\left|\sum_{\ell=0}^{n_{n}-1} \sum_{i=0}^{a_{n}-k-1} \frac{1}{r_{n}+1} \lambda_{B}\left(I_{n, j-k \ell}\right)\right|+\frac{b_{n} k+1}{r_{n}+1} \mu\left(I_{n}\right) \\
& =\left|\frac{1}{r_{n}+1} \sum_{\ell=0}^{b_{n}-1} \sum_{i=0}^{a_{n}-k-1} \lambda_{B}\left(T^{-k \ell} I_{n, j}\right)\right|+\frac{b_{n} k+1}{r_{n}+1} \mu\left(I_{n}\right) \\
& =\frac{a_{n}-k}{r_{n}+1}\left|\sum_{\ell=0}^{b_{n}-1} \lambda_{B}\left(T^{-k \ell} I_{n, j}\right)\right|+\frac{b_{n} k+1}{r_{n}+1} \mu\left(I_{n}\right) \leq \frac{1}{b_{n}}\left|\sum_{\ell=0}^{b_{n}-1} \lambda_{B}\left(T^{-k \ell} I_{n, j}\right)\right|+\frac{k+1}{a_{n}} \mu\left(I_{n}\right) \\
& =\left|\frac{1}{b_{n}} \sum_{\ell=0}^{b_{n}-1} \int_{I_{n, j}} \chi_{B} \circ T^{-k \ell} d \mu\right|+\frac{k+1}{a_{n}} \mu\left(I_{n}\right) \leq \int_{I_{n, j}}\left|\frac{1}{b_{n}} \sum_{\ell=0}^{b_{n}-1} \chi_{B} \circ T^{-k \ell}\right| d \mu+\frac{k+1}{a_{n}} \mu\left(I_{n}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\sum_{j=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{k \tilde{h}_{n}} I_{n, j}\right)\right| & \leq \sum_{j=k b_{n}}^{h_{n}-1}\left|\lambda_{B}\left(T^{k \tilde{h}_{n}} I_{n, j}\right)\right|+k b_{n} \mu\left(I_{n}\right) \\
& \leq \sum_{j=k b_{n}}^{h_{n}-1}\left(\int_{I_{n, j}}\left|\frac{1}{b_{n}} \sum_{\ell=0}^{b_{n}-1} \chi_{B} \circ T^{-k \ell}\right| d \mu+\frac{k+1}{a_{n}} \mu\left(I_{n, j}\right)\right)+k b_{n} \mu\left(I_{n}\right) \\
& \leq \int\left|\frac{1}{b_{n}} \sum_{\ell=0}^{b_{n}-1} \chi_{B} \circ T^{-k \ell}\right| d \mu+\frac{k+1}{a_{n}}+\frac{k b_{n}}{h_{n}}
\end{aligned}
$$

Proposition 4.8. Let T be a quasi-staircase transformation and $k \in \mathbb{N}$. If T^{k} is ergodic then $\left\{k \tilde{h}_{n}\right\}$ and $\left\{k h_{n}\right\}$ are rank-one uniform mixing.

Proof. Since $\frac{b_{n}}{h_{n}} \rightarrow 0$ and $a_{n} \rightarrow \infty$ there exists N such that for all $n \geq N$ we have $k<a_{n}$ and $k b_{n}<h_{n}$. That $\left\{k \tilde{h}_{n}\right\}$ is rank-one uniform mixing follows from Lemma 4.7 since T^{k} is ergodic, $b_{n} \rightarrow \infty, a_{n} \rightarrow \infty$ and $\frac{b_{n}}{h_{n}} \rightarrow 0$. Then

$$
\sum_{j=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{k h_{n}} I_{n, j}\right)\right| \leq \sum_{j=k c_{n}}^{h_{n}}\left|\lambda_{B}\left(T^{k h_{n}} I_{n, j}\right)\right|+\frac{k c_{n}}{h_{n}}=\sum_{j=0}^{h_{n}-k c_{n}}\left|\lambda_{B}\left(T^{k \tilde{h}_{n}} I_{n, j}\right)\right|+\frac{k c_{n}}{h_{n}} \rightarrow 0
$$

as $\frac{c_{n}}{h_{n}} \rightarrow 0, k$ is fixed and $\left\{k \tilde{h}_{n}\right\}$ is rank-one uniform mixing.
Lemma 4.9 ([CPR22] Proposition A.13). Let T be a rank-one transformation and $\left\{c_{n}\right\}$ a sequence such that $\frac{c_{n}}{h_{n}} \rightarrow 0$. If $k \in \mathbb{N}$ and $\left\{q\left(h_{n}+c_{n}\right)\right\}$ is rank-one uniform mixing for each $q \leq k+1$ and $\left\{t_{n}\right\}$ is a sequence such that $h_{n}+c_{n} \leq t_{n}<(q+1)\left(h_{n}+c_{n}\right)$ for all n then $\left\{t_{n}\right\}$ is mixing.

Lemma 4.10 ([CPR22] Proposition A.16). Let T be a rank-one transformation and $\left\{c_{n}\right\}$ a sequence such that $\frac{c_{n}}{h_{n}} \rightarrow 0$. If $\left\{q\left(h_{n}+c_{n}\right)\right\}$ is rank-one uniform mixing for each fixed q and $k_{n} \rightarrow \infty$ is such that $\frac{k_{n}}{n} \leq 1$ then for any measurable set $B, \int\left|\frac{1}{n} \sum_{j=0}^{n-1} \chi_{B} \circ T^{-j k_{n}}\right| d \mu \rightarrow 0$.

Proposition 4.11. Let T be a quasi-staircase transformation and B a measurable set. Then

$$
\max _{1 \leq k \leq n} \int\left|\frac{1}{n} \sum_{j=0}^{n-1} \chi_{B} \circ T^{-j k}\right| d \mu \rightarrow 0
$$

Proof. As T is ergodic, Proposition 4.8 with $k=1$ gives that $\left\{\tilde{h}_{n}\right\}$ is rank-one uniform mixing, hence mixing, so T is totally ergodic. Then Proposition 4.8 gives that for each fixed k the sequence $\left\{k \tilde{h}_{n}\right\}$ is rank-one uniform mixing so Lemma 4.10 gives the claim.

Proposition 4.12. Let T be a quasi-staircase transformation, B a measurable set and $Q>0$. Then

$$
\max _{h_{n}+c_{n} \leq t<Q \tilde{h}_{n}}\left|\lambda_{B}\left(T^{t} B\right)\right| \rightarrow 0
$$

Proof. As in the proof of Proposition 4.11, for each fixed k the sequence $\left\{k \tilde{h}_{n}\right\}$ is rank-one uniform mixing so Lemma 4.9 gives the claim.

Lemma 4.13. Let T be a quasi-staircase transformation. Let $n>0$ and $0 \leq x<b_{n}$ and $0 \leq q<a_{n}$. If $0 \leq \ell<b_{n}-x$ and $0 \leq i<a_{n}-q$ and $j \geq \frac{1}{2} a_{n} x(x-1)+q x+i x+\ell\left(x a_{n}+q\right)$ then

$$
T^{\left(x a_{n}+q\right) \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}=I_{n, j-\frac{1}{2} a_{n} x(x-1)-q x-i x-\ell\left(x a_{n}+q\right)}^{\left[(\ell+x) a_{n}+i+q\right]}
$$

Proof. If $x=0$ then Lemma 4.6 applied with q in place of k gives the claim. So we can write

$$
x a_{n}+q=\left(a_{n}-i\right)+(x-1) a_{n}+(q+i)
$$

and assume all three terms on the right are nonnegative.
Using Lemma 4.6,

$$
T^{\left(a_{n}-i\right) \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}=I_{n, j-\left(a_{n}-i\right) \ell}^{\left[\ell a_{n}+i+a_{n}-i\right]}=I_{n, j-\left(a_{n}-i\right) \ell}^{\left[(\ell+1) a_{n}\right]}
$$

Now observe that, by Lemma 4.6 with 0 as i and a_{n} as k, for any $0 \leq v<x$ and any $a_{n} v \leq z<h_{n}$,

$$
T^{a_{n} \tilde{h}_{n}} I_{n, z}^{\left[v a_{n}\right]}=I_{n, z-a_{n} v}^{\left[(v+1) a_{n}\right]}
$$

so applying that $x-1$ times for $v=\ell+1, \ell+2, \ldots, \ell+x-1$,

$$
T^{(x-1) a_{n} \tilde{h}_{n}} I_{n, j-\left(a_{n}-i\right) \ell}^{\left[(\ell+1) a_{n}\right]}=I_{n, j-\left(a_{n}-i\right) \ell-(x-1) \ell a_{n}-\frac{1}{2} x(x-1) a_{n}}^{\left[(\ell+x) a_{n}\right]}
$$

since $\sum_{v=\ell+1}^{\ell+x-1} v=\frac{1}{2}(\ell+x)(\ell+x-1)-\frac{1}{2} \ell(\ell+1)=(x-1) \ell+\frac{1}{2} x(x-1)$. Then applying Lemma 4.6 one final time with $q+i$ in place of k,

$$
\begin{aligned}
T^{(q+i) \tilde{h}_{n}} I_{n j-\left(a_{n}-i\right) \ell-(x-1) \ell a_{n}-\frac{1}{2} x(x-1) a_{n}}^{\left[(\ell+x) a_{n}\right]} & =I_{n, j-\left(a_{n}-i\right) \ell-(x-1) \ell a_{n}-\frac{1}{2} x(x-1) a_{n}-(x+\ell)(q+i)}^{\left[(\ell+x) a_{n}+q+i\right]} \\
& =I_{n, j-x \ell a_{n}-\frac{1}{2} x(x-1) a_{n}-x i-x q-\ell q}^{\left[(\ell+x) a_{n}+q+i\right]}
\end{aligned}
$$

Lemma 4.14. Let T be a quasi-staircase transformation. Let $n>0$ and $0 \leq x<b_{n}$ and $0 \leq q<a_{n}$. If $0 \leq \ell<b_{n}-x-1$ and $a_{n}-q \leq i<a_{n}$ and $j \geq \frac{1}{2} a_{n} x(x+1)+q(x+1)+i(x+1)+\ell\left(x a_{n}+1\right)$ then

$$
T^{\left(x a_{n}+q\right) \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}=I_{n, j-\frac{1}{2} a_{n} x(x+1)-\left(q+i-a_{n}\right)(x+1)-\ell\left(x a_{n}+q\right)}^{\left[(\ell+x) a_{n}+i+q\right]}
$$

Proof. The same proof as Lemma 4.13 except we write $x a_{n}+q=\left(a_{n}-i\right)+x a_{n}+(q+i-x)$.
Lemma 4.15. Let T be a quasi-staircase transformation. Let B be a union of levels C_{N}. For $n \geq N$ and $k_{n} \tilde{h}_{n} \leq t_{n}<\left(k_{n}+1\right) \tilde{h}_{n}$,

$$
\sum_{j=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{t_{n}} I_{n, j}\right)\right| \leq \sum_{x=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, x}\right)\right|+c_{n} \mu\left(I_{n}\right)+\sum_{x=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{\left(k_{n}+1\right) \tilde{h}_{n}} I_{n, x}\right)\right|
$$

Proof. Write $t_{n}=k_{n} \tilde{h}_{n}+z_{n}$ for $0 \leq z_{n}<\tilde{h}_{n}$. Then

$$
\begin{aligned}
\sum_{j=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{t_{n}} I_{n, j}\right)\right| & \leq \sum_{j=0}^{h_{n}-z_{n}-1}\left|\lambda_{B}\left(T^{t_{n}} I_{n, j}\right)\right|+c_{n} \mu\left(I_{n}\right)+\sum_{j=h_{n}-z_{n}+c_{n}}^{h_{n}-1}\left|\lambda_{B}\left(T^{t_{n}} I_{n, j}\right)\right| \\
& \leq \sum_{j=0}^{h_{n}-z_{n}-1}\left|\lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, j+z_{n}}\right)\right|+c_{n} \mu\left(I_{n}\right)+\sum_{j=\tilde{h}_{n}-z_{n}}^{h_{n}-1}\left|\lambda_{B}\left(T^{\left(k_{n}+1\right) \tilde{h}_{n}} I_{n, j+z_{n}-\tilde{h}_{n}}\right)\right| \\
& \leq \sum_{x=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, x}\right)\right|+c_{n} \mu\left(I_{n}\right)+\sum_{x=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{\left(k_{n}+1\right) \tilde{h}_{n}} I_{n, x}\right)\right|
\end{aligned}
$$

Proposition 4.16. Let T be a quasi-staircase transformation such that $\frac{a_{n} b_{n}^{2}}{h_{n}} \rightarrow 0$ and $\frac{b_{n}}{a_{n}} \rightarrow 0$ and B be a union of levels in some fixed C_{N}. For $n>N$, set

$$
M_{B, n}:=\max _{a_{n} \tilde{h}_{n} \leq t<\tilde{h}_{n+1}} \sum_{j=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{t} I_{n, j}\right)\right|
$$

Then $\lim _{n \rightarrow \infty} M_{B, n}=0$.
Proof. Let t_{n} attain the maximum in $M_{B, n}$. If $t_{n} \geq\left(r_{n}-1\right) \tilde{h}_{n}$ then $h_{n+1}+c_{n+1}-t_{n} \leq c_{n+1}+2 h_{n}+$ $c_{n}+\frac{1}{2} a_{n} b_{n}\left(b_{n}-1\right)$ so

$$
\begin{aligned}
\sum_{j=0}^{h_{n+1}-1}\left|\lambda_{B}\left(T^{t_{n}} I_{n+1, j}\right)\right| & \leq \sum_{j=h_{n+1}+c_{n+1}-t_{n}}^{h_{n+1}-1}\left|\lambda_{B}\left(T^{t_{n}} I_{n+1, j}\right)\right|+\left(h_{n+1}+c_{n+1}-t_{n}\right) \mu\left(I_{n+1}\right) \\
& \leq \sum_{j=0}^{t_{n}-c_{n+1}-1}\left|\lambda_{B}\left(T^{\tilde{h}_{n+1}} I_{n+1, j}\right)\right|+\frac{c_{n+1}+2 h_{n}+c_{n} \frac{1}{2} a_{n} b_{n}\left(b_{n}-1\right)}{h_{n+1}} \rightarrow 0
\end{aligned}
$$

since $\left\{\tilde{h}_{n+1}\right\}$ is rank-one uniform mixing.
So we may assume $t_{n}<\left(r_{n}-1\right) \tilde{h}_{n}$ and therefore write $t_{n}=k_{n} \tilde{h}_{n}+z_{n}$ for $a_{n} \leq k_{n}<r_{n}-1$ and $0 \leq z_{n}<\tilde{h}_{n}$. By Lemma 4.15,

$$
\sum_{j=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{t_{n}} I_{n, j}\right)\right| \leq \sum_{x=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, x}\right)\right|+c_{n} \mu\left(I_{n}\right)+\sum_{x=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{\left(k_{n}+1\right) \tilde{h}_{n}} I_{n, x}\right)\right|
$$

We will show the sum on the left tends to zero; the same argument with $k_{n}+1$ in place of k_{n} gives the same for the right sum. As $c_{n} \mu\left(I_{n}\right) \rightarrow 0$, this will complete the proof.
Write $k_{n}=x_{n} a_{n}+q_{n}$ for $0 \leq q_{n}<a_{n}$ and $1 \leq x_{n}<b_{n}$. Observe that

$$
\begin{align*}
\sum_{j=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, j}\right)\right| \leq & \sum_{j=0}^{h_{n}-1}\left|\sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=0}^{a_{n}-1} \lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}\right)\right|+2 a_{n} h_{n} \mu\left(I_{n+1}\right) \\
& +\sum_{j=0}^{h_{n}-1}\left|\sum_{\ell=b_{n}-x_{n}+1}^{b_{n}-1} \sum_{i=0}^{a_{n}-1} \lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}\right)\right|+\frac{1}{r_{n}+1}
\end{align*}
$$

We handle the sum ($\star \star$) first and return to the sum in (\star) shortly.
For $0 \leq \ell<b_{n}$ and $0 \leq i<a_{n}$, we have that

$$
I_{n, 0}^{\left[\ell a_{n}+i\right]}=T^{\left(\ell a_{n}+i\right) \tilde{h}_{n}} I_{n, \frac{1}{2} \ell(\ell-1) a_{n}+i \ell}^{[0]}
$$

since $\frac{1}{2} \ell(\ell-1) a_{n}+i \ell \leq a_{n} b_{n}^{2}+a_{n} b_{n}<h_{n}\left(\right.$ as $\left.\frac{a_{n} b_{n}^{2}}{h_{n}} \rightarrow 0\right)$.

For $b_{n}-x_{n}+1 \leq \ell<b_{n}$ and $0 \leq i<a_{n}$, since $x+\ell \geq b_{n}+1$,

$$
\begin{aligned}
k_{n} \tilde{h}_{n}+\left(\ell a_{n}+i\right) \tilde{h}_{n} & =\left(x_{n} a_{n}+q_{n}+\ell a_{n}+i\right)\left(h_{n}+c_{n}\right) \\
& \geq\left(b_{n} a_{n}+a_{n}\right) \tilde{h}_{n} \\
& =\left(b_{n} a_{n}+1\right) h_{n}+b_{n} a_{n} c_{n}+\left(a_{n}-1\right) h_{n}+a_{n} c_{n} \geq h_{n+1}
\end{aligned}
$$

since $\frac{1}{2} a_{n} b_{n}\left(b_{n}-1\right) \leq h_{n}$. Also,

$$
\begin{aligned}
k_{n} \tilde{h}_{n}+\left(\ell a_{n}+i\right) \tilde{h}_{n}+\frac{1}{2} \ell(\ell-1) a_{n}+i \ell & =\left(\left(x_{n}+\ell\right) a_{n}+q_{n}+i\right)\left(h_{n}+c_{n}\right)+\frac{1}{2} \ell(\ell-1) a_{n}+i \ell \\
& \leq 2 b_{n} a_{n}\left(h_{n}+c_{n}\right)+\frac{1}{2} b_{n}\left(b_{n}-1\right) a_{n}+a_{n} b_{n}<2 h_{n+1}
\end{aligned}
$$

Since a sublevel in I_{n} is a level in I_{n+1} and $\left\{h_{n+1}\right\}$ is rank-one uniform mixing (Proposition 4.8),

$$
\sum_{j=0}^{h_{n}-1} \sum_{\ell=b_{n}-x_{n}+1}^{b_{n}-1} \sum_{i=0}^{a_{n}-1}\left|\lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}\right)\right| \leq \sum_{y=0}^{h_{n+1}-1}\left|\lambda_{B}\left(T^{h_{n+1}} I_{n+1, y}\right)\right| \rightarrow 0
$$

As $2 a_{n} h_{n} \mu\left(I_{n+1}\right) \leq \frac{2 a_{n} h_{n}}{h_{n+1}} \leq \frac{2}{b_{n}} \rightarrow 0$ and $r_{n} \rightarrow \infty$, it remains only to show that the sum in (\star) tends to zero. Observe that

$$
\begin{align*}
\sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=0}^{a_{n}-1} \lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}\right)= & \sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=0}^{a_{n}-q_{n}-1} \lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}\right) \\
& +\sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=a_{n}-q_{n}}^{a_{n}-1} \lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}\right)
\end{align*}
$$

First, we address (\dagger) : set $y_{n}=\frac{1}{2} a_{n} x_{n}\left(x_{n}-1\right)+q_{n} x_{n}$. For $i<a_{n}-q_{n}$ and $\ell<b_{n}-x_{n}-1$, we have $y_{n}+i x_{n}+\ell k_{n} \leq 3 a_{n} b_{n}^{2}$ so for $j \geq 3 a_{n} b_{n}^{2}$, by Lemma 4.13 and Lemma 4.5,

$$
\begin{aligned}
\sum_{\ell=0}^{b_{n}-x_{n}-2} & \sum_{i=0}^{a_{n}-q_{n}-1} \lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}\right)=\sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=0}^{a_{n}-q_{n}-1} \lambda_{B}\left(I_{n, j-y_{n}-i x_{n}-\ell k_{n}}^{\left[\left(\ell+x_{n}\right)\right.}\right) \\
& =\frac{1}{r_{n}+1} \sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=0}^{a_{n}-q_{n}-1} \lambda_{B}\left(I_{n, j-y_{n}-i x_{n}-\ell k_{n}}\right)=\frac{1}{r_{n}+1} \sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=0}^{a_{n}-q_{n}-1} \lambda_{B}\left(T^{-\ell k_{n}-i x_{n}-y_{n}} I_{n, j}\right)
\end{aligned}
$$

