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Abstract We resolve a long-standing open question on the relationship between measure-
theoretic dynamical complexity and symbolic complexity by establishing the exact word com-
plexity at which measure-theoretic strong mixing manifests:

For every superlinear f : N — N; i.e. f(9)/q — oo, there exists a subshift admitting a (strongly)
mixing of all orders probability measure with word complexity p such that p(9)/f(q) — 0.

For a subshift with word complexity p which is non-superlinear, i.e. liminf P(9)/q < oo, every
ergodic probability measure is partially rigid.

Introduction

Among measure-theoretic dynamical