Then, summing over all $3 a_{n} b_{n}^{2} \leq j<h_{n}$,

$$
\begin{aligned}
\sum_{j=3 a_{n} b_{n}^{2}}^{h_{n}-1} & \left|\sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=0}^{a_{n}-q_{n}-1} \lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}\right)\right| \\
& =\sum_{j=3 a_{n} b_{n}^{2}}^{h_{n}-1}\left|\frac{1}{r_{n}+1} \sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=0}^{a_{n}-q_{n}-1} \lambda_{B}\left(T^{-\ell k_{n}-i x_{n}-y_{n}} I_{n, j}\right)\right| \\
& \leq \frac{1}{r_{n}+1} \sum_{j=0}^{h_{n}-1} \sum_{\ell=0}^{b_{n}-x_{n}-2}\left|\sum_{i=0}^{a_{n}-q_{n}-1} \lambda_{B}\left(T^{-\ell k_{n}-i x_{n}-y_{n}} I_{n, j}\right)\right| \\
& \leq \frac{1}{r_{n}+1} \sum_{\ell=0}^{b_{n}-x_{n}-2} \int\left|\sum_{i=0}^{a_{n}-q_{n}-1} \chi_{B} \circ T^{-\ell k_{n}-i x_{n}-y_{n}}\right| d \mu \\
& =\frac{\left(b_{n}-x_{n}-2\right)\left(a_{n}-q_{n}\right)}{r_{n}+1} \int\left|\frac{1}{a_{n}-q_{n}} \sum_{i=0}^{a_{n}-q_{n}-1} \chi_{B} \circ T^{-i x_{n}}\right| d \mu
\end{aligned}
$$

$$
\leq \min \left(\frac{a_{n}-q_{n}}{a_{n}}, \int\left|\frac{1}{a_{n}-q_{n}} \sum_{i=0}^{a_{n}-q_{n}-1} \chi_{B} \circ T^{-i x_{n}}\right| d \mu\right)
$$

since $\frac{\left(b_{n}-2\right)}{r_{n}+1}<\frac{1}{a_{n}}$ and $\int\left|\chi_{B}\right| d \mu \leq 1$. For a subsequence along which $x_{n} \leq a_{n}-q_{n}$, Proposition 4.11 implies the integral tends to zero. For n such that $a_{n}-q_{n}<x_{n}<b_{n}$, the quantity on the left is bounded by $\frac{b_{n}}{a_{n}} \rightarrow 0$.
For (\ddagger) : set $y_{n}^{\prime}=\frac{1}{2} a_{n} x_{n}\left(x_{n}+1\right)+\left(q_{n}-a_{n}\right)\left(x_{n}+1\right)$. By Lemma 4.14 and Lemma 4.5, for $j \geq 3 a_{n} b_{n}^{2}$,

$$
\begin{aligned}
& \sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=a_{n}-q_{n}}^{a_{n}-1} \lambda_{B}\left(T^{k_{n} \tilde{n}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}\right)=\sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=a_{n}-q_{n}}^{a_{n}-1} \lambda_{B}\left(I_{n, j-y_{n}^{\prime}-i\left(x_{n}+1\right)-\ell k_{n}}^{\left[\left(\ell+x_{n}\right) a_{n}+i+q_{n}\right]}\right) \\
& =\frac{1}{r_{n}+1} \sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=a_{n}-q_{n}}^{a_{n}-1} \lambda_{B}\left(I_{n, j-y_{n}^{\prime}-i\left(x_{n}+1\right)-\ell k_{n}}\right)=\frac{1}{r_{n}+1} \sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=a_{n}-q_{n}}^{a_{n}-1} \lambda_{B}\left(T^{-\ell k_{n}-i\left(x_{n}+1\right)-y_{n}^{\prime}} I_{n, j}\right)
\end{aligned}
$$

Similar to the sum (\dagger), then

$$
\begin{aligned}
& \sum_{j=3 a_{n} b_{n}^{2}}^{h_{n}-1} \sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=a_{n}-q_{n}}^{a_{n}-1} \lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, j}^{\left[\ell a_{n}+i\right]}\right) \mid \\
& =\sum_{j=3 a_{n} b_{n}^{2}}^{h_{n}-1}\left|\frac{1}{r_{n}+1} \sum_{\ell=0}^{b_{n}-x_{n}-2} \sum_{i=a_{n}-q_{n}}^{a_{n}-1} \lambda_{B}\left(T^{-\ell k_{n}-i\left(x_{n}+1\right)-y_{n}^{\prime}} I_{n, j}\right)\right| \\
& \leq \frac{\left(b_{n}-x_{n}-2\right) q_{n}}{r_{n}+1} \int\left|\frac{1}{q_{n}} \sum_{i=a_{n}-q_{n}}^{a_{n}-1} \chi_{B} \circ T^{-i\left(x_{n}+1\right)}\right| d \mu \\
& =\frac{\left(b_{n}-x_{n}-2\right) q_{n}}{r_{n}+1} \int\left|\frac{1}{q_{n}} \sum_{i^{\prime}=0}^{q_{n}-1} \chi_{B} \circ T^{-i^{\prime}\left(x_{n}+1\right)}\right| d \mu \leq \min \left(\frac{q_{n}}{a_{n}}, \int\left|\frac{1}{q_{n}} \sum_{i^{\prime}=0}^{q_{n}-1} \chi_{B} \circ T^{-i^{\prime}\left(x_{n}+1\right)}\right| d \mu\right)
\end{aligned}
$$

and along any subsequence where $x_{n}+1 \leq q_{n}$, this tends to zero by Proposition 4.11, and for $q_{n} \leq$ $x_{n}+1<b_{n}+1$, the quantity on the left is bounded by $\frac{b_{n}}{a_{n}} \rightarrow 0$, completing the proof.

Proposition 4.17. Let T be a quasi-staircase transformation with $\frac{b_{n}^{2}}{h_{n}} \rightarrow 0$ and $\frac{b_{n}}{a_{n}} \rightarrow 0$ and B be a union of levels in some fixed C_{N}. For $n>N$, set

$$
\widehat{M}_{B, n}:=\max _{\tilde{h}_{n} \leq t<b_{n} \tilde{h}_{n}} \sum_{j=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{t} I_{n, j}\right)\right|
$$

Then $\lim _{n \rightarrow \infty} \widehat{M}_{B, n}=0$.
Proof. Let t_{n} attain the maximum in $\widehat{M}_{B, n}$. By Lemma 4.15, writing $t_{n}=k_{n} \tilde{h}_{n}+z_{n}$ for $1 \leq k_{n}<b_{n}$ and $0 \leq z_{n}<\tilde{h}_{n}$,

$$
\sum_{j=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{t_{n}} I_{n, j}\right)\right| \leq \sum_{x=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, x}\right)\right|+c_{n} \mu\left(I_{n}\right)+\sum_{x=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{\left(k_{n}+1\right) \tilde{h}_{n}} I_{n, x}\right)\right|
$$

By Lemma 4.7,

$$
\sum_{j=0}^{h_{n}-1}\left|\lambda_{B}\left(T^{k_{n} \tilde{h}_{n}} I_{n, j}\right)\right| \leq \int\left|\frac{1}{b_{n}} \sum_{\ell=0}^{b_{n}-1} \chi_{B} \circ T^{-k_{n} \ell}\right| d \mu+\frac{k_{n}+1}{a_{n}}+\frac{k_{n} b_{n}}{h_{n}} \rightarrow 0
$$

since $k_{n}<b_{n}$ so Proposition 4.11 implies the integral tends to zero. Similar reasoning for $k_{n}+1 \leq b_{n}$ then completes the proof.

Lemma 4.18. Let T be a quasi-staircase transformation, B a union of levels in some $C_{N}, n>N$, $b_{n} \leq k<a_{n}$ and $0 \leq y<\tilde{h}_{n}$. Let $\epsilon>0$ such that $\sup _{t \geq b_{n}}\left(\int\left|\frac{1}{t} \sum_{i=0}^{t-1} \chi_{B} \circ T^{-i}\right| d \mu+\frac{2}{t}\right)<\epsilon$. Then

$$
\begin{gathered}
\sum_{j=a_{n} b_{n}+b_{n+1}+c_{n+1}-c_{n}}^{\tilde{h}_{n}-y}\left|\lambda_{B}\left(T^{k \tilde{h}_{n}+y} I_{n, j}\right)-\frac{a_{n}-k}{r_{n}+1} \sum_{\ell=0}^{b_{n}-1} \lambda_{B}\left(T^{y-k \ell} I_{n, j}\right)\right|<\frac{k}{a_{n}} \epsilon \\
\sum_{j=a_{n} b_{n}+b_{n+1}+c_{n+1}-c_{n}+\tilde{h}_{n}-y}^{\tilde{h}_{n}}\left|\lambda_{B}\left(T^{k \tilde{h}_{n}+y} I_{n, j}\right)-\frac{a_{n}-k-1}{r_{n}+1} \sum_{\ell=0}^{b_{n}-1} \lambda_{B}\left(T^{y-\tilde{h}_{n}-(k+1) \ell} I_{n, j}\right)\right|<\frac{k+1}{a_{n}} \epsilon
\end{gathered}
$$

Proof. For $a_{n} b_{n}+b_{n+1}+c_{n+1}-c_{n} \leq j<\tilde{h}_{n}-y$, by Lemmas 4.13 and 4.14,

$$
\begin{aligned}
\lambda_{B}\left(T^{k \tilde{h}_{n}+y} I_{n, j}\right)= & \sum_{i=0}^{a_{n}-1} \sum_{\ell=0}^{b_{n}-1} \lambda_{B}\left(T^{k \tilde{h}_{n}+y} I_{n, j}^{\left[\ell a_{n}+i\right]}\right)+\lambda_{B}\left(T^{k \tilde{h}_{n}+y} I_{n, j}^{\left[r_{n}\right]}\right) \\
= & \sum_{i=0}^{a_{n}-k-1} \sum_{\ell=0}^{b_{n}-1} \lambda_{B}\left(T^{-k \ell} I_{n, j+y}^{\left[\ell a_{n}+i+k\right]}\right)+\sum_{i=a_{n}-k}^{a_{n}-1} \sum_{\ell=0}^{b_{n}-2} \lambda_{B}\left(T^{-k \ell-\left(i+k-a_{n}\right)} I_{n, j+y}^{\left[\ell a_{n}+i+k+1\right]}\right) \\
& \quad+\sum_{i=0}^{k} \lambda_{B}\left(T^{k \tilde{h}_{n}+y} I_{n, j}^{\left[r_{n}-i\right]}\right)
\end{aligned}
$$

and since $k \ell \leq a_{n} b_{n}$ and $j+y \geq j \geq a_{n} b_{n}$, using Lemma 4.5,

$$
\sum_{i=0}^{a_{n}-k-1} \sum_{\ell=0}^{b_{n}-1} \lambda_{B}\left(T^{-k \ell} I_{n, j+y}^{\left[\ell a_{n}+i+k\right]}\right)=\frac{1}{r_{n}+1} \sum_{i=0}^{a_{n}-k-1} \sum_{\ell=0}^{b_{n}-1} \lambda_{B}\left(T^{-k \ell} I_{n, j+y}\right)=\frac{a_{n}-k}{r_{n}+1} \sum_{\ell=0}^{b_{n}-1} \lambda_{B}\left(T^{y-k \ell} I_{n, j}\right)
$$

Likewise, since $k \ell+\left(i+k-a_{n}\right) \leq a_{n} b_{n}$,

$$
\begin{gathered}
\left|\sum_{i=a_{n}-k}^{a_{n}-1} \sum_{\ell=0}^{b_{n}-2} \lambda_{B}\left(T^{-k \ell-\left(i+k-a_{n}\right)} I_{n, j+y}^{\left[\ell a_{n}+i+k+1\right]}\right)\right|=\left|\frac{1}{r_{n}+1} \sum_{i=a_{n}-k}^{a_{n}-1} \sum_{\ell=0}^{b_{n}-2} \lambda_{B}\left(T^{-k \ell-\left(i+k-a_{n}\right)} I_{n, j+y}\right)\right| \\
=\left|\frac{1}{r_{n}+1} \sum_{i=0}^{k-1} \sum_{\ell=0}^{b_{n}-2} \lambda_{B}\left(T^{y-k \ell-i} I_{n, j}\right)\right| \leq \frac{k}{r_{n}+1} \sum_{\ell=0}^{b_{n}-2} \int_{T^{y-k \ell} I_{n, j}}\left|\frac{1}{k} \sum_{i=0}^{k-1} \chi_{B} \circ T^{-i}\right| d \mu
\end{gathered}
$$

and therefore

$$
\sum_{j=a_{n} b_{n}+b_{n+1}+c_{n+1}-c_{n}}^{\tilde{h}_{n}-y}\left|\sum_{i=a_{n}-k}^{a_{n}-1} \sum_{\ell=0}^{b_{n}-2} \lambda_{B}\left(T^{-k \ell-\left(i+k-a_{n}\right)} I_{n, j+y}^{\left[\ell a_{n}+i+k+1\right]}\right)\right|<\frac{k\left(b_{n}-1\right)}{r_{n}+1} \int\left|\frac{1}{k} \sum_{i=0}^{k-1} \chi_{B} \circ T^{-i}\right| d \mu
$$

For $0 \leq i \leq k-1$, using that $j \geq c_{n+1}-c_{n}+b_{n+1}+a_{n} b_{n}$ and that $I_{n, j}^{[0]}=I_{n+1, j}$,

$$
\begin{aligned}
T^{k \tilde{h}_{n}+y} I_{n, j}^{\left[r_{n}-i\right]} & =T^{k \tilde{h}_{n}+y+h_{n+1}-h_{n}-i\left(\tilde{h}_{n}+b_{n}-1\right)} I_{n, j}^{[0]} \\
& =T^{\tilde{h}_{n+1}+(k-i-1) \tilde{h}_{n}+c_{n}-c_{n+1}-i\left(b_{n}-1\right)+y} I_{n, j}^{[0]}=T^{\tilde{h}_{n+1}} I_{n+1, j+(k-i-1) \tilde{h}_{n}+c_{n}-c_{n+1}-i\left(b_{n}-1\right)+y}
\end{aligned}
$$

therefore, since $\left|\lambda_{B}\left(T^{\tilde{h}_{n+1}} I_{n+1, j^{\prime}}\right)\right|=\mid \sum_{t=0}^{b_{n+1}-1}\left(\sum_{i=0}^{a_{n+1}-2} \lambda_{B}\left(T^{-t} I_{n+1, j^{\prime}}^{\left[t a_{n+1}+i+1\right]}\right)+\lambda_{B}\left(T^{-t-1} I_{n+1, j^{\prime}}^{\left[(t+1) a_{n+1}\right]}\right)\right)+$ $\left.\lambda_{B}\left(T^{\tilde{h}_{n+1}} I_{n+1, j^{\prime}}^{\left[r_{n+1}\right]}\right)\left|\leq \frac{a_{n+1}}{r_{n+1}+1}\right| \sum_{t=0}^{b_{n+1}-1} \lambda_{B}\left(T^{-t} I_{n+1, j^{\prime}}\right) \right\rvert\,+\frac{2 \mu\left(I_{n+1, j^{\prime}}\right)}{r_{n+1}+1}$ whenever $j^{\prime} \geq b_{n+1}$,

$$
\begin{gathered}
\left|\lambda_{B}\left(T^{k \tilde{h}_{n}+y} I_{n, j}^{\left[r_{n}-i\right]}\right)\right| \leq\left|\frac{a_{n+1}}{r_{n+1}+1} \sum_{t=0}^{b_{n+1}-1} \lambda_{B}\left(T^{-t} I_{n+1, j+(k-i-1) \tilde{h}_{n}+c_{n}-c_{n+1}-i\left(b_{n}-1\right)+y}\right)\right|+\frac{2 \mu\left(I_{n+1}\right)}{r_{n+1}+1} \\
=\left|\frac{a_{n+1}}{r_{n+1}+1} \sum_{t=0}^{b_{n+1}-1} \lambda_{B}\left(T^{-t} I_{n, j+c_{n}-c_{n+1}-i\left(b_{n}-1\right)+y}^{[k-i-1]}\right)\right|+\frac{2 \mu\left(I_{n+1}\right)}{r_{n+1}+1}
\end{gathered}
$$

$$
\begin{aligned}
& =\left|\frac{a_{n+1}}{r_{n+1}+1} \frac{1}{r_{n}+1} \sum_{t=0}^{b_{n+1}-1} \lambda_{B}\left(T^{-t} I_{n, j+c_{n}-c_{n+1}-i\left(b_{n}-1\right)+y}\right)\right|+\frac{2 \mu\left(I_{n+1}\right)}{r_{n+1}+1} \\
& \leq \frac{a_{n+1} b_{n+1}}{\left(r_{n+1}+1\right)\left(r_{n}+1\right)} \int_{T^{y+c_{n}-c_{n+1}-i\left(b_{n}-1\right)} I_{n, j}}\left|\frac{1}{b_{n+1}} \sum_{t=0}^{b_{n+1}-1} \chi_{B} \circ T^{-t}\right| d \mu+\frac{2 \mu\left(I_{n+1, j}\right)}{r_{n+1}+1}
\end{aligned}
$$

and so

$$
\begin{aligned}
& \sum_{j=a_{n} b_{n}+b_{n+1}+c_{n+1}-c_{n}}^{\tilde{h}_{n}-y} \sum_{i=0}^{k}\left|\lambda_{B}\left(T^{k \tilde{h}_{n}+y} I_{n, j}^{\left[r_{n}-i\right]}\right)\right| \\
& \leq \frac{k}{r_{n}+1} \int\left|\frac{1}{b_{n+1}} \sum_{t=0}^{b_{n+1}-1} \chi_{B} \circ T^{-t}\right| d \mu+\frac{1}{r_{n}+1}+\frac{2}{\left(r_{n+1}+1\right)\left(r_{n}+1\right)}
\end{aligned}
$$

Therefore, since $\sup _{t \geq b_{n}}\left(\int\left|\frac{1}{t} \sum_{i=0}^{t-1} \chi_{B} \circ T^{-i}\right| d \mu+\frac{2}{t}\right)<\epsilon$,

$$
\sum_{j=a_{n} b_{n}+b_{n+1}+c_{n+1}-c_{n}}^{\tilde{h}_{n}-y}\left|\lambda_{B}\left(T^{k \tilde{h}_{n}+y} I_{n, j}\right)-\frac{a_{n}-k}{r_{n}+1} \sum_{\ell=0}^{b_{n}-1} \lambda_{B}\left(T^{y-k \ell} I_{n, j}\right)\right| \leq \frac{k b_{n}}{r_{n}+1} \epsilon<\frac{k}{a_{n}} \epsilon
$$

For $a_{n} b_{n}+c_{n+1}-c_{n}+\tilde{h}_{n}-y \leq j<\tilde{h}_{n}$,

$$
T^{k \tilde{h}_{n}+y} I_{n, j}=T^{(k+1) \tilde{h}_{n}+0} I_{n, j-\left(\tilde{h}_{n}-y\right)}
$$

and since $a_{n} b_{n}+b_{n+1}+c_{n+1}-c_{n} \leq j-\left(\tilde{h}_{n}-y\right)<\tilde{h}_{n}-0$, the claim follows from the above replacing k by $k+1, j$ by $j-\left(\tilde{h}_{n}-y\right)$ and y by 0 .

Proposition 4.19. Let T be a quasi-staircase transformation such that $\frac{a_{n+1} b_{n+1}+c_{n+1}+a_{n} b_{n}^{2}}{h_{n}} \rightarrow 0$. Let B be a union of levels in some column C_{N}. For $n>N$, set

$$
\widetilde{M}_{B, n}=\max _{b_{n} \leq k<a_{n}} \max _{a_{n-1} \tilde{h}_{n-1} \leq y \leq \tilde{h}_{n}-a_{n-1} \tilde{h}_{n-1}} \sum_{j=0}^{\tilde{h}_{n-1}-1}\left|\lambda_{B}\left(T^{k \tilde{h}_{n}+y} I_{n-1, j}\right)\right|
$$

Then $\lim _{n \rightarrow \infty} \widetilde{M}_{B, n}=0$.
Proof. Let $\epsilon>0$ such that $\sup _{t \geq b_{n}}\left(\int\left|\frac{1}{t} \sum_{i=0}^{t-1} \chi_{B} \circ T^{-i}\right| d \mu+\frac{2}{t}\right)<\epsilon$. Write $y=x a_{n-1} \tilde{h}_{n-1}+z \tilde{h}_{n-1}+w$ for $1 \leq x \leq b_{n}$ and $0 \leq z<a_{n-1}$ and $0 \leq w<\tilde{h}_{n-1}$. Observe that if $0 \leq i<\left(b_{n-1}-x\right) a_{n-1}$ then $I_{n-1, j}^{[i]}$ is a level in C_{n} below $I_{n, \tilde{h}_{n}-y}$ and that if $\left(b_{n-1}-x\right) a_{n-1}<i \leq r_{n-1}$ then $I_{n-1, j}^{[i]}$ is a level in C_{n} above $I_{n, \tilde{h}_{n}-y}$. Then by Lemma 4.18, as $\frac{2 k+1}{a_{n}} \epsilon \leq \frac{3 k}{a_{n}} \epsilon$,

$$
\begin{aligned}
& \sum_{j=0}^{\tilde{h}_{n-1}-1} \left\lvert\, \lambda_{B}\left(T^{k \tilde{h}_{n}+y} I_{n-1, j}\right)-\frac{a_{n}-k}{r_{n}+1} \sum_{\ell=0}^{b_{n}-1} \sum_{i=0}^{\left(b_{n-1}-x\right) a_{n-1}-1} \lambda_{B}\left(T^{y-k \ell} I_{n-1, j}^{[i]}\right)\right. \\
& \left.-\frac{a_{n}-k-1}{r_{n}+1} \sum_{\ell=0}^{b_{n}-1} \sum_{i=\left(b_{n-1}-x+1\right) a_{n-1}}^{r_{n-1}} \lambda_{B}\left(T^{y-\tilde{h}_{n}-(k+1) \ell} I_{n-1, j}^{[i]}\right) \right\rvert\,<\frac{3 k}{a_{n}} \epsilon+\frac{a_{n}}{r_{n}+1}+\frac{4\left(a_{n} b_{n}+b_{n+1}+c_{n+1}\right)}{\tilde{h}_{n}}
\end{aligned}
$$

Now observe that, via Lemma 4.15, writing $k^{\prime}=x a_{n-1}+z$,

$$
\sum_{j=0}^{\tilde{h}_{n-1}-1}\left|\frac{1}{b_{n}} \sum_{\ell=0}^{b_{n}-1} \sum_{i=0}^{\left(b_{n-1}-x\right) a_{n-1}-1} \lambda_{B}\left(T^{y-k \ell} I_{n-1, j}^{[i]}\right)\right| \leq \frac{1}{b_{n}} \sum_{\ell=0}^{b_{n}-1} \sum_{j=0}^{\tilde{h}_{n-1}-1}\left|\sum_{i=0}^{\left(b_{n-1}-x\right) a_{n-1}-1} \lambda_{B}\left(T^{y-k \ell} I_{n-1, j}^{[i]}\right)\right|
$$

$$
\leq \frac{c_{n-1}}{\tilde{h}_{n-1}}+\sum_{j=0}^{\tilde{h}_{n-1}-1}\left(\left|\sum_{i=0}^{\left(b_{n-1}-x\right) a_{n-1}-1} \lambda_{B}\left(T^{k^{\prime} \tilde{h}_{n-1}} I_{n-1, j}^{[i]}\right)\right|+\left|\sum_{i=0}^{\left(b_{n-1}-x\right) a_{n-1}-1} \lambda_{B}\left(T^{\left(k^{\prime}+1\right) \tilde{h}_{n-1}} I_{n-1, j}^{[i]}\right)\right|\right)
$$

which are precisely the sums (\star) in the proof Proposition 4.16 (since $x \geq 1$ so $k^{\prime} \geq a_{n-1}$). Therefore

$$
\sum_{j=0}^{\tilde{h}_{n-1}-1}\left|\frac{a_{n}-k}{r_{n}+1} \sum_{\ell=0}^{b_{n}-1} \sum_{i=0}^{\left(b_{n-1}-x\right) a_{n-1}-1} \lambda_{B}\left(T^{y-k \ell} I_{n-1, j}^{[i]}\right)\right| \rightarrow 0
$$

Now observe that for $0 \leq i<a_{n-1}$ and $0 \leq q<b_{n-1}$,

$$
I_{n-1, j}^{\left[q a_{n-1}+i\right]}=T^{q a_{n-1} \tilde{h}_{n-1}+\frac{1}{2} a_{n-1} q(q-1)+i \tilde{h}_{n-1}+i q} I_{n-1, j}^{[0]}
$$

so for $0 \leq i<a_{n-1}-1$, as $\left(b_{n-1}-x+q\right)\left(b_{n-1}-x+q-1\right)-q(q-1)=\left(b_{n-1}-x\right)\left(b_{n-1}-x-1+2 q\right)$,

$$
I_{n-1, j}^{\left[\left(b_{n-1}-x+q\right) a_{n-1}+i+1\right]}=T^{\left(b_{n-1}-x\right) a_{n-1} \tilde{h}_{n-1}+\frac{1}{2} a_{n-1}\left(b_{n-1}-x\right)\left(b_{n-1}-x-1+2 q\right)+\tilde{h}_{n-1}+q+(i+1)\left(b_{n-1}-x\right)} I_{n-1, j}^{\left[q a_{n-1}+i\right]}
$$

Set $Q=Q_{q}=-c_{n}+c_{n-1}-(k+1) \ell+\frac{1}{2} a_{n-1}\left(b_{n-1}-x\right)\left(b_{n-1}-x-1+2 q\right)+q-\frac{1}{2} a_{n-1} b_{n-1}\left(b_{n-1}-1\right)+b_{n-1}-x$ and note that $|Q| \leq c_{n}+a_{n} b_{n}+2 a_{n-1} b_{n-1}^{2}$. Then, since $b_{n-1} a_{n-1} \tilde{h}_{n-1}+\tilde{h}_{n-1}-\tilde{h}_{n}=-c_{n}+c_{n-1}-$ $\frac{1}{2} a_{n-1} b_{n-1}\left(b_{n-1}-1\right)$,

$$
T^{y-(k+1) \ell-\tilde{h}_{n}} I_{n-1, j}^{\left[\left(b_{n-1}-x+q\right) a_{n-1}+i\right]}=T^{z \tilde{h}_{n-1}+w+i\left(b_{n-1}-x\right)+Q} I_{n-1, j}^{\left[q a_{n-1}+i\right]}
$$

Consider j such that $0 \leq j+Q-a_{n-1} b_{n-1}<\tilde{h}_{n-1}-w-a_{n-1} b_{n-1}$. If $z+i \geq a_{n-1}$,

$$
\begin{aligned}
T^{y-(k+1) \ell-\tilde{h}_{n}} I_{n-1, j}^{\left[\left(b_{n-1}-x+q\right) a_{n-1}+i\right]} & =T^{z \tilde{h}_{n-1}} I_{n-1, j+Q+w+i\left(b_{n-1}-x\right)}^{\left[q a_{n-1}+i\right]}=I_{n-1, j+Q+w+i\left(b_{n-1}-x\right)-z q-\left(z+i-a_{n-1}\right)}^{\left[q a_{n-1}+i+z\right]} \\
& =T^{i\left(b_{n-1}-x-1\right)} I_{n-1, j+Q+w-z q-\left(z-a_{n-1}\right)}^{\left[q a_{n-1}+i+z\right]}
\end{aligned}
$$

and therefore

$$
\lambda_{B}\left(T^{y-(k+1) \ell-\tilde{h}_{n}} I_{n-1, j}^{\left[q a_{n-1}+i\right]}\right)=\frac{1}{r_{n-1}} \lambda_{B}\left(T^{i\left(b_{n-1}-x-1\right)} I_{n-1, j+Q+w-z q-\left(z-a_{n-1}\right)}\right)
$$

Similarly, if $z+i<a_{n-1}$,

$$
\begin{aligned}
T^{y-(k+1) \ell-\tilde{h}_{n}} I_{n-1, j}^{\left[\left(b_{n-1}-x+q\right) a_{n-1}+i\right]} & =T^{z \tilde{h}_{n-1}} I_{n-1, j+Q+w+i\left(b_{n-1}-x\right)}^{\left[q a_{n-1}+i\right]}=I_{n-1, j+Q+w+i\left(b_{n-1}-x\right)-z q}^{\left[q a_{n-1}+i+z\right]} \\
& =T^{i\left(b_{n-1}-x\right)} I_{n-1, j+Q+w-z q}^{\left[q a_{n-1}+i+z\right]}
\end{aligned}
$$

so

$$
\lambda_{B}\left(T^{y-(k+1) \ell-\tilde{h}_{n}} I_{n-1, j}^{\left[q a_{n-1}+i\right]}\right)=\frac{1}{r_{n-1}} \lambda_{B}\left(T^{i\left(b_{n-1}-x\right)} I_{n-1, j+Q+w-z q-\left(z-a_{n-1}\right)}\right)
$$

Therefore, as $\frac{x}{r_{n-1}} \leq \frac{b_{n-1}}{r_{n-1}}<\frac{1}{a_{n-1}}$,

$$
\begin{aligned}
& \tilde{h}_{n-1}-\sum_{j=a_{n-1} b_{n-1}-Q}^{\tilde{a}_{n-1} b_{n-1}}\left|\sum_{i=\left(b_{n-1}-x+1\right) a_{n-1}}^{r_{n-1}} \lambda_{B}\left(T^{y-(k+1) \ell-\tilde{h}_{n}} I_{n-1, j}^{[i]}\right)\right| \\
& \quad \leq \sum_{j=a_{n-1} b_{n-1}-Q}^{\tilde{h}_{n-1}-w-a_{n-1} b_{n-1}}\left|\sum_{q=b_{n-1}-x+1}^{b_{n-1}-1} \sum_{i=0}^{a_{n-1}-2} \lambda_{B}\left(T^{y-(k+1) \ell-\tilde{h}_{n}} I_{n-1, j}^{\left[q a_{n-1}+i\right]}\right)\right|+\frac{x+1}{r_{n-1}} \\
& \quad \leq \frac{1}{r_{n-1}} \sum_{q=0}^{x-1} \int\left|\sum_{i=0}^{a_{n-1}-z-1} \chi_{B} \circ T^{i\left(b_{n-1}-x-1\right)}\right| d \mu+\frac{1}{r_{n-1}} \sum_{q=0}^{x-1} \int\left|\sum_{i=0}^{z-1} \chi_{B} \circ T^{i\left(b_{n-1}-x\right)}\right| d \mu+\frac{x+1}{r_{n-1}} \\
& \quad \leq \int\left|\frac{1}{a_{n-1}} \sum_{i=0}^{a_{n-1}-z-1} \chi_{B} \circ T^{i\left(b_{n-1}-x-1\right)}\right| d \mu+\int\left|\frac{1}{a_{n-1}} \sum_{i=0}^{z-1} \chi_{B} \circ T^{i\left(b_{n-1}-x\right)}\right| d \mu+\frac{x+1}{r_{n-1}}
\end{aligned}
$$

Now consider j such that $\tilde{h}_{n-1}-w+a_{n-1} b_{n-1}-Q \leq j<\tilde{h}_{n-1}-a_{n-1} b_{n-1}$. Then

$$
T^{y-(k+1) \ell-\tilde{h}_{n}} I_{n-1, j}^{\left[q a_{n-1}+i\right]}=T^{(z+1) \tilde{h}_{n-1}} I_{n-1, j+Q+w+i\left(b_{n-1}-x\right)-\tilde{h}_{n-1}}
$$

so similar reasoning as above shows that

$$
\begin{aligned}
& \sum_{j=\tilde{h}_{n-1}-w+a_{n-1} b_{n-1}-Q}^{\tilde{h}_{n-1}-a_{n-1} b_{n-1}} \mid \sum_{i=\left(b_{n-1}-x+1\right) a_{n-1}}^{r_{n-1}} \lambda_{B}\left(T^{y-(k+1) \ell-\tilde{h}_{n}} I_{n-1, j}^{[i]} \mid\right. \\
& \quad \leq \int\left|\frac{1}{a_{n-1}} \sum_{i=0}^{a_{n-1}-z-1} \chi_{B} \circ T^{i\left(b_{n-1}-x-1\right)}\right| d \mu+\int\left|\frac{1}{a_{n-1}} \sum_{i=0}^{z-1} \chi_{B} \circ T^{i\left(b_{n-1}-x\right)}\right| d \mu+\frac{x+1}{r_{n-1}}
\end{aligned}
$$

Note that $y<\tilde{h}_{n}-a_{n-1} \tilde{h}_{n-1}=\left(b_{n-1}-1\right) a_{n-1} \tilde{h}_{n-1}+h_{n-1}+\frac{1}{2} a_{n-1} b_{n-1}\left(b_{n-1}-1\right)+c_{n}<\left(b_{n-1}-\right.$ 1) $a_{n-1} \tilde{h}_{n-1}+2 \tilde{h}_{n-1}$. Therefore $x \leq b_{n-1}-1$ and if $x=b_{n-1}-1$ then $z \leq 1$. When $x \leq b_{n-1}-1$, both $b_{n-1}-x \geq 1$ and $b_{n-1}-x-1 \geq 1$ so both integrals tend to zero by Proposition 4.11. When $x=b_{n-1}-1$, the first integral tends to zero by Proposition 4.11 and the second is bounded by $\frac{z}{a_{n-1}} \rightarrow 0$.

Since $\frac{|Q|}{\tilde{h}_{n-1}} \leq \frac{c_{n}+a_{n} b_{n}+a_{n-1} b_{n-1}^{2}}{h_{n-1}} \rightarrow 0$, then $\sum_{j=0}^{\tilde{h}_{n-1}}\left|\sum_{i=\left(b_{n-1}-x+1\right) a_{n-1}}^{r_{n-1}} \lambda_{B}\left(T^{y-(k+1) \ell-\tilde{h}_{n}} I_{n-1, j}^{[i]}\right)\right| \rightarrow 0$.
Notation 4.20. Define $\tau_{n}=\frac{4\left(a_{n} b_{n}+b_{n+1}+c_{n+1}\right)}{\tilde{h}_{n}}$.
Lemma 4.21. Let T be a quasi-staircase transformation, B a union of levels in some $C_{N}, \epsilon>0$ such that $\sup _{t \geq b_{N}}\left(\int\left|\frac{1}{t} \sum_{i=0}^{t-1} \chi_{B} \circ T^{-i}\right| d \mu+\frac{2}{t}\right)<\frac{\epsilon}{3}, n>N, b_{n} \leq k<a_{n}$ and $0 \leq|y|<a_{n-1} \tilde{h}_{n-1}$. Then

$$
\left|\lambda_{B}\left(T^{k \tilde{h}_{n}+y} B\right)-\frac{a_{n}-k}{r_{n}+1} \sum_{\ell=0}^{b_{n}-1} \lambda_{B}\left(T^{y-k \ell} B\right)\right| \leq \frac{k}{a_{n}} \epsilon+\tau_{n}+\left(1-\frac{k}{a_{n}}\right) \frac{1}{b_{n}} \sum_{\ell=0}^{b_{n}-1} \frac{2|y-k \ell|}{\tilde{h}_{n}}
$$

Proof. Consider first when $y \geq 0$. Write $\beta=\left\{a_{n} b_{n}+b_{n+1}+c_{n+1} \leq j<\tilde{h}_{n}-y: I_{n, j} \subseteq B\right\}$ and $\beta^{\prime}=\left\{a_{n} b_{n}+b_{n+1}+c_{n+1}+\tilde{h}_{n}-y \leq j<\tilde{h}_{n}: I_{n, j} \subseteq B\right\}$. By Lemma 4.18,

$$
\left|\sum_{j \in \beta \cup \beta^{\prime}} \lambda_{B}\left(T^{k \tilde{h}_{n}+y} I_{n, j}\right)-\sum_{\ell=0}^{b_{n}-1}\left(\frac{a_{n}-k}{r_{n}+1} \sum_{j \in \beta} \lambda_{B}\left(T^{y-k \ell} I_{n, j}\right)-\frac{a_{n}-k-1}{r_{n}+1} \sum_{j \in \beta^{\prime}} \lambda_{B}\left(T^{y-\tilde{h}_{n}-(k+1) \ell} I_{n, j}\right)\right)\right|
$$

is bounded by $\frac{k}{a_{n}} \frac{\epsilon}{3}+\frac{k+1}{a_{n}} \frac{\epsilon}{3} \leq \frac{k \epsilon}{a_{n}}$ and therefore

$$
\begin{aligned}
& \left|\lambda_{B}\left(T^{k \tilde{h}_{n}+y} B\right)-\frac{a_{n}-k}{r_{n}+1} \sum_{\ell=0}^{b_{n}-1} \sum_{j \in \beta \cup \beta^{\prime}} \lambda_{B}\left(T^{y-k \ell} I_{n, j}\right)\right| \\
& \quad \leq \frac{k}{a_{n}} \epsilon+\frac{\tau_{n}}{2}+\frac{a_{n}-k}{r_{n}+1} \sum_{\ell=0}^{b_{n}-1} \sum_{j \in \beta^{\prime}}\left|\lambda_{B}\left(T^{y-k \ell} I_{n, j}\right)-\frac{a_{n}-k-1}{a_{n}-k} \lambda_{B}\left(T^{y-\tilde{h}_{n}-(k+1) \ell} I_{n, j}\right)\right| \\
& \quad \leq \frac{k}{a_{n}} \epsilon+\frac{\tau_{n}}{2}+\frac{a_{n}-k}{r_{n}+1} b_{n}\left|\beta^{\prime}\right| \mu\left(I_{n}\right) \frac{2 a_{n}-2 k-1}{a_{n}-k}<\frac{k}{a_{n}} \epsilon+\frac{\tau_{n}}{2}+\left(1-\frac{k}{a_{n}}\right) \frac{2\left|\beta^{\prime}\right|}{\tilde{h}_{n}}
\end{aligned}
$$

so the claim follows for $y \geq 0$ as $\left|\beta^{\prime}\right|=y-a_{n} b_{n}-c_{n+1} \leq|y-k \ell|$ for all $0 \leq \ell<b_{n}$ (and if $y<$ $a_{n} b_{n}+b_{n+1}+c_{n+1}$ then $\left.\beta^{\prime}=\emptyset\right)$ and since $\left|\lambda_{B}\left(T^{k \tilde{h}_{n}+y} B\right)-\sum_{j \in \beta \cup \beta^{\prime}} \lambda_{B}\left(T^{k \tilde{h}_{n}+y} I_{n, j}\right)\right| \leq \frac{\tau_{n}}{2}$.
Now consider when $y<0$. Then $k \tilde{h}_{n}+y=(k-1) \tilde{h}_{n}+\left(\tilde{h}_{n}+y\right)$ so, following the same reasoning as above and swapping the roles of β^{\prime} and β,

$$
\left|\lambda_{B}\left(T^{k \tilde{h}_{n}+y} B\right)-\frac{a_{n}-(k-1)-1}{r_{n}+1} \sum_{\ell=0}^{b_{n}-1} \sum_{j \in \beta \cup \beta^{\prime}} \lambda_{B}\left(T^{\left(y+\tilde{h}_{n}\right)-(k-1+1) \ell} I_{n, j}\right)\right|
$$

$$
<\frac{k-1+1}{a_{n}} \epsilon+\frac{\tau_{n}}{2}+\left(1-\frac{k-1+1}{a_{n}}\right) \frac{2|\beta|}{\tilde{h}_{n}}
$$

so the claim follows as in this case $|\beta| \leq|y-k \ell|$.
Lemma 4.22. Let $\epsilon>0$ and $q, k, p, Q, L \in \mathbb{N}$ and for all $0 \leq \ell<L$, let $0 \leq \delta_{\ell} \leq 1$. If $\frac{p Q}{L}<\epsilon$ and $\frac{1}{Q}<\epsilon$ and $\left|\lambda_{B}\left(T^{k p t} B\right)\right|<\epsilon$ for all $1 \leq t<Q$ then

$$
\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \delta_{\ell} \lambda_{B}\left(T^{q-k \ell} B\right)\right|<(2 \epsilon)^{1 / 2}+\epsilon
$$

Proof. Using that T is measure-preserving and the Cauchy-Schwarz inequality,

$$
\begin{aligned}
& \left|\frac{1}{L} \sum_{\ell=0}^{L-1} \delta_{\ell} \lambda_{B}\left(T^{q-k \ell} B\right)\right|=\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \int_{B} \delta_{\ell} \chi_{B} \circ T^{q-k \ell} d \mu\right| \leq \int\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \delta_{\ell} \chi_{B} \circ T^{q-k \ell}\right| d \mu \\
& \quad \leq \frac{p Q\left\lfloor\frac{L}{p Q}\right\rfloor}{L} \frac{1}{\left\lfloor\frac{L}{p Q}\right\rfloor} \sum_{j=0}^{\left\lfloor\frac{L}{p Q}\right\rfloor-1} \frac{1}{p} \sum_{i=0}^{p-1} \int\left|\frac{1}{Q} \sum_{t=0}^{Q-1} \delta_{j p Q+i+p t} \chi_{B} \circ T^{-k p t}\right| \circ T^{q-k j p Q-k i} d \mu+\frac{p Q}{L} \\
& \quad<\frac{1}{\left\lfloor\frac{L}{p Q}\right\rfloor} \sum_{j=0}^{\left\lfloor\frac{L}{p Q}\right\rfloor-1} \frac{1}{p} \sum_{i=0}^{p-1} \int\left|\frac{1}{Q} \sum_{t=0}^{Q-1} \delta_{j p Q+i+p t} \chi_{B} \circ T^{-k p t}\right| d \mu+\epsilon \\
& \quad \leq \frac{1}{\left\lfloor\frac{L}{p Q}\right\rfloor} \sum_{j=0}^{\left\lfloor\frac{L}{p Q}\right\rfloor-1} \frac{1}{p} \sum_{i=0}^{p-1}\left(\int\left|\frac{1}{Q} \sum_{t=0}^{Q-1} \delta_{j p Q+i+p t} \chi_{B} \circ T^{-k p t}\right|^{2} d \mu\right)^{1 / 2}+\epsilon \\
& \quad=\frac{1}{\left\lfloor\frac{L}{p Q}\right\rfloor} \sum_{j=0}^{\left\lfloor\frac{L}{p Q}\right\rfloor-1} \frac{1}{p} \sum_{i=0}^{p-1}\left(\frac{1}{Q^{2}} \sum_{t, u=0}^{Q-1} \delta_{j p Q+i+p t} \delta_{j p Q+i+p u} \lambda_{B}\left(T^{k p(t-u)} B\right)\right)^{1 / 2}+\epsilon \\
& \quad=\frac{1}{\left\lfloor\frac{L}{p Q}\right\rfloor} \sum_{j=0}^{\left\lfloor\frac{L}{p Q}\right\rfloor-1} \frac{1}{p} \sum_{i=0}^{p-1}\left(\frac{1}{Q^{2}} \sum_{t=0}^{Q-1} \delta_{j p Q+i+p t}^{2} \lambda_{B}(B)+\frac{1}{Q^{2}} \sum_{t \neq u} \delta_{j p Q+i+p t} \delta_{j p Q+i+p u} \lambda_{B}\left(T^{k p(t-u)} B\right)\right)^{1 / 2}+\epsilon \\
& \quad<\frac{1}{\left\lfloor\frac{L}{p Q}\right\rfloor} \sum_{j=0}^{\left\lfloor\frac{L}{p Q}\right\rfloor-1} \frac{1}{p} \sum_{i=0}^{p-1}\left(\frac{1}{Q}+\frac{1}{Q^{2}} \sum_{t \neq u} \delta_{j p Q+i+p t} \delta_{j p Q+i+p u} \epsilon\right)^{1 / 2}+\epsilon \leq\left(\frac{1}{Q}+\frac{1}{Q^{2}} \sum_{t \neq u} \epsilon\right)^{1 / 2}+\epsilon
\end{aligned}
$$

Proposition 4.23. Let T be a quasi-staircase transformation such that $\frac{b_{n}^{2}}{h_{n}} \rightarrow 0, \frac{a_{n} b_{n}}{\breve{h}_{n}} \rightarrow 0$ and $\frac{b_{n}}{a_{n}} \rightarrow 0$. Let B be a union of levels in some column $C_{N_{0}}$. Then

$$
\lim _{N \rightarrow \infty} \max _{0 \leq \delta_{\ell} \leq 1} \max _{1 \leq k \leq N} \int\left|\frac{1}{N} \sum_{\ell=0}^{N-1} \delta_{\ell} \chi_{B} \circ T^{-\ell k}\right| d \mu=0
$$

Proof. Fix $\epsilon>0$. Let m such that $b_{m} \geq 2\left\lceil\epsilon^{-1}\right\rceil, \frac{4\left(r_{m}+1\right)\left\lceil\epsilon^{-1}\right\rceil^{2}}{\tilde{h}_{m}}<\epsilon$ and $\sup _{n \geq m} \widehat{M}_{B, n}<\epsilon$ (using Proposition 4.17). Take any N such that $\frac{\tilde{h}_{m}\left\lceil\epsilon^{-1}\right\rceil}{N}<\epsilon$. Let k and δ_{ℓ} attain the maximum for N.
Consider first the case when $k \geq \tilde{h}_{m}$. Let $n \geq m$ such that $\tilde{h}_{n} \leq k<\tilde{h}_{n+1}$. Let p such that $(p-1) k<$ $\tilde{h}_{n+1} \leq p k$ so that $p k<\tilde{h}_{n+1}+k<2 \tilde{h}_{n+1}$. Then for every $1 \leq q<\left\lceil\epsilon^{-1}\right\rceil, \tilde{h}_{n+1} \leq q p k<\left\lceil\epsilon^{-1}\right\rceil 2 \tilde{h}_{n+1} \leq$ $b_{n} \tilde{h}_{n}$ meaning that $\left|\lambda_{B}\left(T^{q p k} B\right)\right| \leq \widehat{M}_{B, n}<\epsilon$. Now

$$
\frac{p\left\lceil\epsilon^{-1}\right\rceil}{N}=\frac{p k\left\lceil\epsilon^{-1}\right\rceil}{N k}<\frac{2 \tilde{h}_{n+1}\left\lceil\epsilon^{-1}\right\rceil}{N \tilde{h}_{n}}<\frac{4\left(r_{n}+1\right)\left\lceil\epsilon^{-1}\right\rceil}{N} \leq \frac{4\left(r_{n}+1\right)\left\lceil\epsilon^{-1}\right\rceil}{k} \leq \frac{4\left(r_{n}+1\right)\left\lceil\epsilon^{-1}\right\rceil}{\tilde{h}_{n}}<\epsilon
$$

so Lemma 4.22 implies that $\int\left|\frac{1}{N} \sum_{\ell=0}^{N-1} \delta_{\ell} \chi_{B} \circ T^{-\ell k}\right| d \mu<(2 \epsilon)^{1 / 2}+\epsilon$.

Consider now when $k<\tilde{h}_{m}$. Let p such that $(p-1) k<\tilde{h}_{m} \leq p k$ so that $p k<2 \tilde{h}_{m}$ and $p \leq \tilde{h}_{m}$. Then $\tilde{h}_{m} \leq q p k<\left\lceil\epsilon^{-1}\right\rceil 2 \tilde{h}_{m} \leq b_{m} \tilde{h}_{m}$ for $1 \leq q<\left\lceil\epsilon^{-1}\right\rceil$ so $\left|\lambda_{B}\left(T^{q p k} B\right)\right| \leq \widehat{M}_{B, m}<\epsilon$. Since $\frac{p\left\lceil\epsilon^{-1}\right\rceil}{N}<$ $\frac{\tilde{h}_{m}\left\lceil\epsilon^{-1}\right\rceil}{N}<\epsilon$, Lemma 4.22 again implies that $\int\left|\frac{1}{N} \sum_{\ell=0}^{N-1} \delta_{\ell} \chi_{B} \circ T^{-\ell k}\right| d \mu<(2 \epsilon)^{1 / 2}+\epsilon$.

Notation 4.24. For $t \in \mathbb{Z}$, write $\alpha(t)$ for the unique positive integer such that $\tilde{h}_{\alpha(t)} \leq|t|<\tilde{h}_{\alpha(t)+1}$.
For $\ell, q, k \in \mathbb{Z}$ and $n>0$ such that $|q-\ell k|<\tilde{h}_{n+1}$, let d be the unique integer such that $\left|(q-\ell k)-d \tilde{h}_{n}\right| \leq$ $\frac{1}{2} \tilde{h}_{n}$ and define

$$
\gamma_{\ell}^{n, q, k}= \begin{cases}\frac{a_{n}-|d|}{a_{n}} & \text { if }\left(b_{n} \leq|d|<a_{n} \text { or } d=0\right) \text { and }\left|(q-\ell k)-d \tilde{h}_{n}\right|<a_{n-1} \tilde{h}_{n-1} \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 4.25. Let $\epsilon>0$ and set $\epsilon_{0}=\left(2\left\lceil\epsilon^{-1}\right\rceil^{\left\lceil\epsilon^{-1}\right\rceil+1}\right)^{-1}$. Let $L, k, q \in \mathbb{Z}$ with $L \geq \epsilon_{0}^{-1}$ and for each $0 \leq \ell<L$, let $0 \leq \delta_{\ell} \leq 1$.
Let $\alpha_{0}=\max \{\alpha(q-\ell k): 0 \leq \ell<L\}$. Assume that $\max \left(M_{B, \alpha_{0}}, M_{B, \alpha_{0}-1}, \widehat{M}_{B, \alpha_{0}}, \widetilde{M}_{B, \alpha_{0}}\right)<\epsilon$ and $b_{\alpha_{0}-1}>4 \epsilon^{-1} \epsilon_{0}^{-1}$ and $\sup _{m \geq b_{\alpha_{0}-1}}\left(\int\left|\frac{1}{m} \sum_{i=0}^{m-1} \chi_{B} \circ T^{-i}\right| d \mu+\frac{2}{m}\right)<\frac{\epsilon}{3}$.
Then either $\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \delta_{\ell} \lambda_{B}\left(T^{q-\ell k} B\right)\right|+\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\delta_{\ell}\right) \epsilon<6 \epsilon^{1 / 2}$ or there exists integers $t>0,0<L^{\prime}<$ $L / t, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime} \in \mathbb{Z}$ such that $\alpha_{\ell^{\prime}}=\max \left\{\alpha\left(q_{\ell^{\prime}}-k_{\ell^{\prime}}^{\prime}\right): 0 \leq \ell<L^{\prime}\right\}<\alpha_{0}$ and

$$
\begin{aligned}
& \left|\frac{1}{L} \sum_{\ell=0}^{L-1} \delta_{\ell} \lambda_{B}\left(T^{q-\ell k} B\right)\right|+\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\delta_{\ell}\right) \epsilon \\
& \quad<\frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}}-1}\left(\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \mathbb{1}_{\ell<L^{\prime}} \delta_{\ell_{0}+\ell t} \gamma_{\ell_{0}+t \ell}^{\alpha_{0}, q, k} \lambda_{B}\left(T^{q_{\ell^{\prime}}-k_{\ell^{\prime}}^{\prime} \ell} B\right)\right|+\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\mathbb{1}_{\ell<L^{\prime}} \delta_{\ell_{0}+\ell t} \gamma_{\ell_{0}+t \ell}^{\alpha_{0}, q, k}\right) \epsilon\right) \\
& \quad+\frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}}-1} \frac{1}{L} \sum_{\ell=0}^{L-1} \mathbb{1}_{\ell<L^{\prime}} \delta_{\ell_{0}+t \ell} \gamma_{\ell_{0}+t \ell}^{\alpha_{0}, q, k}\left(1-\gamma_{\ell}^{\alpha_{\ell^{\prime}}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}\right) \epsilon+\tau_{\alpha_{0}}
\end{aligned}
$$

Proof. Write $q-\ell k=k_{\ell} \tilde{h}_{\alpha_{0}}+y_{\ell}$ with $\left|y_{\ell}\right| \leq \frac{1}{2} \tilde{h}_{\alpha_{0}}$. Define

$$
\mathcal{L}=\left\{0 \leq \ell<L:\left(k_{\ell}=0 \text { or } b_{\alpha_{0}} \leq\left|k_{\ell}\right|<a_{\alpha_{0}}\right) \text { and }\left|y_{\ell}\right|<a_{\alpha_{0}-1} \tilde{h}_{\alpha_{0}-1}\right\}
$$

Since $\lambda_{B}\left(T^{-t} B\right)=\lambda_{B}\left(T^{t} B\right)$, then for $\ell \notin \mathcal{L},\left|\lambda_{B}\left(T^{q-\ell k} B\right)\right|<\epsilon$ as it is bounded by one of $M_{B, \alpha_{0}}$, $M_{B, \alpha_{0}-1}, \widehat{M}_{B, \alpha_{0}}$ or $\widetilde{M}_{B, \alpha_{0}}$. Write $k=z \tilde{h}_{\alpha_{0}}+y$ for $|y| \leq \frac{1}{2} \tilde{h}_{\alpha_{0}}$ and $q=x \tilde{h}_{\alpha_{0}}+r$ for $|r| \leq \frac{1}{2} \tilde{h}_{\alpha_{0}}$.
Claim: Either $\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \lambda_{B}\left(T^{q-\ell k} B\right)\right|+\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\delta_{\ell}\right) \epsilon<6 \epsilon^{1 / 2}$ or there exists $p \in \mathbb{Z}, t>0$ and $0 \leq \ell_{0}<L^{\prime} \leq L$ such that $\mathcal{L} \subseteq\left\{\ell_{0}+i t: 0 \leq i<L^{\prime}\right\}$ and $\left|i t y-i p \tilde{h}_{\alpha_{0}}\right|<\frac{1}{3} \tilde{h}_{\alpha_{0}}$ for all $0 \leq i<L^{\prime}$.

Proof. Let $p \in \mathbb{Z}$ and $0<t<b_{\alpha_{0}-1} L$ such that $\left|\frac{y}{\hat{h}_{\alpha_{0}}}-\frac{p}{t}\right|<\frac{1}{L b_{\alpha_{0}-1}}$ and either $(p=0, t=1)$ or p, t are relatively prime. Let $u \in \mathbb{Z}$ such that $\left|\frac{r}{\hat{h}_{\alpha_{0}}}-\frac{u}{t}\right| \leq \frac{1}{2 t}$.
For $\ell \in \mathcal{L}$, there exists $n \in \mathbb{Z}$ such that $\left|r-\ell y-n \tilde{h}_{\alpha_{0}}\right|<a_{\alpha_{0}-1} \tilde{h}_{\alpha_{0}-1}$ so $\left|\frac{r-\ell y}{\tilde{h}_{\alpha_{0}}}-n\right|<\frac{1}{b_{\alpha_{0}-1}}$. Then $\left|\frac{u-\ell p}{t}-n\right|<\frac{1}{2 t}+\frac{\ell}{L b_{\alpha_{0}-1}}+\frac{1}{b_{\alpha_{0}-1}}<\frac{1}{2 t}+\frac{2}{b_{\alpha_{0}-1}}$.
Case: $|p|<\frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0} L}$
For $0 \leq \ell<L$, then $|\ell p|<\frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0}}<\frac{2 t}{4 \epsilon^{-1} \epsilon_{0}^{-1} \epsilon_{0}}=2 \epsilon t$ so $\left|\frac{\ell y}{\hat{h}_{n}}\right| \leq \frac{\ell}{b_{\alpha_{0}-1} L}+\left|\frac{\ell p}{t}\right|<\frac{1}{b_{\alpha_{0}-1}}+2 \epsilon$ meaning \mathcal{L} is consecutive. Also $\left|\ell \cdot 1 \cdot y-\ell \cdot 0 \cdot \tilde{h}_{\alpha_{0}}\right|=|\ell y|=\tilde{h}_{\alpha_{0}}\left|\frac{\ell y}{\tilde{h}_{\alpha_{0}}}\right|<\tilde{h}_{\alpha_{0}}\left(\frac{1}{b_{\alpha_{0}-1}}+2 \epsilon\right)<\frac{1}{3} \tilde{h}_{\alpha_{0}}$. This proves the claim replacing t with 1 and p with 0 .
Case: $t \leq \frac{b_{\alpha_{0}-1}}{4}$ and $|p|>0$

For $\ell \in \mathcal{L},\left|\frac{u-\ell p}{t}-n\right|<\frac{2}{b_{\alpha_{0}-1}}+\frac{1}{2 t} \leq \frac{1}{2 t}+\frac{1}{2 t}=\frac{1}{t}$ so $u-\ell p(\bmod t)=0$. Let ℓ_{0} be the minimal element of \mathcal{L}.
As p, t are relatively prime, every $\ell \in \mathcal{L}$ is of the form $\ell=\ell_{0}+t i$. Also $\left|t y-p \tilde{h}_{\alpha_{0}}\right|<\frac{t}{L b_{\alpha_{0}-1}} \tilde{h}_{\alpha_{0}} \leq \frac{1}{4 L} \tilde{h}_{\alpha_{0}}$.
Case: $\frac{b_{\alpha_{0}-1}}{4}<t \leq L$ and $|p|>0$
For $\ell \in \mathcal{L},\left|\frac{u-\ell p}{t}-n\right|<\frac{2}{b_{\alpha_{0}-1}}+\frac{1}{2 t}<\frac{4}{b_{\alpha_{0}-1}}$. Since p and t are relatively prime (so $\ell \mapsto \frac{\ell p}{t}$ is cyclic and onto), at most $\frac{8}{b_{\alpha_{0}-1}} t\left\lceil\frac{L}{t}\right\rceil$ values of $0 \leq \ell<L$ have the property that $u-\ell p(\bmod t)<\frac{4}{b_{\alpha_{0}-1}} t$ or $>$ $t-\frac{4}{b_{\alpha_{0}-1}} t$. Then $|\mathcal{L}| \leq \frac{8}{b_{\alpha_{0}-1}} t\left\lceil\frac{L}{t}\right\rceil<\frac{8}{b_{\alpha_{0}-1}}(L+t)<\frac{16}{b_{\alpha_{0}-1}} L<4 \epsilon \epsilon_{0} L$. Therefore $\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \lambda_{B}\left(T^{q-\ell k} B\right)\right|+$ $\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\delta_{\ell}\right) \epsilon<\frac{1}{L}|\mathcal{L}|+\epsilon<4 \epsilon \epsilon_{0}+\epsilon$.
Case: $L<t$ and $|p| \geq \frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0} L}$
Set $p_{0}=p(\bmod t)$ and $p_{j+1}=\left\lceil\frac{t}{p_{j}}\right\rceil p_{j}(\bmod t)$. Suppose that $\epsilon t \leq p_{j}$ and $p_{j+1} \leq p_{j}-\epsilon t$ for $0 \leq j<\left\lceil\epsilon^{-1}\right\rceil$.
Since $p_{j} \geq \epsilon t,\left\lceil\frac{t}{p_{j}}\right\rceil<\left\lceil\epsilon^{-1}\right\rceil$ so $p_{j}=m_{j} p(\bmod t)$ for some $m_{j}<\left\lceil\epsilon^{-1}\right\rceil^{\left\lceil\epsilon^{-1}\right\rceil-1}<L<t$. As p and t are relatively prime, then $m_{j} p(\bmod t) \neq 0$ so $p_{j}>0$.
Since $p_{j+1} \leq p_{j}-\epsilon t$, then $0<p_{\left\lceil\epsilon^{-1}\right\rceil} \leq p-\left\lceil\epsilon^{-1}\right\rceil \epsilon t<p-t<0$ is a contradiction. So there exists $0 \leq m<\left\lceil\epsilon^{-1}\right\rceil$ such that $0<p_{m}$ and either $p_{m}<\epsilon t$ or $p_{m}>p_{m-1}-\epsilon t$.
Subcase: $\frac{2 t}{b_{\alpha_{0}-1}} \leq p_{m}<\epsilon t$
For $1 \leq i<\left\lceil(2 \epsilon)^{-1}\right\rceil$, then $\frac{2 t}{b_{\alpha_{0}-1}} \leq i p_{m}<\left\lceil(2 \epsilon)^{-1}\right\rceil \epsilon t<\frac{1}{2} t+\epsilon t$. So, writing $g=\left\lceil\frac{t}{p_{m-1}}\right\rceil \cdots\left\lceil\frac{t}{p_{0}}\right\rceil<$ $\left\lceil\epsilon^{-1}\right\rceil^{\left\lceil\epsilon^{-1}\right\rceil-1}$, we have $i g p(\bmod t) \in\left[\frac{2}{b_{\alpha_{0}-1}} t,\left(\frac{1}{2}+\epsilon\right) t\right)$. Then $\left|\frac{i g y}{\tilde{h}_{\alpha_{0}}}-\frac{i g p}{t}\right|<\frac{i g}{L b_{\alpha_{0}-1}}<\frac{\left.2\left\lceil\epsilon^{-1}\right\rceil^{\left\lceil\epsilon^{-1}\right.}\right\rceil}{L b_{\alpha_{0}-1}}<\frac{1}{b_{\alpha_{0}-1}}$. So $\left|\frac{i g y}{\tilde{h}_{\alpha_{0}}}\right|>\frac{1}{b_{\alpha_{0}-1}}$ and $<\frac{1}{2}+\epsilon+\frac{1}{b_{\alpha_{0}-1}}$. Then $|i g y|>a_{\alpha_{0}-1} \tilde{h_{\alpha_{0}-1}}$ and $<\tilde{h}_{\alpha_{0}}-a_{\alpha_{0}-1} \tilde{h_{\alpha_{0}-1}}$. Since $i g k=$ $i g z \tilde{h}_{\alpha_{0}}+i g y$, then $\left|\lambda_{B}\left(T^{i g k} B\right)\right| \leq \widetilde{M}_{B, \alpha_{0}}<\epsilon\left(\right.$ or $<M_{B, \alpha_{0}-1}$ if $\left.z=0\right)$. Since $\frac{g\left\lceil(2 \epsilon)^{-1}\right\rceil}{L}<\frac{\left.2\left\lceil\epsilon^{-1}\right\rceil^{\left\lceil\epsilon^{-1}\right.}\right\rceil}{L}<$ $\left\lceil\epsilon^{-1}\right\rceil^{-1}<\epsilon$, by Lemma 4.22 then $\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \lambda_{B}\left(T^{q-\ell k} B\right)\right|+\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\delta_{\ell}\right) \epsilon<(2 \epsilon)^{1 / 2}+\epsilon+\epsilon<4 \epsilon^{1 / 2}$.
Subcase: $\frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0} L} \leq p_{m}<\frac{2 t}{b_{\alpha_{0}-1}}$
Let $g \in \mathbb{N}$ minimal such that $g p_{m} \geq \frac{2 t}{b_{\alpha_{0}-1}}$. Then $g p_{m}<\frac{4 t}{b_{\alpha_{0}-1}}$ so $g<2 \epsilon_{0} L$. For $1 \leq i<\left\lceil\epsilon^{-1}\right\rceil$, then $\frac{2 t}{b_{\alpha_{0}-1}} \leq i g p_{m}<4\left\lceil\epsilon^{-1}\right\rceil \frac{t}{b_{\alpha_{0}-1}}<\frac{1}{2} t$. Then $z g\left\lceil\frac{t}{p_{m-1}}\right\rceil \cdots\left\lceil\frac{t}{p_{0}}\right\rceil p(\bmod t) \in\left[\frac{2 t}{b_{\alpha_{0}-1}}, \frac{t}{2}\right)$ so, since $\left\lceil\epsilon^{-1}\right\rceil g\left\lceil\frac{t}{p_{m-1}}\right\rceil \cdots\left\lceil\frac{t}{p_{0}}\right\rceil<\left\lceil\epsilon^{-1}\right\rceil\left\lceil\epsilon^{-1}\right\rceil \epsilon_{0} L<\epsilon L$, as above Lemma 4.22 implies $\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \lambda_{B}\left(T^{q-\ell k} B\right)\right|+$ $\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\delta_{\ell}\right) \epsilon<4 \epsilon^{1 / 2}$.
Subcase: $0<p_{m}<\frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0} L}$ and $|p| \geq \frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0} L}$ and $L<t<\epsilon_{0} b_{\alpha_{0}-1} L$
Set $g=\left\lceil\frac{2 t}{b_{\alpha_{0}-1} p_{m}}\right\rceil$ so $g<\frac{2 t}{b_{\alpha_{0}-1}}+1<\frac{2 \epsilon_{0} b_{\alpha_{0}-1} L}{b_{\alpha_{0}}}+1=2 \epsilon_{0} L+1$. For $1 \leq i<\left\lceil\epsilon^{-1}\right\rceil$, then $\frac{2 t}{b_{\alpha_{0}-1}} \leq z g p_{m}<$ $\left\lceil\epsilon^{-1}\right\rceil\left(2 \epsilon_{0} L+1\right) \frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0} L}<\frac{t}{2}$. Since $g\left\lceil\frac{t}{p_{m-1}}\right\rceil \cdots\left\lceil\frac{t}{p_{0}}\right\rceil<\left(2 \epsilon_{0} L+1\right)\left\lceil\epsilon^{-1}\right\rceil^{\left\lceil\epsilon^{-1}\right\rceil-1}<\left\lceil\epsilon^{-1}\right\rceil^{-2} L$, then, as above, we can apply Lemma 4.22 to obtain $\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \lambda_{B}\left(T^{q-\ell k} B\right)\right|+\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\delta_{\ell}\right) \epsilon<4 \epsilon^{1 / 2}$.
Subcase: $0<p_{m}<\frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0} L}$ and $|p| \geq \frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0} L}$ and $t \geq \epsilon_{0} b_{\alpha_{0}-1} L$
Set $g=\left\lceil\frac{t}{p_{m-1}}\right\rceil \cdots\left\lceil\frac{t}{p_{0}}\right\rceil<\left\lceil\epsilon^{-1}\right\rceil^{\left\lceil\epsilon^{-1}\right\rceil-1}$. Since $|p| \geq \frac{2 t}{b_{\alpha_{0}-1 \epsilon_{0} L}}, m>0$ and therefore there exists an integer $v \neq 0$ such that $v t \leq g p<v t+\frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0} L}$ and we may assume v and g are relatively prime. For $\ell \in \mathcal{L}$, there exists n such that $|u-\ell p-n t|<\frac{1}{2}+\frac{2 t}{b_{\alpha_{0}-1}}$. Therefore $|n v t-n g p|<\frac{2|n| t}{b_{\alpha_{0}-1} \epsilon_{0} L}$ and $|n v t-v(u-\ell p)|<\frac{|v|}{2}+\frac{2 t|v|}{b_{\alpha_{0}-1}}$.
Since $|n| \leq \frac{L|p|}{t}$ and $|v| \leq \frac{g|p|}{t}$ and $t \leq b_{\alpha_{0}-1} L$ and $L \leq \frac{t}{\epsilon_{0} b_{\alpha_{0}-1}}$,

$$
|n g p-v(u-\ell p)|<\frac{2|n| t}{b_{\alpha_{0}-1} \epsilon_{0} L}+\frac{|v|}{2}+\frac{2 t|v|}{b_{\alpha_{0}-1}}<\frac{2|p|}{b_{\alpha_{0}-1} \epsilon_{0}}+\frac{g|p|}{2 t}+\frac{2 g|p|}{b_{\alpha_{0}-1}}
$$

$$
<\left(\frac{2}{b_{\alpha_{0}-1} \epsilon_{0}}+\frac{g}{2 \epsilon_{0} b_{\alpha_{0}-1} L}+\frac{2 g}{b_{\alpha_{0}-1}}\right)|p|<\frac{1}{2}|p|
$$

as $g<\epsilon^{2} \epsilon_{0}<\epsilon^{2} b_{\alpha_{0}-1}$. Write $v u=c p+d$ for $c \in \mathbb{Z}$ and $|d| \leq \frac{|p|}{2}$. Then $|n g p-c p-d+v \ell p|<\frac{|p|}{2}$ so $|n g p-c p+v \ell p|<\frac{|p|}{2}+|d| \leq|p|$ meaning that $n p_{0}-c+v \ell=0$ for every $\ell \in \mathcal{L}$.
Let ℓ_{0} be the minimal element of \mathcal{L}. As g and v are relatively prime, every $\ell \in \mathcal{L}$ is then of the form $\ell=\ell_{0}+i g$ for some $i \geq 0$. Also $\left|i g y-i v \tilde{h}_{\alpha_{0}}\right|=i \tilde{h}_{\alpha_{0}}\left|\frac{g y}{\tilde{h}_{\alpha_{0}}}-v\right| \leq i \tilde{h}_{\alpha_{0}}\left|\frac{g p}{t}-v\right|+\frac{i \tilde{h}_{\alpha_{0}} g}{b_{\alpha_{0}-1} L}<$ $i \tilde{h}_{\alpha_{0}} \frac{2}{b_{\alpha_{0}-1} \epsilon_{0} L}+i \tilde{h}_{\alpha_{0}}\left|\frac{v t}{t}-v\right|+\frac{\left\lceil\epsilon^{-1}\right\rceil^{\left\lceil\epsilon^{-1}\right\rceil-1} \tilde{h}_{\alpha_{0}}}{b_{\alpha_{0}-1}}<\frac{2 \tilde{h}_{\alpha_{0}}}{b_{\alpha_{0}-1} \epsilon_{0}}+\frac{\left\lceil\epsilon^{-1}\right\rceil^{\left\lceil\epsilon^{-1}\right\rceil-1} \tilde{h}_{\alpha_{0}}}{b_{\alpha_{0}-1}}<\frac{1}{3} \tilde{h}_{\alpha_{0}}$ so the claim holds with g for t and v for p.
Subcase: $p_{m}>p_{m-1}-\epsilon t$
Set $p^{\star}=\left\lfloor\frac{t}{p_{m-1}}\right\rfloor p_{m-1}=\left\lceil\frac{t}{p_{m-1}}\right\rceil p_{m-1}-p_{m-1}=p_{m}+t-p_{m-1}>t-\epsilon t$.
Subsubcase: $t-\epsilon t<p^{\star} \leq t-\frac{2 t}{b_{\alpha_{0}-1}}$
For $1 \leq i<\left\lceil(2 \epsilon)^{-1}\right\rceil, \frac{1}{2} t-\epsilon t<i p^{\star}(\bmod t) \leq t-\frac{2 t}{b_{\alpha_{0}-1}}$. Then $i\left\lfloor\frac{t}{p_{m-1}}\right\rfloor\left\lceil\frac{t}{p_{m-2}}\right\rceil \cdots\left\lceil\frac{t}{p_{0}}\right\rceil p(\bmod t)$ is nonzero and at least $\frac{2 t}{b_{\alpha_{0}-1}}$ away from every multiple of t. Since $\left\lceil\epsilon^{-1}\right\rceil\left\lfloor\frac{t}{p_{m-1}}\right\rfloor \cdots\left\lceil\frac{t}{p_{0}}\right\rceil<\left\lceil\epsilon^{-1}\right\rceil^{\left\lceil\epsilon^{-1}\right\rceil} \epsilon_{0} L<\epsilon L$, as above Lemma 4.22 implies $\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \lambda_{B}\left(T^{q-\ell k} B\right)\right|+\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\delta_{\ell}\right) \epsilon<6 \epsilon^{1 / 2}$.
Subsubcase: $t-\frac{2 t}{b_{\alpha_{0}-1}}<p^{\star} \leq t-\frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0} L}$
Let $g \in \mathbb{N}$ minimal such that $g p^{\star}(\bmod t) \leq t-\frac{2 t}{b_{\alpha_{0}-1}}$. As in the subcase where $\frac{2 t}{b_{\alpha_{0}-1 \epsilon_{0} L} \leq p_{m}<}$ $\frac{2 t}{b_{\alpha_{0}-1}}, g<2 \epsilon_{0} L$ and then similar reasoning as there using Lemma 4.22 gives $\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \lambda_{B}\left(T^{q-\ell k} B\right)\right|+$ $\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\delta_{\ell}\right) \epsilon<4 \epsilon^{1 / 2}$.
Subsubcase: $t-\frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0} L}<p^{\star}<t$ and $L<t \leq \epsilon_{0} b_{\alpha_{0}} L$
Set $g=\left\lceil\frac{2 t}{b_{\alpha_{0}-1}\left(t-p^{\star}\right)}\right\rceil<2 \epsilon_{0} L+1$. Then $i g p^{\star}(\bmod t)<t-\frac{2 t}{b_{\alpha_{0}-1}\left(t-p^{\star}\right)}\left(t-p^{\star}\right)=t-\frac{2 t}{b_{\alpha_{0}-1}}$ and $i g p^{\star}(\bmod t)>t-\left\lceil\epsilon^{-1}\right\rceil\left(2 \epsilon_{0} L+1\right) \frac{2}{b_{\alpha_{0}-1 \epsilon_{0}} L}$ so again similar reasoning gives $\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \lambda_{B}\left(T^{q-\ell k} B\right)\right|+$ $\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\delta_{\ell}\right) \epsilon<4 \epsilon^{1 / 2}$.
Subsubcase: $t-\frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0} L}<p^{\star}<t$ and $t \geq \epsilon_{0} b_{\alpha_{0}-1} L$ and $|p| \geq \frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0} L}$
Set $g=\left\lfloor\frac{t}{p_{m-1}}\right\rfloor\left\lceil\frac{t}{p_{m-2}}\right\rceil \cdots\left\lceil\frac{t}{p_{0}}\right\rceil<\left\lceil\epsilon^{-1}\right\rceil^{\left\lceil\epsilon^{-1}\right\rceil-1}$. Then $p^{\star}=g p(\bmod t)$. Here, as above, $m \neq 0$ so there exists $v \neq 0$ such that $v t-\frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0} L}<g p<v t$ and the same argument as in the $0<p_{m}<\frac{2 t}{b_{\alpha_{0}-1} \epsilon_{0}}$ subcase shows that the claim holds. Therefore the claim is proved as all cases have been covered.

For $\ell_{0}+t i \in \mathcal{L}$, since $r-\ell_{0} y=a \tilde{h}_{\alpha_{0}}+y_{\ell_{0}}$ for some $|a| \leq 1$

$$
q-\left(\ell_{0}+t i\right) k=\left(x-\left(\ell_{0}+t i\right) z\right) \tilde{h}_{\alpha_{0}}+r-\left(\ell_{0}+t i\right) y=\left(x-\ell_{0} z-t i z-i p+a\right) \tilde{h}_{\alpha_{0}}+y_{\ell_{0}}+i p \tilde{h}_{\alpha_{0}}-t i y
$$

Since $\left|y_{\ell_{0}}\right|<a_{\alpha_{0}-1} \tilde{h}_{\alpha_{0}-1}$ as $\ell_{0} \in \mathcal{L}$, then $\mid y_{\ell_{0}}+i p \tilde{h}_{\alpha_{0}}-$ tiy $\left\lvert\,<a_{\alpha_{0}-1} \tilde{h}_{\alpha_{0}-1}+\frac{1}{3} \tilde{h}_{\alpha_{0}}<\frac{1}{2} \tilde{h}_{\alpha_{0}}\right.$ meaning that $y_{\ell_{0}+t i}=y_{\ell_{0}}+i p \tilde{h}_{\alpha_{0}}-t i y$ and $k_{\ell_{0}+t i}=x-\ell_{0} z-t i z-i p+a$.
Then $y_{\ell_{0}+t i}-k_{\ell_{0}+t i} \ell^{\prime}=y_{\ell_{0}}+i p \tilde{h}_{\alpha_{0}}-t i y-\left(x-\ell_{0} z-t i z-i p+a\right) \ell^{\prime}=\left(y_{\ell_{0}}-x \ell^{\prime}+\ell_{0} z \ell^{\prime}-a \ell^{\prime}\right)-i\left(-p \tilde{h}_{\alpha_{0}}+\right.$ $\left.t y-t z \ell^{\prime}-p \ell^{\prime}\right)$ so define $q_{\ell^{\prime}}=y_{\ell_{0}}-x \ell^{\prime}+\ell_{0} z \ell^{\prime}-a \ell^{\prime}$ and $k_{\ell^{\prime}}^{\prime}=-p \tilde{h}_{\alpha_{0}}+t y-t z \ell^{\prime}-p \ell^{\prime}$ so that

$$
y_{\ell_{0}+t i}-k_{\ell_{0}+t i} \ell^{\prime}=q_{\ell^{\prime}}-k_{\ell^{\prime}}^{\prime} i
$$

and observe that $\left|y_{\ell_{0}+t i}-k_{\ell_{0}+t i} \ell^{\prime}\right|<\frac{1}{2} \tilde{h}_{\alpha_{0}}+a_{\alpha_{0}} b_{\alpha_{0}}$ so $\alpha\left(y_{\ell_{0}+t i}-k_{\ell_{0}+t i} \ell^{\prime}\right)<\alpha_{0}$ for all ℓ^{\prime} and i.
For $\ell_{0}+t i \in \mathcal{L}$ such that $k_{\ell_{0}+t i} \neq 0$, by Lemma 4.21 ,

$$
\left|\lambda_{B}\left(T^{q-\left(\ell_{0}+t i\right) k} B\right)-\frac{a_{\alpha_{0}}-\left|k_{\ell_{0}+t i}\right|^{b_{\alpha_{0}}-1}}{r_{\alpha_{0}}+1} \sum_{\ell^{\prime}=0} \lambda_{B}\left(T^{y_{0}+t i}-k_{\ell_{0}+t i \ell^{\prime}} B\right)\right|
$$

$$
\leq \frac{a_{\alpha_{0}}-\left|k_{\ell_{0}+t i}\right|}{a_{\alpha_{0}}} \frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}}-1} \frac{2 \mid y_{\ell_{0}+t i}-k_{\ell_{0}+t i \ell^{\prime} \mid}}{\tilde{h}_{\alpha_{0}}}+\frac{\left|k_{\ell_{0}+t i}\right|}{a_{\alpha_{0}}} \epsilon+\tau_{\alpha_{0}}
$$

For i, ℓ^{\prime} such that $\alpha\left(q_{\ell^{\prime}}-k_{\ell^{\prime}}^{\prime} i\right)=\alpha_{\ell^{\prime}}$, if $d_{\ell^{\prime}, i}$ is the unique integer such that $\left|q_{\ell^{\prime}}-k_{\ell^{\prime}}^{\prime} i-d_{\ell^{\prime}, i} \tilde{h}_{\alpha_{\ell^{\prime}}}\right| \leq \frac{1}{2} \tilde{h}_{\alpha_{\ell^{\prime}}}$ then

$$
\frac{\left|y_{\ell_{0}+t i}-k_{\ell_{0}+i \ell^{\prime}}\right|}{\tilde{h}_{\alpha_{0}}}=\frac{\left|q_{\ell^{\prime}}-k_{\ell^{\prime}, i}^{\prime}\right|}{h_{\alpha_{0}}}<\frac{\left(\left|d_{\ell^{\prime}, i}\right|+1\right) \tilde{h}_{\alpha_{\ell^{\prime}}}}{\tilde{h}_{\alpha_{0}}}<\frac{\left|d_{\ell^{\prime}, i}\right|+1}{a_{\alpha_{\ell^{\prime}}} b_{\alpha_{0}-1}}<\left(1-\gamma_{i}^{\alpha_{\ell^{\prime}}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}\right) \frac{2}{b_{\alpha_{0}-1}}
$$

and for i, ℓ^{\prime} such that $\alpha\left(q_{\ell^{\prime}}-k_{\ell^{\prime}}^{\prime} i\right)<\alpha_{\ell^{\prime}}$, as $\left|q_{\ell^{\prime}}-k_{\ell^{\prime}}^{\prime} i\right|<\tilde{h}_{\alpha_{\ell^{\prime}}} \leq \tilde{h}_{\alpha_{0}-1}$ and $\gamma_{i}^{\alpha_{\ell}^{\prime}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}=0$,

$$
\frac{\left|q_{\ell^{\prime}}-k_{\ell^{\prime}}^{\prime}\right|}{\tilde{h}_{\alpha_{0}}}<\frac{\tilde{h}_{\alpha_{0}-1}}{\tilde{h}_{\alpha_{0}}}<\frac{1}{a_{\alpha_{0}-1} b_{\alpha_{0}-1}}<\frac{2}{b_{\alpha_{0}-1}}=\left(1-\gamma_{i}^{\alpha_{\ell^{\prime}}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}\right) \frac{2}{b_{\alpha_{0}-1}}
$$

Then for $\ell_{0}+t i \in \mathcal{L}$ such that $k_{\ell_{0}+t i} \neq 0$, as $\frac{a_{\alpha_{0}}-\left|k_{\ell_{0}+t i}\right|}{r_{\alpha_{0}}+1}=\frac{a_{\alpha_{0}}}{r_{\alpha_{0}}+1} \gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k}$,

$$
\begin{aligned}
& \left\lvert\, \lambda_{B}\left(T^{q-\left(\ell_{0}+t i\right) k} B\right)-\frac{r_{\alpha_{0}}}{r_{\alpha_{0}}+1} \gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k} \frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}}-1} \lambda_{B}\left(T^{\left.y_{\ell_{0}+t i}-k_{\ell_{0}+t i i^{\prime}} B\right) \mid}\right.\right. \\
& \leq\left(1-\gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k}\right) \epsilon+\tau_{\alpha_{0}}+\gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k} \frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}-1}}\left(1-\gamma_{i}^{\alpha_{\ell}^{\prime}, q_{\ell^{\prime}}, k_{\ell^{\prime}}}\right) \frac{4}{b_{\alpha_{0}-1}}
\end{aligned}
$$

For $\ell_{0}+t i \in \mathcal{L}$ such that $k_{\ell_{0}+t i}=0$, we have $\lambda_{B}\left(T^{q-\left(\ell_{0}+t i\right) k} B\right)=\frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}}-1} \lambda_{B}\left(T^{y_{\ell_{0}}+i-k_{\ell_{0}+t i} \ell^{\prime}} B\right)$ and $\gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k}=1$.
For $\ell_{0}+t i \notin \mathcal{L}, \gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k}=0$ by definition and $\left|\lambda_{B}\left(T^{q-\left(\ell_{0}+t i\right) k} B\right)\right|<\epsilon$ so $\left|\delta_{\ell_{0}+t i} \lambda_{B}\left(T^{q-\left(\ell_{0}+t i\right) k} B\right)\right|+(1-$ $\left.\delta_{\ell_{0}+t i}\right) \epsilon<\epsilon=\gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k} \lambda_{B}\left(T^{q-\left(\ell_{0}+t i\right) k} B\right)+\left(1-\gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k}\right) \epsilon$.
Therefore, as $\frac{r_{\alpha_{0}}}{r_{\alpha_{0}}+1}<1$ and $\frac{4}{b_{\alpha_{0}-1}}<\epsilon$,

$$
\begin{aligned}
& \left|\sum_{i=0}^{L^{\prime}-1} \delta_{\ell_{0}+t i} \lambda_{B}\left(T^{q-\left(\ell_{0}+t i\right) k} B\right)\right|+\sum_{i=0}^{L^{\prime}-1}\left(1-\delta_{\ell_{0}+t i}\right) \epsilon \\
& \left.<\frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}}-1}\left|\sum_{i=0}^{L^{\prime}-1} \delta_{\ell_{0}+t i}\right\rangle_{\ell_{0}+t i}^{\alpha_{0}, q, k} \lambda_{B}\left(T^{q_{\ell^{\prime}}-k_{\ell}^{\prime}, i} B\right) \right\rvert\,+\tau_{\alpha_{0}}+\sum_{i=0}^{L^{\prime}-1}\left(1-\delta_{\ell_{0}+t i}\right) \epsilon \\
& +\sum_{i=0}^{L^{\prime}-1} \delta_{\ell_{0}+t i}\left(\left(1-\gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k}\right) \epsilon+\gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k} \frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}-1}}\left(1-\gamma_{i}^{\alpha_{\ell^{\prime}}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}\right) \frac{4}{b_{\alpha_{0}-1}}\right) \\
& =\frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}}-1}\left(\left|\sum_{i=0}^{L^{\prime}-1} \delta_{\ell_{0}+t i} \alpha_{\ell_{0}+t i}^{\alpha_{0}, q, k} \lambda_{B}\left(T^{q_{\ell^{\prime}}-k_{\ell^{\prime}, i}} B\right)\right|+\sum_{i=0}^{L^{\prime}-1}\left(\left(1-\delta_{\ell_{0}+t i}\right)+\delta_{\ell_{0}+t i}\left(1-\gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k}\right)\right) \epsilon\right) \\
& +\tau_{\alpha_{0}}+\sum_{i=0}^{L^{\prime}-1} \delta_{\ell_{0}+t i} \gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k} \frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}-1}}\left(1-\gamma_{i}^{\alpha_{\ell^{\prime}}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}\right) \epsilon \\
& =\frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}}-1}\left(\left|\sum_{i=0}^{L-1} \mathbb{1}_{\ell<L^{\prime}} \delta_{\ell_{0}+t i} \gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k} \lambda_{B}\left(T^{q_{\ell^{\prime}}-k_{\ell^{\prime}}^{\prime} i} B\right)\right|+\sum_{i=0}^{L-1} \mathbb{1}_{\ell<L^{\prime}}\left(1-\delta_{\ell_{0}+t i} \gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k}\right) \epsilon\right) \\
& +\tau_{\alpha_{0}}+\sum_{i=0}^{L-1} \mathbb{1}_{\ell<L^{\prime}} \delta_{\ell_{0}+t i} \gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k} \frac{1}{\alpha_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}-1}}\left(1-\gamma_{i}^{\alpha_{\ell^{\prime}}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}\right) \epsilon
\end{aligned}
$$

Since $\left|\lambda_{B}\left(T^{q-\ell k} B\right)\right|<\epsilon$ for $\ell \notin \mathcal{L}$ and $\left|\left\{\ell: \ell \neq \ell_{0}+t i\right\}\right|=L-L^{\prime}$,

$$
\left|\sum_{\ell \neq \ell_{0}+t i} \delta_{\ell} \lambda_{B}\left(T^{q-k \ell} B\right)\right|+\sum_{\ell \neq \ell_{0}+t i}\left(1-\delta_{\ell}\right) \epsilon<\left(L-L^{\prime}\right) \epsilon
$$

and therefore

$$
\begin{aligned}
& \left.\frac{1}{L} \sum_{\ell=0}^{L-1} \delta_{\ell} \lambda_{B}\left(T^{q-\ell k} B\right) \right\rvert\,+\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\delta_{\ell}\right) \epsilon \\
& \leq \frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\mathbb{1}_{\ell<L^{\prime}}\right) \epsilon+\left|\frac{1}{L} \sum_{\ell=\ell_{0}+t i} \delta_{\ell} \lambda_{B}\left(T^{q-\ell k} B\right)\right|+\frac{1}{L} \sum_{\ell=\ell_{0}+t i}\left(1-\delta_{\ell}\right) \epsilon \\
& <\frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}-1}}\left(\left|\sum_{i=0}^{L-1} \mathbb{1}_{\ell<L^{\prime}} \delta_{\ell_{0}+t i} \gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k} \lambda_{B}\left(T^{q_{\ell^{\prime}}-k_{\ell^{\prime}, i}^{\prime}} B\right)\right|+\sum_{i=0}^{L-1} \mathbb{1}_{\ell<L^{\prime}}\left(1-\delta_{\ell_{0}+t i} \gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k}\right) \epsilon\right) \\
& \quad+\tau_{\alpha_{0}}+\sum_{i=0}^{L-1} \mathbb{1}_{\ell<L^{\prime}} \delta_{\ell_{0}+t i} \gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k} \frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}-1}}\left(1-\gamma_{i}^{\alpha_{\ell^{\prime},}, q_{\ell^{\prime}}, k_{\ell^{\prime}}}\right) \epsilon+\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\mathbb{1}_{\ell<L^{\prime}}\right) \epsilon \\
& =\frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}-1}}\left(\left|\sum_{i=0}^{L-1} \mathbb{1}_{\ell<L^{\prime}} \delta_{\ell_{0}+t i} \gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k} \lambda_{B}\left(T^{q_{\ell^{\prime}}-k_{\ell^{\prime}, i}^{\prime}} B\right)\right|+\sum_{i=0}^{L-1}\left(1-\mathbb{1}_{\ell<L^{\prime}} \delta_{\ell_{0}+t i} \gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k}\right) \epsilon\right) \\
& \quad+\tau_{\alpha_{0}}+\sum_{i=0}^{L-1} \mathbb{1}_{\ell<L^{\prime}} \delta_{\ell_{0}+t i} \gamma_{\ell_{0}+t i}^{\alpha_{0}, q, k} \frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}-1}}\left(1-\gamma_{i}^{\left.\alpha_{\ell^{\prime}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}\right) \epsilon}\right.
\end{aligned}
$$

Proposition 4.26. Let T be a quasi-staircase transformation such that $\sum \frac{a_{n} b_{n}+b_{n+1}+c_{n+1}}{h_{n}}<\infty$ and $\frac{a_{n} b_{n}^{2}}{h_{n}} \rightarrow 0$ and $\frac{a_{n+1} b_{n+1}}{h_{n}} \rightarrow 0$. Let B be a union of levels in some fixed C_{N}. Then

$$
\lim _{n \rightarrow \infty} \max _{b_{n} \leq k<a_{n}} \max _{|q|<a_{n-1} \tilde{h}_{n-1}}\left|\lambda_{B}\left(T^{k \tilde{h}_{n}+q} B\right)\right|=0
$$

Proof. Fix $\epsilon>0$ and set $\epsilon_{0}=\left(2\left\lceil\epsilon^{-1}\right\rceil^{\left\lceil\epsilon^{-1}\right\rceil+1}\right)^{-1}$. Using Propositions 4.16, 4.17, 4.19 and 4.23 and that $\sum_{n} \tau_{n}<\infty$, there exists N such that $b_{N}>4 \epsilon^{-1} \epsilon_{0}^{-1}, \sup _{m \geq N-1} M_{B, m}<\epsilon, \sup _{m \geq N} \widehat{M}_{B, m}<\epsilon$, $\sup _{m \geq N} \widetilde{M}_{B, m}<\epsilon, \sum_{n=N}^{\infty} \tau_{n}<\epsilon$ and $\sup _{m \geq b_{N}-1} \sup _{k \leq m}\left(\int\left|\frac{1}{m} \sum_{j=0}^{m-1} \chi_{B} \circ T^{-j k}\right| d \mu+\frac{2}{m}\right)<\frac{\epsilon}{3}$.
Take any n such that $b_{n}>\tilde{h}_{N+1}$. For $b_{n} \leq k<a_{n}$ and $|q|<a_{n-1} \tilde{h}_{n-1}$, by Lemma 4.21,

$$
\left|\lambda_{B}\left(T^{k \tilde{h}_{n}+q} B\right)\right|<\frac{a_{n}-k}{a_{n}}\left|\frac{1}{b_{n}} \sum_{\ell=0}^{b_{n}-1} \lambda_{B}\left(T^{q-k \ell} B\right)\right|+\frac{k}{a_{n}} \epsilon+\tau_{n}<\left|\frac{1}{b_{n}} \sum_{\ell=0}^{b_{n}-1} \lambda_{B}\left(T^{q-k \ell} B\right)\right|+2 \epsilon
$$

Set $L=b_{n}$. By Lemma 4.25, $\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \lambda_{B}\left(T^{q-k \ell} B\right)\right|<6 \epsilon^{1 / 2}$ or there exists $q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}, L^{\prime}, \ell_{0}, t$ such that

$$
\begin{aligned}
\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \lambda_{B}\left(T^{q-k \ell} B\right)\right|<\frac{1}{b_{\alpha_{0}}} & \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}}-1}\left(\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \mathbb{1}_{\ell<L^{\prime}} \gamma_{\ell_{0}+t \ell}^{\alpha_{0}, q, k} \lambda_{B}\left(T^{q_{\ell^{\prime}}-k_{\ell^{\prime}}^{\prime} \ell} B\right)\right|+\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\mathbb{1}_{\ell<L^{\prime}} \gamma_{\ell_{0}+t \ell}^{\alpha_{0}, q, k}\right) \epsilon\right) \\
& +\frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}}-1} \frac{1}{L} \sum_{\ell=0}^{L-1} \mathbb{1}_{\ell<L^{\prime}} \gamma_{\ell_{0}+t \ell}^{\alpha_{0}, q, k}\left(1-\gamma_{\ell}^{\alpha_{\ell^{\prime}}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}\right) \epsilon+\tau_{\alpha_{0}}
\end{aligned}
$$

Let $\mathcal{L}^{\prime}=\left\{0 \leq \ell^{\prime}<b_{\alpha_{0}}: \alpha_{\ell^{\prime}}>N\right.$ and Lemma 4.25 does not bound the ℓ^{\prime} weighted average by $\left.6 \epsilon^{1 / 2}\right\}$.

Since N is large enough that Proposition 4.23 implies if $k_{\ell^{\prime}}^{\prime}<\tilde{h}_{N+1} \leq L$ then $\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \delta_{\ell} \lambda_{B}\left(T^{-k \ell} B\right)\right|<\epsilon$,

$$
\begin{aligned}
& \frac{1}{b_{\alpha_{0}}} \sum_{\ell^{\prime}=0}^{b_{\alpha_{0}}-1}\left(\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \mathbb{1}_{\ell<L^{\prime}} \gamma_{\ell_{0}+t \ell}^{\alpha_{0}, q, k} \lambda_{B}\left(T^{q_{\ell^{\prime}}-k_{\ell^{\prime}}^{\prime} \ell} B\right)\right|+\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\mathbb{1}_{\ell<L^{\prime}} \gamma_{\ell_{0}+t \ell}^{\alpha_{0}, q, k}\right) \epsilon\right)<\left(1-\frac{\left|\mathcal{L}^{\prime}\right|}{b_{\alpha_{0}}}\right) 6 \epsilon^{1 / 2} \\
& \quad+\frac{\left|\mathcal{L}^{\prime}\right|}{b_{\alpha_{0}}} \frac{1}{\left|\mathcal{L}^{\prime}\right|} \sum_{\ell^{\prime} \in \mathcal{L}^{\prime}}\left(\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \mathbb{1}_{\ell<L^{\prime}} \gamma_{\ell_{0}+t \ell}^{\alpha_{0}, q, k} \lambda_{B}\left(T^{q_{\ell^{\prime}}-k_{\ell^{\prime}}^{\prime} \ell} B\right)\right|+\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\mathbb{1}_{\ell<L^{\prime}} \gamma_{\ell_{0}+t \ell}^{\alpha_{0}, q, k}\right) \epsilon\right)
\end{aligned}
$$

Therefore, applying Lemma 4.25 to each ℓ^{\prime} weighted average, since $\alpha_{\ell^{\prime}} \leq \alpha_{0}-1$ (and suppressing the explicit dependence on ℓ^{\prime} of $L^{\prime \prime}, \ell_{0}^{\prime}, t^{\prime}$ for clarity),

$$
\begin{aligned}
& \left|\frac{1}{L} \sum_{\ell=0}^{L-1} \lambda_{B}\left(T^{q-k \ell} B\right)\right|<\left(1-\frac{\left|\mathcal{L}^{\prime}\right|}{b_{\alpha_{0}}}\right) 6 \epsilon^{1 / 2}+\tau_{\alpha_{0}}+\tau_{\alpha_{0}-1} \\
& +\frac{\left|\mathcal{L}^{\prime}\right|}{b_{\alpha_{0}}} \frac{1}{\left|\mathcal{L}^{\prime}\right|} \sum_{\ell^{\prime} \in \mathcal{L}^{\prime}} \frac{1}{b_{\alpha_{\ell^{\prime}}}} \sum_{\ell^{\prime \prime}=0}^{b_{\alpha_{\ell^{\prime}}-1}}\left(\left\lvert\, \frac{1}{L} \sum_{\ell=0}^{L-1} \mathbb{1}_{\ell<L^{\prime \prime}} \mathbb{1}_{\ell_{0}^{\prime}+t^{\prime} \ell<L^{\prime}} \gamma_{\ell_{0}+t\left(\ell_{0}^{\prime}+t^{\prime} \ell\right)}^{\alpha_{0}, q, k} \gamma_{\ell_{0}^{\prime}+t^{\prime} \ell}^{\alpha_{\ell^{\prime}}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}} \lambda_{B}\left(T^{\left.q_{\ell^{\prime}, \ell^{\prime \prime}}-k_{\ell^{\prime}, \ell^{\prime \prime} \ell} B\right) \mid}\right.\right.\right. \\
& \left.+\frac{1}{L} \sum_{\ell=0}^{L-1}\left(1-\mathbb{1}_{\ell<L^{\prime \prime}} \mathbb{1}_{\ell_{0}^{\prime}+t^{\prime} \ell<L^{\prime}} \gamma_{\ell_{0}+t\left(\ell_{0}^{\prime}+t^{\prime} \ell\right)}^{\alpha_{0}, q, k} \gamma_{\ell_{0}^{\prime}+t^{\prime} \ell}^{\alpha_{\ell^{\prime}}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}\right) \epsilon\right) \\
& +\frac{\left|\mathcal{L}^{\prime}\right|}{b_{\alpha_{0}}} \frac{1}{\left|\mathcal{L}^{\prime}\right|} \sum_{\ell^{\prime} \in \mathcal{L}^{\prime}} \frac{1}{b_{\alpha_{\ell^{\prime}}}} \sum_{\ell^{\prime \prime}=0}^{b_{\alpha_{\ell^{\prime}}-1}} \frac{1}{L} \sum_{\ell=0}^{L-1}\left(\mathbb{1}_{\ell<L^{\prime}} \gamma_{\ell_{0}+t \ell}^{\alpha_{0}, q, k}\left(1-\gamma_{\ell}^{\alpha_{\ell}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}\right)\right. \\
& \left.+\mathbb{1}_{\ell<L^{\prime \prime}} \mathbb{1}_{\ell_{0}^{\prime}+t^{\prime} \ell<L^{\prime}} \gamma_{\ell_{0}+t\left(\ell_{0}^{\prime}+t^{\prime} \ell\right.}^{\alpha_{0}, q, k} \gamma_{\ell_{0}^{\prime}+t^{\prime} \ell}^{\alpha_{\ell^{\prime}}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}\left(1-\gamma_{\ell}^{\alpha_{\ell^{\prime \prime}}, q_{\ell^{\prime}, \ell^{\prime \prime}}, k_{\ell^{\prime}, \ell^{\prime \prime}}}\right)\right) \epsilon
\end{aligned}
$$

Now observe that

$$
\begin{aligned}
& \left.\frac{1}{L} \sum_{\ell=0}^{L-1}\left(\mathbb{1}_{\ell<L^{\prime}} \gamma_{\ell_{0}+t \ell}^{\alpha_{0}, q, k}\left(1-\gamma_{\ell}^{\alpha_{\ell^{\prime}}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}\right)+\mathbb{1}_{\ell<L^{\prime \prime}} \mathbb{1}_{\ell_{0}^{\prime}+t^{\prime} \ell<L^{\prime}} \gamma_{\ell_{0}+t\left(\ell_{0}^{\prime}+t^{\prime} \ell\right.}^{\alpha_{0}, q, k}\right) \gamma_{\ell_{0}^{\prime}+t^{\prime} \ell}^{\alpha_{\ell^{\prime}}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}\left(1-\gamma_{\ell}^{\alpha_{\ell^{\prime \prime}}, q_{\ell^{\prime}, \ell^{\prime \prime}}, k_{\ell^{\prime}, \ell^{\prime \prime}}}\right)\right) \\
& =\frac{1}{L} \sum_{\substack{\ell \neq \ell_{0}^{\prime}+t^{\prime} i \\
\ell<L^{\prime}}} \gamma_{\ell_{0}+t \ell}^{\alpha_{0}, q, k}\left(1-\gamma_{\ell}^{\alpha_{\ell^{\prime}}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}}\right)+\frac{1}{L} \sum_{\ell=0}^{L^{\prime \prime}-1} \mathbb{1}_{\ell_{0}^{\prime}+t^{\prime} \ell<L^{\prime}}^{\prime} \gamma_{\ell_{0}+t\left(\ell_{0}^{\prime}+t^{\prime} \ell\right)}^{\alpha_{0}, q, k}\left(1-\gamma_{\ell_{0}^{\prime}+t^{\prime} \ell}^{\alpha_{\ell^{\prime}}, q_{\ell^{\prime}}, k_{\ell^{\prime}}^{\prime}} \gamma_{\ell}^{\left.\alpha_{\ell^{\prime \prime}}, q_{\ell^{\prime}, \ell^{\prime \prime}, k_{\ell^{\prime}, \ell^{\prime \prime}}}\right)}\right.
\end{aligned}
$$

and that the sets of the original $0 \leq \ell<L$ the two sums range over are disjoint.
Continue iteratively applying Lemma 4.25 until all terms are bounded by $6 \epsilon^{1 / 2}$ or have $k_{\ell^{\prime}, \ell^{\prime \prime}, \ldots .} \leq L$, which must occur as α decrements at each application of the lemma (and the hypotheses of the lemma hold as long as $\alpha_{\ell^{\prime \prime} \ldots>N}>N$. Then $\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \lambda_{B}\left(T^{q-k \ell} B\right)\right|$ is bounded by a convex combination of terms less than $6 \epsilon^{1 / 2}$ plus a sum of τ 's bounded by $\sum_{n=N}^{\infty} \tau_{n}<\epsilon$ plus an average over $0 \leq \ell<L^{\prime}$ of terms of the form

$$
\gamma^{\alpha_{0}}\left(1-\gamma^{\alpha_{\ell^{\prime}}} \gamma^{\alpha_{\ell^{\prime \prime}}} \cdots \gamma^{\alpha_{\ell(m)}}\right) \epsilon
$$

which are all bounded by ϵ as $0 \leq \gamma \leq 1$. Therefore

$$
\left|\frac{1}{L} \sum_{\ell=0}^{L-1} \lambda_{B}\left(T^{q-k \ell} B\right)\right|<6 \epsilon^{1 / 2}+\epsilon+\epsilon \quad \text { meaning that } \quad\left|\lambda_{B}\left(T^{k \tilde{h}_{n}+q} B\right)\right|<6 \epsilon^{1 / 2}+4 \epsilon
$$

Theorem 4.27. Let T be a quasi-staircase transformation such that $\sum \frac{a_{n} b_{n}+b_{n+1}+c_{n+1}}{h_{n}}<\infty$ and $\frac{a_{n} b_{n}^{2}}{h_{n}} \rightarrow$ 0 and $\frac{a_{n+1} b_{n+1}}{h_{n}} \rightarrow 0$ and $\frac{b_{n}}{a_{n}} \rightarrow 0$. Then T is mixing.

Proof. By Propositions 4.16, 4.17, 4.19 and 4.26, for any B which is a union of levels in some C_{N}, $\lim _{n \rightarrow \infty} \max _{\tilde{h}_{n} \leq t<\tilde{h}_{n+1}}\left|\lambda_{B}\left(T^{t} B\right)\right|=0$. As unions of levels generate the measure algebra, T is Renyi mixing hence mixing.

5 Non-superlinear word complexity implies partial rigidity

Theorem 5.1. Let X be a subshift with word complexity p such that $\lim \inf \frac{p(q)}{q}<\infty$. Then there exists a constant $\delta_{X}>0$ such that every ergodic probability measure μ on X is at least δ_{X}-partially rigid.

5.1 Word combinatorics

Notation 5.2. For x a finite or infinite word and $-\infty \leq i<j \leq \infty$,

$$
x_{[i, j)}=\text { the subword of } x \text { from position } i \text { through position } j-1
$$

Notation 5.3. $[w]=\left\{x \in X: x_{[0,\|w\|)}=w\right\}$ for finite words w.
Notation 5.4. For a word v and $0 \leq q<\|v\|$, let $v^{q /\|v\|}$ be the suffix of v of length q.
Let $v^{n+q /\|v\|}=v^{q /\|v\|} v^{n}$ for $n \in \mathbb{N}$.
Definition 5.5. Let $w \in \mathcal{L}(X)$ be a word in the language of a subshift. A word $v \in \mathcal{L}(X)$ is a root of w if $w v \in \mathcal{L}(X)$ and $\|v\| \leq\|w\|$ and w is a suffix of v^{∞}, i.e. there exists $q=p /\|v\|$ with $p \geq\|v\|$ such that $w=v^{q}$. The minimal root of w is the shortest v which is a root of w.

Every word has a unique minimal root as it is a root of itself.
Lemma 5.6. If $u w=w v$ and $\|v\| \leq\|w\|$ then v is a root of w.
Proof. As w has v as a suffix, $w=w^{\prime} v$. Then $u w^{\prime} v=u w=w v=w^{\prime} v v$ so $u w^{\prime}=w^{\prime} v$. If $\left\|w^{\prime}\right\| \geq\|v\|$, repeat this process until it terminates at $w=w^{\prime \prime} v^{n}$ with $\left\|w^{\prime \prime}\right\|<\|v\|$. Then $u w^{\prime \prime}=w^{\prime \prime} v$ so $w^{\prime \prime}$ is a suffix of v.

Lemma 5.7. If $u v=v u$ then $u=v_{0}^{t}$ and $v=v_{0}^{s}$ for some word v_{0} and $t, s \in \mathbb{N}$.
Proof. If $\|u\|=\|v\|$ then $u v=v u$ immediately implies $u=v$. Let

$$
V=\left\{(u, v): u v=v u,\|v\|<\|u\|, \text { there is no word } v_{0} \text { with } u=v_{0}^{t} \text { and } v=v_{0}^{s} \text { for } s, t \in \mathbb{N}\right\}
$$

and suppose $V \neq \emptyset$. Let $(u, v) \in V$ such that $\|u\|$ is minimal. As $\|u\|>\|v\|$, $u v=v u$ implies $u=v u^{\prime}=u^{\prime \prime} v$ for some nonempty words $u^{\prime}, u^{\prime \prime}$. Then $v u^{\prime} v=u v=v u=v u^{\prime \prime} v$ so $u^{\prime}=u^{\prime \prime}$ and $v u^{\prime}=u^{\prime} v$. If $\left\|u^{\prime}\right\|=\|v\|$ then $u^{\prime}=v$ so $u=v^{2}$ contradicting that $(u, v) \in V$.
Consider when $\left\|u^{\prime}\right\|<\|v\|$. Since $\left\|u^{\prime}\right\|<\|u\|$ and $\|v\|<\|u\|$, the minimality of $\|u\|$ implies that $\left(v, u^{\prime}\right) \notin V$. Then $v=v_{0}^{n}$ and $u^{\prime}=v_{0}^{m}$ for some word v_{0} and $n, m \in \mathbb{N}$. So $u=v_{0}^{n+m}$ meaning $(u, v) \notin V$. When $\|v\|<\left\|u^{\prime}\right\|$, we have $\left(u^{\prime}, v\right) \notin V$ so $u^{\prime}=v_{0}^{n}$ and $u=v_{0}^{n+m}$. So $V=\emptyset$.

Lemma 5.8. If u and v are both roots of a word w and $u u$ is a suffix of w and $\|v\|<\|u\|$ then there exists a suffix v_{0} of v such that $u=v_{0}^{n}$ and $v=v_{0}^{m}$ for some $n, m \in \mathbb{N}$.
In particular, if v is the minimal root of w and u is a root of w and $u u$ is a suffix of w then u is a multiple of v, i.e. there exists $n \in \mathbb{N}$ such that $u=v^{n}$.

Proof. Writing u^{\prime} and v^{\prime} for the appropriate suffixes of u and v, we have $w=u^{\prime} u^{t}=v^{\prime} v^{q}$ for some $t, q \in \mathbb{N}$. Then $u=u_{0} v^{a}$ for some proper (possibly empty) suffix u_{0} of v and $1 \leq a \leq q$. So $u^{\prime}\left(u_{0} v^{a}\right)^{t}=v^{\prime} v^{q}$ meaning that $u^{\prime}\left(u_{0} v^{a}\right)^{t-1} u_{0}=v^{\prime} v^{q-a}$. As $t \geq 2,\left\|v^{\prime} v^{q-a}\right\|=\left\|u^{\prime}\left(u_{0} v^{a}\right)^{t-1} u_{0}\right\| \geq\left\|u_{0} v^{a} u_{0}\right\| \geq\left\|v u_{0}\right\|$ so, as u_{0} is a suffix of v, then $v^{\prime} v^{q-a}$ has $u_{0} v$ as a suffix. This means $v u_{0}=u_{0} v$ so Lemma 5.7 gives v_{0} such that $v=v_{0}^{n}$ and $u_{0}=v_{0}^{m}$ so $u=v_{0}^{m+a n}$. If v is the minimal root then $v=v_{0}$ since v_{0} is a root of w.

Lemma 5.9. Let w be a word with minimal root v. If $0 \leq i \leq \frac{1}{2}\|w\|$ and $T^{i}[w] \cap[w] \neq \emptyset$ then i is a multiple of $\|v\|$.

Proof. Let u be the prefix of B of length i and v_{0} be the suffix of B of length i. For $x \in T^{i}[w] \cap[w]$, then $x_{[-i,\|w\|)}=u w=w v_{0}$. By Lemma 5.6, then v_{0} is a root of w. As $\left\|v_{0}\right\|=i \leq \frac{1}{2}\|w\|$, w has $v_{0} v_{0}$ as a suffix. By Lemma 5.8, since v is the minimal root then v_{0} is a multiple of v.

5.2 Language analysis

Proposition 5.10. There exists $C, k>0$, depending only on X, and $\ell_{n} \rightarrow \infty$ and, for each n, at most C words $B_{n, j}$ so that $X_{0}=\left\{x \in X\right.$: every finite subword of x is a subword of a concatenation of the $\left.B_{n, j}\right\}$ has measure one.
Let $h_{n, j}=\left\|B_{n, j}\right\|$. Then $\max _{j} h_{n, j} \leq k \ell_{n}$ and $\min _{j} h_{n, j} \rightarrow \infty$. Let
$W_{B_{n, j}}=W_{n, j}=\left\{x \in X_{0}: x\right.$ can be written as a concatenation such that $\left.x_{\left[0, h_{n, j}\right)}=B_{n, j}\right\} \subseteq\left[B_{n, j}\right]$
There exists $c_{n, j} \leq k \ell_{n}$ such that the sets $T^{i} W_{n, j}$ are disjoint over $0 \leq i<c_{n, j}$.
For j such that $h_{n, j}>\frac{1}{2} \ell_{n}, c_{n, j} \geq \frac{1}{2} \ell_{n}$.
For j such that $h_{n, j} \leq \frac{1}{2} \ell_{n}, c_{n, j}=h_{n, j}$. For such j, also $W_{n, j}=T^{\ell_{n}}\left[B_{n, j}^{\ell_{n} / h_{n, j}} B_{n, j}\right]$ and $B_{n, j}$ is the minimal root of $B_{n, j}^{\ell_{n} / h_{n, j}} B_{n, j}$.
If $x \in T^{h_{n, j}} W_{n, j} \cap W_{n, j^{\prime}}$ for $j \neq j^{\prime}$ and $h_{n, j^{\prime}} \leq \frac{1}{2} \ell_{n}$ then $x_{(-\infty, 0)}$ has $B_{n, j^{\prime}}^{\ell_{n} / h_{n, j^{\prime}}}$ as a suffix and does not have $B_{n, j^{\prime}}^{\ell_{n} / h_{n, j^{\prime}}} B_{n, j^{\prime}}$ as a suffix.

Proof. Since lim inf $\frac{p(q)}{q}<\infty,[\operatorname{Bos} 85]$ Theorem 2.2 gives a constant k and $\ell_{n} \rightarrow \infty$ such that $p\left(\ell_{n}+1\right)-$ $p\left(\ell_{n}\right) \leq k$ and $p\left(\ell_{n}\right) \leq k \ell_{n}$. We perform an analysis similar to Ferenczi [Fer96] Proposition 4.
Let G_{q} be the Rauzy graphs: the vertices are the words of length q in $\mathcal{L}(X)$ and the directed edges are from words w to w^{\prime} such that $w a=b w^{\prime} \in \mathcal{L}(X)$ for some letters a and b and we label the edge with the letter a. As μ is ergodic, exactly one strongly connected component has measure one and the rest have measure zero so we may assume G_{q} is strongly connected.
Let $V_{q}^{R S}$ be the set of all vertices with more than one outgoing edge, i.e. the right-special vertices. Let \mathcal{B}_{q} be the set of all paths from some $v \in V_{q}^{R S}$ to some $v^{\prime} \in V_{q}^{R S}$ that do not pass through any $v^{\prime \prime} \in V_{q}^{R S}$. Then every $v \in V_{q}$ is necessarily along such a path. Given any word w in $\mathcal{L}(X)$, there exists $x \in X$ such that $x_{[0,\|w\|)}=w$ so w is the label of the path from the vertex corresponding to $x_{[-q, 0)}$ to the vertex corresponding to $x_{[\|w\|-q,\|w\|)}$ hence is a subword of some concatenation of labels of paths in \mathcal{B}_{q}.
The labels of the paths between right-special vertices are nested: \mathcal{B}_{q+1} is necessarily a concatenation of paths in \mathcal{B}_{q} since words corresponding to elements of $V_{q+1}^{R S}$ necessarily have right-special suffixes. There are therefore recursion formulas defining \mathcal{B}_{q+1} in terms of \mathcal{B}_{q} though we do not make use of this fact.
Writing $\operatorname{outdeg}(v)$ for the number of outgoing edges of a vertex, $\sum_{v \in V_{\ell_{n}}^{R S}}(\operatorname{outdeg}(v)-1)=p\left(\ell_{n}+1\right)-$ $p\left(\ell_{n}\right) \leq k$ meaning that $\left|V_{\ell_{n}}^{R S}\right| \leq k$ and therefore $\sum_{v \in V_{\ell_{n} S}} \operatorname{outdeg}(v) \leq 2 k$. Therefore $\left|\mathcal{B}_{\ell_{n}}\right| \leq 2 k$. No path in $\mathcal{B}_{\ell_{n}}$ properly contains a cycle so $\|B\| \leq p\left(\ell_{n}\right) \leq k \ell_{n}$ for any label B of a path in $\mathcal{B}_{\ell_{n}}$.
Let \mathcal{B}_{n}^{g} be the set of all concatenations of paths in $\mathcal{B}_{\ell_{n}}$ of total length at least $\frac{3}{2} \ell_{n}$ and at most $k \ell_{n}$ not properly containing any cycles. As such a path contains no cycle properly, it has at most $\left|\mathcal{B}_{\ell_{n}}\right| \leq 2 k$ segments from some vertex in $V_{\ell_{n}}^{R S}$ to another, so there are at most $K=\sum_{t=1}^{2 k}(2 k)^{t}$ such paths.

Let \mathcal{B}_{n}^{c} be the set of all concatenations of paths in $\mathcal{B}_{\ell_{n}}$ of total length less than $\frac{3}{2} \ell_{n}$ which are simple cycles. Then $\left|\mathcal{B}_{n}^{c}\right| \leq K$ as each path has at most $2 k$ segments and at most $2 k$ choices for each segment. Every biinfinite concatenation of paths in $\mathcal{B}_{\ell_{n}}$ is necessarily a concatenation of paths in $\mathcal{B}_{n}^{g} \cup \mathcal{B}_{n}^{c}$.
Let B be the label of a path in \mathcal{B}_{n}^{g} and let v be its minimal root. Suppose that $\|v\|<\frac{1}{2} \ell_{n}$. Then the vertex at which the path corresponding to B ends is the word $v^{\ell_{n} /\|v\|}$ as it must be a suffix of B. Let B^{\prime} such that $B=B^{\prime} v$. Then $\left\|B^{\prime}\right\|=\|B\|-\|v\| \geq \frac{3}{2} \ell_{n}-\|v\|>\ell_{n}$. Then the path corresponding to B reaches its final vertex twice as B^{\prime} has suffix $v^{\ell_{n} /\|v\|}$ corresponding to that vertex. This means the path properly contains a cycle which is a contradiction. So all labels of paths in \mathcal{B}_{n}^{g} have minimal root of
length at least $\frac{1}{2} \ell_{n}$. By Lemma 5.9, then $T^{i} W_{n, j} \cap W_{n, j} \neq \emptyset$ for $0<i \leq \frac{1}{2}\|B\|$ only when i is a multiple of $\|v\|$. Set $c_{n, j}=\min \left(\|v\|, \frac{1}{2}\|B\|\right) \geq \frac{1}{2} \ell_{n}$ and then $T^{i} W_{n, j}$ are disjoint over $0 \leq i<c_{n, j}$.
Let B be the label of a simple cycle beginning and ending at the word w. Since B is the label of a path beginning at w, every appearance of B as a label in $x \in X$ is preceded by w, i.e. $W_{B} \subseteq T^{\ell_{n}}[w B]$. Since B either has w as a suffix or B is a root of w by Lemma $5.6, B$ is a root of $w B$. Let v be the minimal root of $w B$ and write $B=B^{\prime} v$. Then $w B^{\prime}$ has v as a root and $\left\|w B^{\prime}\right\|=\ell_{n}+\left\|B^{\prime}\right\|$ so $w B^{\prime}$ has suffix $v^{\ell_{n} /\|v\|}$. If B^{\prime} is nonempty then the path corresponding to B passes through its final vertex before the path ends, contradicting that it is a simple cycle. So $B=v$ is the minimal root of $w B$.
Then Lemma 5.9 implies that $T^{i} W_{B} \cap W_{B} \neq \emptyset$ for $0<i \leq \frac{1}{2}\|w B\|$ only when i is a multiple of $\|B\|$. So if $\|B\|>\frac{1}{2} \ell_{n}$ then set $c_{n, j}=\min \left(\|B\|, \frac{1}{2}\|w B\|\right)>\frac{1}{2} \ell_{n}$. If $\|B\| \leq \frac{1}{2} \ell_{n}$, set $c_{n, j}=\|B\|$. For such B, since $W_{B} \subseteq T^{\ell_{n}}[w B]$, we have that every occurrence of B as a label of a path is preceded by $w=B^{\ell_{n} /\|B\|}$. Moreover, if $x_{\left[-\ell_{n},\|B\|\right)}=w B$ then $x_{[0,\|B\|)}$ is the label of a path beginning at the vertex w and ending at w so $x \in W_{B}$.
For $x \in W_{B}$, if $x_{(-\infty, 0)}$ has $B^{\ell_{n} /\|B\|} B$ as a suffix then the path reaches w prior to the final B in that suffix. As no word B^{\prime} appearing in the concatenation is the label of a path properly containing a cycle, this means the word preceding $x_{[0,\|B\|)}=B$ in x must be B, i.e. $x \in T^{\ell_{n}+\|B\|}\left[B^{\ell_{n} /\|B\|} B\right]$ so $x \in T^{\|B\|} W_{B} \cap W_{B}$ and $x \notin T^{\left\|B^{\prime}\right\|} W_{B^{\prime}} \cap W_{B}$ for every $B^{\prime} \neq B$ as the path for B^{\prime} does not properly contain a cycle.

Let $\mathcal{B}_{n}^{*}=\mathcal{B}_{n}^{g} \cup \mathcal{B}_{n}^{c}$. Then $\left|\mathcal{B}_{n}^{*}\right| \leq 2 K=C$ for all n and every word in $\mathcal{L}(X)$ is a subword of some concatenation of labels of paths in \mathcal{B}_{n}^{*}. Let \mathcal{R}_{n} be the set of all labels of paths in \mathcal{B}_{n}^{*}.
Let $\mathcal{D}_{M}=\left\{B:\|B\| \leq M\right.$ and $B \in \mathcal{R}_{n}$ infinitely often $\}$. Then $\left|D_{M}\right|<\infty$ as there only finitely many words of length at most M (as non-superlinear complexity implies finite alphabet rank [DDMP21]). Let X_{M} be the set of $x \in X$ such that for infinitely many n, x cannot be written as a concatenation of labels in \mathcal{B}_{n}^{*} without using at least one label in \mathcal{D}_{M}.

For $x \in X_{M}$, there exist infinitely many t such that x has $B_{t}^{r_{t}}$ as a subword for some $B_{t} \in \mathcal{D}_{M}$ and $r_{t} \rightarrow \infty$ (since the label B_{t} is preceded by the word $B_{t}^{\left\lfloor\ell_{n} /\left(\left\|B_{t}\right\|\right)\right\rfloor}$). As $\left|\mathcal{D}_{M}\right|<\infty$, there exists B such that $B_{t}=B$ infinitely often. Then $B^{r_{t}}$ is a subword of x for $r_{t} \rightarrow \infty$ meaning x is periodic. Therefore $\bigcup_{M} X_{M} \subseteq$ \{periodic words\} so $\mu\left(\bigcup_{M} X_{M}\right)=0$ as μ is ergodic hence nonatomic and a periodic word of positive measure would be an atom (there are at most countably many periodic words).

Define $\left\{B_{n, j}\right\}$ to be the set of all labels of paths in \mathcal{B}_{n}^{*} which are in $\mathcal{R}_{n} \backslash \bigcup_{M} \mathcal{D}_{M}$. If $\lim \inf _{n} \min _{j}\left\|B_{n, j}\right\|<$ ∞ then $B_{n, j}=B$ for some fixed B infinitely often (as there are only finitely many words of up to some fixed length). But then $B \in \mathcal{D}_{\|B\|}$, a contradiction, so $\lim _{n} \min _{j}\left\|B_{n, j}\right\|=\infty$. As $X_{0}=X \backslash \bigcup_{M} X_{M}$, we have $\mu\left(X_{0}\right)=1$.

5.3 Measure-theoretic analysis

Definition 5.11. Let $C_{n, j}=\bigcup_{i=0}^{h_{n, j}-1} T^{i} W_{n, j}$.
Definition 5.12. For j such that $\left\|B_{n, j}\right\| \leq \frac{1}{2} \ell_{n}$, let

$$
\begin{aligned}
Z_{n, j} & =\left[B_{n, j}^{\ell_{n} / h_{n, j}} B_{n, j}\right] \backslash T^{h_{n, j}}\left[B_{n, j}^{\ell_{n} / h_{n, j}} B_{n, j}\right] \\
& =\left\{x \in X: x_{\left[0, \ell_{n}+h_{n, j}\right)}=B_{n, j}^{\ell_{n} / h_{n, j}} B_{n, j} \text { and } x_{\left[-h_{n, j}, \ell_{n}\right)} \neq B_{n, j}^{\ell_{n} / h_{n, j}} B_{n, j}\right\}
\end{aligned}
$$

Proposition 5.13. For j such that $\left\|B_{n, j}\right\| \leq \frac{1}{2} \ell_{n}$, the sets $T^{a h_{n, j}} Z_{n, j}$ are disjoint over $0 \leq a \leq\left\lfloor\frac{\ell_{n}}{h_{n, j}}\right\rfloor$.
Proof. For $0 \leq a<b \leq\left\lfloor\frac{\ell_{n}}{h_{n, j}}\right\rfloor$ and $x \in T^{a h_{n, j}} Z_{n, j} \cap T^{b h_{n, j}} Z_{n, j}$, writing $z=\ell_{n}-\left\lfloor\frac{\ell_{n}}{h_{n, j}}\right\rfloor h_{n, j}$, we would have $x_{\left[z-(a+1) h_{n, j}, z-a h_{n, j}\right)} \neq B_{n, j}$ but $x_{\left[z-b h_{n, j}, z\right)}=B_{n, j}^{b}$ which is impossible.

Proposition 5.14. For j such that $\left\|B_{n, j}\right\| \leq \frac{1}{2} \ell_{n}$, the sets $T^{i} Z_{n, j}$ are disjoint over $0 \leq i<c_{n, j}$.
Proof. Lemma 5.9 as $B_{n, j}$ is the minimal root of $B_{n, j}^{\ell_{n} / h_{n, j}} B_{n, j}$ and $c_{n, j} \leq \frac{1}{2} \ell_{n}<\frac{1}{2}\left\|B_{n, j}^{\ell_{n} / h_{n, j}} B_{n, j}\right\|$.
Definition 5.15. For j such that $\left\|B_{n, j}\right\|>\frac{1}{2} \ell_{n}$, let, for $0 \leq i<c_{n, j}$,

$$
I_{n, j, i}=T^{i} W_{n, j}
$$

and for j such that $\left\|B_{n, j}\right\| \leq \frac{1}{2} \ell_{n}$, let, for $0 \leq i<c_{n, j}$,

$$
I_{n, j, i}=T^{i}\left(\bigsqcup_{a=0}^{\left\lfloor\frac{\ell_{n}}{h_{n, j}}\right\rfloor} T^{a h_{n, j}} Z_{n, j}\right)
$$

As T is measure-preserving, $\mu\left(I_{n, j, i}\right)=\mu\left(I_{n, j, 0}\right)$ for all n, j and $0 \leq i<c_{n, j}$.
Definition 5.16. Let $\tilde{C}_{n, j}=\bigsqcup_{i=0}^{c_{n, j}-1} I_{n, j, i}$. For j such that $\left\|B_{n, j}\right\| \leq \frac{1}{2} \ell_{n}$, let $\widehat{C}_{n, j}=\bigsqcup_{i=0}^{h_{n, j}-1} T^{i} W_{n, j}$.
Proposition 5.17. For j such that $\left\|B_{n, j}\right\|>\frac{1}{2} \ell_{n}$, we have $\mu\left(\tilde{C}_{n, j}\right) \geq \frac{1}{2 k} \mu\left(C_{n, j}\right)$.
Proof. $\mu\left(C_{n, j}\right) \leq h_{n, j} \mu\left(W_{n, j}\right)=h_{n, j} \mu\left(I_{n, j, 0}\right)=\frac{h_{n, j}}{c_{n, j}} \mu\left(\tilde{C}_{n, j}\right) \leq \frac{k \ell_{n}}{\frac{1}{2} \ell_{n}} \mu\left(\tilde{C}_{n, j}\right)=2 k \mu\left(\tilde{C}_{n, j}\right)$.
Proposition 5.18. $\lim _{n} \max _{j}\left\{\mu\left(I_{n, j, 0}\right)\right\}=0$.
Proof. For j such that $\left\|B_{n, j}\right\|>\frac{1}{2} \ell_{n}$, we have $1 \geq \mu\left(\tilde{C}_{n, j}\right)=c_{n, j} \mu\left(I_{n, j, 0}\right) \geq \frac{1}{2} \ell_{n} \mu\left(I_{n, j, 0}\right)$ and $\ell_{n} \rightarrow \infty$. For j such that $\left\|B_{n, j}\right\| \leq \frac{1}{2} \ell_{n}$, we have $1 \geq \mu\left(\tilde{C}_{n, j}\right)=h_{n, j} \mu\left(I_{n, j, 0}\right)$ and $\min _{j} h_{n, j} \rightarrow \infty$.

Proposition 5.19. $T^{h_{n, j}} W_{n, j} \subseteq \bigcup_{j^{\prime}} W_{n, j^{\prime}}$ and $X_{0}=\bigcup_{j} C_{n, j}$.
Proof. Every $x \in X_{0}$ is a concatenation of words of the form $B_{n, j}$ so every occurrence of $B_{n, j}$ is followed immediately by some $B_{n, j^{\prime}}$ and $x_{[0, \infty)}=u B_{1} B_{2} \cdots$ for some u a suffix of some $B_{n, j}$ and $B_{\ell} \in\left\{B_{n, j}\right\}$.

Proposition 5.20. Let $E \subseteq W_{n, j}$. Then there exists j^{\prime} such that $\mu\left(T^{h_{n, j}} E \cap W_{n, j^{\prime}}\right) \geq \frac{1}{C} \mu(E)$.
Proof. $T^{h_{n}} E=T^{h_{n}} E \cap T^{h_{n, j}} W_{n, j} \subseteq T^{h_{n}} E \cap \bigcup_{j^{\prime}} W_{n, j^{\prime}}$ and there are at most C choices of j^{\prime}.
Lemma 5.21. $\mu\left(W_{n, j}\right) \geq \frac{1}{k \ell_{n}} \mu\left(\tilde{C}_{n, j}\right)$.
Proof. For j such that $\left\|B_{n, j}\right\| \leq \frac{1}{2} \ell_{n}$, by Proposition 5.10, $T^{-\ell_{n}} W_{n, j}=\left[B_{n, j}^{\ell_{n} / h_{n, j}} B_{n, j}\right] \supseteq Z_{n, j}$ so

$$
\mu\left(W_{n, j}\right) \geq \mu\left(Z_{n, j}\right)=\frac{1}{\left\lfloor\frac{\ell_{n}}{h_{n, j}}\right\rfloor+1} \mu\left(I_{n, j, 0}\right) \geq \frac{1}{\frac{\ell_{n}}{h_{n, j}}} \frac{1}{h_{n, j}} \mu\left(\tilde{C}_{n, j}\right)=\frac{1}{\ell_{n}} \mu\left(\tilde{C}_{n, j}\right)
$$

and for j such that $\left\|B_{n, j}\right\|>\frac{1}{2} \ell_{n}$, we have $\mu\left(W_{n, j}\right)=\frac{1}{c_{n, j}} \mu\left(\tilde{C}_{n, j}\right) \geq \frac{1}{k \ell_{n}} \mu\left(\tilde{C}_{n, j}\right)$ since $c_{n, j} \leq k \ell_{n}$.
Proposition 5.22. If $\mu\left(T^{h_{n, j}} W_{n, j} \cap W_{n, j^{\prime}}\right) \geq \delta \mu\left(W_{n, j^{\prime \prime}}\right)$ for $j \neq j^{\prime}$ then $\mu\left(\tilde{C}_{n, j^{\prime}}\right) \geq \frac{1}{2 k} \delta \mu\left(\tilde{C}_{n, j^{\prime \prime}}\right)$.

Proof. For j^{\prime} such that $h_{n, j^{\prime}}<\frac{1}{2} \ell_{n}$, Proposition 5.10 states that, as $j \neq j^{\prime}$, for $x \in T^{h_{n, j}} W_{n, j} \cap W_{n, j^{\prime}}$, the word $x_{(-\infty, 0)}$ has $B_{n, j^{\prime}}^{\ell_{n} / h_{n, j^{\prime}}}$ as a suffix but does not have $B_{n, j^{\prime}}^{\ell_{n} / h_{n, j^{\prime}}} B_{n, j^{\prime}}$ as a suffix. Therefore $T^{-\ell_{n}}\left(T^{h_{n, j}} W_{n, j} \cap W_{n, j^{\prime}}\right) \subseteq\left[B_{n, j^{\prime}}^{\ell_{n} / h_{n, j^{\prime}}} B_{n, j^{\prime}}\right] \backslash T^{h_{n, j^{\prime}}}\left[B_{n, j^{\prime}}^{\ell_{n} / h_{n, j^{\prime}}} B_{n, j^{\prime}}\right]=Z_{n, j^{\prime}}$. This means that $\mu\left(Z_{n, j^{\prime}}\right) \geq$ $\mu\left(T^{h_{n, j}} W_{n, j} \cap W_{n, j^{\prime}}\right) \geq \delta \mu\left(W_{n, j^{\prime \prime}}\right)$ so

$$
\begin{aligned}
\mu\left(\tilde{C}_{n, j^{\prime}}\right) & =h_{n, j^{\prime}} \mu\left(I_{n, j^{\prime}, 0}\right)=h_{n, j^{\prime}}\left(\left\lfloor\frac{\ell_{n}}{h_{n, j^{\prime}}}\right\rfloor+1\right) \mu\left(Z_{n, j^{\prime}}\right) \geq h_{n, j^{\prime}} \frac{\ell_{n}}{h_{n, j^{\prime}}} \delta \mu\left(W_{n, j^{\prime \prime}}\right) \\
& \geq \ell_{n} \delta \frac{1}{c_{n, j^{\prime \prime}}} \mu\left(\tilde{C}_{n, j^{\prime \prime}}\right) \geq \ell_{n} \delta \frac{1}{k \ell_{n}} \mu\left(\tilde{C}_{n, j^{\prime \prime}}\right)=\delta \frac{1}{k} \mu\left(\tilde{C}_{n, j^{\prime \prime}}\right)
\end{aligned}
$$

For j^{\prime} such that $h_{n, j^{\prime}}>\frac{1}{2} \ell_{n}$, using Lemma 5.21 and that $\mu\left(W_{n, j^{\prime}}\right) \geq \delta \mu\left(W_{n, j^{\prime \prime}}\right)$,

$$
\mu\left(\tilde{C}_{n, j^{\prime}}\right)=c_{n, j^{\prime}} \mu\left(W_{n, j^{\prime}}\right) \geq c_{n, j^{\prime}} \delta \mu\left(W_{n, j^{\prime \prime}}\right) \geq c_{n, j^{\prime}} \delta \frac{1}{k \ell_{n}} \mu\left(\tilde{C}_{n, j^{\prime \prime}}\right) \geq \frac{\ell_{n}}{2} \delta \frac{1}{k \ell_{n}} \mu\left(\tilde{C}_{n, j^{\prime \prime}}\right)=\frac{1}{2 k} \delta \mu\left(\tilde{C}_{n, j^{\prime \prime}}\right)
$$

Proposition 5.23. For j such that $\left\|B_{n, j}\right\| \leq \frac{1}{2} \ell_{n}$, we have $\mu\left(T^{h_{n, j}} I_{n, j, 0} \cap I_{n, j, 0}\right) \geq \frac{1}{2} \mu\left(I_{n, j, 0}\right)$.
Proof.

$$
\mu\left(T^{h_{n, j}} I_{n, j, 0} \cap I_{n, j, 0}\right) \geq \mu\left(\bigsqcup_{a=1}^{\left\lfloor\frac{\ell_{n}}{h_{n, j}}\right\rfloor} T^{a h_{n, j}} Z_{n, j}\right)=\left\lfloor\frac{\ell_{n}}{h_{n, j}}\right\rfloor \mu\left(Z_{n, j}\right)=\frac{\left\lfloor\frac{\ell_{n}}{h_{n, j}}\right\rfloor}{\left\lfloor\frac{\ell_{n}}{h_{n, j}}\right\rfloor+1} \mu\left(I_{n, j, 0}\right) \geq \frac{1}{2} \mu\left(I_{n, j, 0}\right)
$$

5.4 Partial rigidity

We employ ideas similar to Danilenko's [Dan16] proof that exact finite rank implies partial rigidity:
Proposition 5.24. If there exists $\delta>0$ and j_{n} and $t_{n} \rightarrow \infty$ with $\mu\left(\tilde{C}_{n, j_{n}}\right) \geq \delta$ (or $\mu\left(\widehat{C}_{n, j_{n}}\right) \geq \delta$ when applicable) and $\mu\left(T^{t_{n}} I_{n, j_{n}} \cap I_{n, j_{n}}\right) \geq \delta \mu\left(I_{n, j_{n}}\right)$ then (X, μ) is $\frac{1}{2} \delta^{2}$-partially rigid.

Proof. Let $A=W_{N, J}$ for some fixed N and J. Define $\alpha_{n}=\left\{0 \leq i<c_{n, j_{n}}-h_{N, J}: I_{n, j_{n}, i} \subseteq A\right\}$.
For j_{n} such that $h_{n, j_{n}}>\frac{1}{2} \ell_{n}$, if $x \in I_{n, j_{n}, i} \cap W_{N, J}$ then $x_{\left[-i,-i+h_{n, j_{n}}\right)}=B_{n, j_{n}}$ and $x_{\left[0, h_{N, J}\right)}=B_{N, J}$ meaning that $\left(B_{n, j_{n}}\right)_{\left[i, i+h_{N, J}\right)}=B_{N, J}$. This implies that $T^{i} W_{n, j_{n}} \subseteq W_{N, J}$ provided $i<h_{n, j_{n}}-h_{N, J}$.
For j_{n} such that $h_{n, j_{n}} \leq \frac{1}{2} \ell_{n}$, if $x \in I_{n, j_{n}, i} \cap W_{N, J}$ then $x_{\left[-i,-i+\ell_{n} / h_{n, j_{n}}\right)}=B_{n, j_{n}}^{\ell_{n} / h_{n, j_{n}}}$ and $x_{\left[0, h_{N, J}\right)}=B_{N, J}$ so $\left(B_{n, j_{n}}^{\ell_{n} / h_{n, j_{n}}}\right)_{\left[i, i+h_{N, J}\right)}=B_{N, J}$ which implies $I_{n, j_{n}, i} \subseteq W_{N, J}$ provided $i<h_{n, j_{n}}-h_{N, J}$.
Therefore $\left(\left|\alpha_{n}\right|+h_{N, J}\right) \mu\left(I_{n, j_{n}, 0}\right) \geq \mu\left(A \cap \tilde{C}_{n, j_{n}}\right) \geq\left|\alpha_{n}\right| \mu\left(I_{n, j_{n}, 0}\right)$. Likewise, if $\left\|B_{n, j_{n}}\right\| \leq \frac{1}{2} \ell_{n}$ then $\left(\left|\alpha_{n}\right|+h_{N, J}\right) \mu\left(W_{n, j_{n}}\right) \geq \mu\left(A \cap \widehat{C}_{n, j_{n}}\right) \geq\left|\alpha_{n}\right| \mu\left(W_{n, j_{n}}\right)$ using $\alpha_{n}=\left\{0 \leq i<h_{n, j_{n}}-h_{N, J}: T^{i} W_{n, j_{n}} \subseteq A\right\}$. For $m<c_{n, j_{n}}, \mu\left(T^{m} \tilde{C}_{n, j_{n}} \triangle \tilde{C}_{n, j_{n}}\right) \leq 2 m \mu\left(I_{n, j_{n}, 0}\right)$, (and likewise $\mu\left(T^{m} \widehat{C}_{n, j} \triangle \widehat{C}_{n, j}\right) \leq 2 m \mu\left(W_{n, j}\right)$ when applicable) therefore

$$
\int\left|\mathbb{1}_{\tilde{C}_{n, j_{n}}} \circ T^{-m}-\mathbb{1}_{\tilde{C}_{n, j_{n}}}\right|^{2} d \mu=2 \mu\left(\tilde{C}_{n, j_{n}}\right)-2 \mu\left(T^{m} \tilde{C}_{n, j_{n}} \cap \tilde{C}_{n, j_{n}}\right) \leq 2 m \mu\left(I_{n, j_{n}, 0}\right)
$$

Therefore for $M<c_{n, j_{n}}$,

$$
\begin{aligned}
& \left|\frac{1}{M} \sum_{m=1}^{M} \mu\left(T^{-m} A \cap \tilde{C}_{n, j_{n}}\right)-\mu\left(A \cap \tilde{C}_{n, j_{n}}\right)\right|=\left|\frac{1}{M} \sum_{m=1}^{M} \mu\left(A \cap T^{m} \tilde{C}_{n, j_{n}}\right)-\mu\left(A \cap \tilde{C}_{n, j_{n}}\right)\right| \\
& \quad \leq \frac{1}{M} \sum_{m=1}^{M}\left|\mu\left(A \cap T^{m} \tilde{C}_{n, j_{n}}\right)-\mu\left(A \cap \tilde{C}_{n, j_{n}}\right)\right| \leq \frac{1}{M} \sum_{m=1}^{M} \int_{A}\left|\mathbb{1}_{\tilde{C}_{n, j_{n}}} \circ T^{-m}-\mathbb{1}_{\tilde{C}_{n, j_{n}}}\right| d \mu
\end{aligned}
$$

$$
\leq \frac{1}{M} \sum_{m=1}^{M}\left(\int\left|\mathbb{1}_{\tilde{C}_{n, j_{n}}} \circ T^{-m}-\mathbb{1}_{\tilde{C}_{n, j_{n}}}\right|^{2} d \mu\right)^{1 / 2} \leq \frac{1}{M} \sum_{m=1}^{M} \sqrt{2 m \mu\left(I_{n, j_{n}, 0}\right)} \leq \sqrt{2 M \mu\left(I_{n, j_{n}, 0}\right)}
$$

The mean ergodic theorem gives M such that $\int\left|\frac{1}{M} \sum_{m=1}^{M} \mathbb{1}_{A} \circ T^{m}-\mu(A)\right|^{2} d \mu<\left(\frac{1}{4} \delta \mu(A)\right)^{2}$ so

$$
\begin{aligned}
& \left|\frac{1}{M} \sum_{m=1}^{M} \mu\left(T^{-m} A \cap \tilde{C}_{n, j_{n}}\right)-\mu(A) \mu\left(\tilde{C}_{n, j_{n}}\right)\right|=\left|\int_{\tilde{C}_{n, j_{n}}} \frac{1}{M} \sum_{m=1}^{M} \mathbb{1}_{A} \circ T^{m}-\mu(A) d \mu\right| \\
& \quad \leq \int_{\tilde{C}_{n, j_{n}}}\left|\frac{1}{M} \sum_{m=1}^{M} \mathbb{1}_{A} \circ T^{m}-\mu(A)\right| d \mu \leq\left(\int\left|\frac{1}{M} \sum_{m=1}^{M} \mathbb{1}_{A} \circ T^{m}-\mu(A)\right|^{2} d \mu\right)^{1 / 2}<\frac{1}{4} \delta \mu(A)
\end{aligned}
$$

For n large enough that $c_{n, j_{n}}>M$ and $\sqrt{2 M \mu\left(I_{n, j_{n}, 0}\right)}<\frac{1}{4} \delta \mu(A)$ (Proposition 5.18 states $\mu\left(I_{n, j_{n}, 0}\right) \rightarrow 0$) then $\left|\mu\left(A \cap \tilde{C}_{n, j_{n}}\right)-\mu(A) \mu\left(\tilde{C}_{n, j_{n}}\right)\right|<\frac{1}{2} \delta \mu(A)$. Then

$$
\begin{aligned}
\mu\left(T^{t_{n}} A \cap A\right) & \geq \mu\left(T^{t_{n}}\left(A \cap \tilde{C}_{n, j_{n}}\right) \cap\left(A \cap \tilde{C}_{n, j_{n}}\right)\right) \geq \sum_{i \in \alpha_{n}} \mu\left(T^{t_{n}} T^{i} I_{n, j_{n}, 0} \cap T^{i} I_{n, j_{n}, 0}\right) \\
& =\left|\alpha_{n}\right| \mu\left(T^{t_{n}} I_{n, j_{n}, 0} \cap I_{n, j_{n}, 0}\right) \geq\left|\alpha_{n}\right| \delta \mu\left(I_{n, j_{n}, 0}\right) \geq \delta\left(\mu\left(A \cap \tilde{C}_{n, j_{n}}\right)-h_{N, J} \mu\left(I_{n, j_{n}, 0}\right)\right) \\
& >\delta\left(\mu(A) \mu\left(\tilde{C}_{n, j_{n}}\right)-\frac{1}{2} \delta \mu(A)\right)-\delta h_{N, J} \mu\left(I_{n, j_{n}, 0}\right) \\
& \geq \delta\left(\mu(A) \delta-\frac{1}{2} \delta \mu(A)\right)-\delta h_{N, J} \mu\left(I_{n, j_{n}, 0}\right)=\frac{1}{2} \delta^{2} \mu(A)-\delta h_{N, J} \mu\left(I_{n, j_{n}, 0}\right)
\end{aligned}
$$

with the same applying to $\hat{C}_{n, j_{n}}$ when applicable. Therefore for fixed N and J and $0 \leq i<h_{N, J}$,

$$
\lim \inf \mu\left(T^{t_{n}} T^{i} W_{N, J} \cap T^{i} W_{N, J}\right)=\liminf \mu\left(T^{t_{n}} W_{N, J} \cap W_{N, J}\right) \geq \frac{1}{2} \delta^{2} \mu\left(W_{N, J}\right)=\frac{1}{2} \delta^{2} \mu\left(T^{i} W_{N, J}\right)
$$

and since the sets $T^{i} W_{N, J}$ generate the Borel algebra, μ is $\frac{1}{2} \delta^{2}$-partially rigid.
Proof of Theorem 5.1. We aim to apply Proposition 5.24. Set $\delta=\frac{1}{4 k^{2} C^{C+1}}$ which depends only on X.
There exists a_{0} such that $\mu\left(C_{n, a_{0}}\right) \geq \frac{1}{C}$ since $X_{0}=\bigcup_{j} C_{n, j}$. If $\left\|B_{n, a_{0}}\right\| \leq \frac{1}{2} \ell_{n}$ then $\mu\left(\widehat{C}_{n, a_{0}}\right)=\mu\left(C_{n, a_{0}}\right) \geq$ $\frac{1}{C}$ and Proposition 5.23 implies $\mu\left(T^{h_{n, a_{0}}} I_{n, a_{0}, 0} \cap I_{n, a_{0}, 0}\right) \geq \frac{1}{2} \mu\left(I_{n, a_{0}, 0}\right)$ so take $t_{n}=h_{n, a_{0}}$ and $j_{n}=a_{0}$.
Now consider when $\left\|B_{n, a_{0}}\right\|>\frac{1}{2} \ell_{n}$ so Proposition 5.17 implies $\mu\left(\tilde{C}_{n, a_{0}}\right) \geq \frac{1}{2 k} \mu\left(C_{n, a_{0}}\right) \geq \frac{1}{2 k C}$.
By Proposition 5.20, there exists a_{1} such that $\mu\left(T^{h_{n, a_{0}}} W_{n, a_{0}} \cap W_{n, a_{1}}\right) \geq \frac{1}{C} \mu\left(W_{n, a_{0}}\right)$. If $a_{1}=a_{0}$ then $\mu\left(\tilde{C}_{n, a_{1}}\right)=\mu\left(\tilde{C}_{n, a_{0}}\right) \geq \frac{1}{2 k C}$ and if $a_{1} \neq a_{0}$ then Proposition 5.22 implies $\mu\left(\tilde{C}_{n, a_{1}}\right) \geq \frac{1}{2 k} \mu\left(\tilde{C}_{n, a_{0}}\right) \geq \frac{1}{4 k^{2} C}$. Proposition 5.20 then says there exists a_{2} such that

$$
\mu\left(T^{h_{n, a_{1}}}\left(T^{h_{n, a_{0}}} W_{n, a_{0}} \cap W_{n, a_{1}}\right) \cap W_{n, a_{2}}\right) \geq \frac{1}{C} \mu\left(T^{h_{n, a_{0}}} W_{n, a_{0}} \cap W_{n, a_{1}}\right) \geq \frac{1}{C^{2}} \mu\left(W_{n, a_{0}}\right)
$$

and then Proposition 5.22 gives $\mu\left(\tilde{C}_{n, a_{2}}\right) \geq \frac{1}{C^{2}} \frac{1}{2 k} \mu\left(\tilde{C}_{n, a_{0}}\right) \geq \frac{1}{4 k^{2} C^{3}}$.
Repeating this process, we obtain a_{ℓ} for $0 \leq \ell \leq C$ such that $\mu\left(\tilde{C}_{n, a_{\ell}}\right) \geq \frac{1}{4 k^{2} C^{\ell+1}} \geq \frac{1}{4 k^{2} C^{C+1}}$ and

$$
\mu\left(W_{n, a_{C}} \cap \bigcap_{\ell=0}^{C-1} T^{\sum_{z=\ell}^{C-1} h_{n, a_{z}}} W_{n, a_{\ell}}\right) \geq \frac{1}{C^{C}} \mu\left(W_{n, a_{0}}\right)
$$

If any of the a_{ℓ} are such that $h_{n, a_{\ell}} \leq \frac{1}{2} \ell_{n}$ then Proposition 5.23 implies $\mu\left(T^{h_{n, a_{\ell}}} I_{n, a_{\ell}, 0} \cap I_{n, a_{\ell}, 0}\right) \geq$ $\frac{1}{2} \mu\left(I_{n, a_{\ell}, 0}\right)$ so take $t_{n}=h_{n, a_{\ell}}$ and $j_{n}=a_{\ell}$.
If $h_{n, a_{\ell}}>\frac{1}{2} \ell_{n}$ for all $0 \leq \ell \leq C$ then, since there are at most C choices of j, for some $q<s$ we must
have $a_{q}=a_{s}$ so setting $j_{n}=a_{q}$ and $t_{n}=\sum_{z=q}^{s-1} h_{n, a_{z}}$,
$\mu\left(T^{t_{n}} I_{n, j_{n}, 0} \cap I_{n, j_{n}, 0}\right)=\mu\left(T^{\sum_{z=q}^{s-1} h_{n, a_{z}}} W_{n, a_{q}} \cap W_{n, a_{s}}\right) \geq \mu\left(W_{n, a_{C}} \cap \bigcap_{\ell=0}^{C-1} T^{\sum_{z=\ell}^{C-1} h_{n, a_{z}}} W_{n, a_{\ell}}\right) \geq \frac{1}{C^{C}} \mu\left(W_{n, a_{0}}\right)$

As

$$
\begin{aligned}
\mu\left(W_{n, a_{0}}\right) & =\mu\left(I_{n, a_{0}, 0}\right)=\frac{1}{c_{n, a_{0}}} \mu\left(\tilde{C}_{n, a_{0}}\right) \geq \frac{1}{h_{n, a_{0}}} \frac{1}{2 k C} \geq \frac{1}{k \ell_{n}} \frac{1}{2 k C} \geq \frac{1}{k \ell_{n}} \frac{1}{2 k C} \mu\left(\tilde{C}_{n, j_{n}}\right) \\
& =\frac{1}{k \ell_{n}} \frac{1}{2 k C} c_{n, j_{n}} \mu\left(I_{n, j_{n}, 0}\right) \geq \frac{1}{k \ell_{n}} \frac{1}{2 k C} \frac{\ell_{n}}{2} \mu\left(I_{n, j_{n}, 0}\right)=\frac{1}{4 k^{2} C} \mu\left(I_{n, j_{n}, 0}\right)
\end{aligned}
$$

we then have $\mu\left(T^{t_{n}} I_{n, j_{n}, 0} \cap I_{n, j_{n}, 0}\right) \geq \frac{1}{4 k^{2} C^{c+1}} \mu\left(I_{n, j_{n}, 0}\right)$.
In all cases, by Proposition 5.24, we have that (X, μ, T) is $\frac{1}{2} \delta^{2}$-partially rigid.
Acknowledgments The author would like to thank Ronnie Pavlov for introducing him to this question and for numerous enjoyable discussions.

References

[Ada98] Terrence M. Adams, Smorodinsky's conjecture on rank-one mixing, Proc. Amer. Math. Soc. 126 (1998), no. 3, 739-744. MR 1443143
[AFP17] Terrence Adams, Sébastien Ferenczi, and Karl Petersen, Constructive symbolic presentations of rank one measure-preserving systems, Colloq. Math. 150 (2017), no. 2, 243-255. MR 3719459
[Bos85] Michael Boshernitzan, A unique ergodicity of minimal symbolic flows with linear block growth, J. Analyse Math. 44 (1984/85), 77-96. MR 801288
[Cas97] Julien Cassaigne, Complexité et facteurs spéciaux, Journées Montoises (Mons, 1994), no. 1, vol. 4, Bull. Belg. Math. Soc. Simon Stevin, 1997, pp. 67-88. MR 1440670
[CFPZ19] Julien Cassaigne, Anna E. Frid, Svetlana Puzynina, and Luca Q. Zamboni, A characterization of words of linear complexity, Proc. Amer. Math. Soc. 147 (2019), no. 7, 3103-3115. MR 3973910
[CK19] Van Cyr and Bryna Kra, Counting generic measures for a subshift of linear growth, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 2, 355-380. MR 3896204
[CK20a] , The automorphism group of a shift of slow growth is amenable, Ergodic Theory Dynam. Systems 40 (2020), no. 7, 1788-1804. MR 4108905
[CK20b] , Realizing ergodic properties in zero entropy subshifts, Israel J. Math. 240 (2020), no. 1, 119-148. MR 4193129
[CPR22] Darren Creutz, Ronnie Pavlov, and Shaun Rodock, Measure-theoretically mixing subshifts with low complexity, Ergodic Theory and Dynamical Systems (to appear), 2022.
[Cre21] Darren Creutz, Mixing on stochastic staircase tansformations, Studia Math. 257 (2021), no. 2, 121153. MR 4194950
[CS04] Darren Creutz and Cesar E. Silva, Mixing on a class of rank-one transformations, Ergodic Theory Dynam. Systems 24 (2004), no. 2, 407-440. MR 2054050
[CS10] _ Mixing on rank-one transformations, Studia Math. 199 (2010), no. 1, 43-72. MR 2652597
[Dan16] Alexandre I. Danilenko, Actions of finite rank: weak rational ergodicity and partial rigidity, Ergodic Theory Dynam. Systems 36 (2016), no. 7, 2138-2171. MR 3568975
[DDMP16] Sebastián Donoso, Fabien Durand, Alejandro Maass, and Samuel Petite, On automorphism groups of low complexity subshifts, Ergodic Theory Dynam. Systems 36 (2016), no. 1, 64-95. MR 3436754
[DDMP21] __ Interplay between finite topological rank minimal Cantor systems, \mathcal{S}-adic subshifts and their complexity, Trans. Amer. Math. Soc. 374 (2021), no. 5, 3453-3489. MR 4237953
[dJ77] Andrés del Junco, A transformation with simple spectrum which is not rank one, Canadian J. Math. 29 (1977), no. 3, 655-663. MR 466489
[DOP21] Andrew Dykstra, Nicholas Ormes, and Ronnie Pavlov, Subsystems of transitive subshifts with linear complexity, Ergodic Theory and Dynamical Systems (2021), 1-27.
[Fer95] Sébastien Ferenczi, Les transformations de Chacon : combinatoire, structure géométrique, lien avec les systèmes de complexité $2 n+1$, Bulletin de la Société Mathématique de France 123 (1995), no. 2, 271-292 (fr). MR 96m:28018
[Fer96] , Rank and symbolic complexity, Ergodic Theory Dynam. Systems 16 (1996), no. 4, 663-682. MR 1406427
$\left[\mathrm{FGH}^{+} 21\right]$ M. Foreman, S. Gao, A. Hill, C.E. Silva, and B. Weiss, Rank one transformations, odometers and finite factors, Preprint, 2021.
[Kal84] Steven Arthur Kalikow, Twofold mixing implies threefold mixing for rank one transformations, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 237-259. MR 766104
[Ler12] Julien Leroy, Some improvements of the S-adic conjecture, Adv. in Appl. Math. 48 (2012), no. 1, 79-98. MR 2845508
[PS22a] Ronnie Pavlov and Scott Schmeiding, Local finiteness and automorphism groups of low complexity subshifts, Preprint, 2022.
[PS22b] , On the structure of generic subshifts, Preprint, 2022.
[Ryz93] V. V. Ryzhikov, Joinings and multiple mixing of the actions of finite rank, Funktsional. Anal. i Prilozhen. 27 (1993), no. 2, 63-78, 96. MR 1251168
[Sil08] C. E. Silva, Invitation to ergodic theory, Student Mathematical Library, vol. 42, American Mathematical Society, Providence, RI, 2008. MR 2371216

[^0]: *US Naval Academy creutz@usna.edu
 2020 Mathematics Subject Classification. Primary: 37B10; Secondary 37A25
 Key words and phrases. Symbolic dynamics, word complexity, strong mixing, rank-one transformations

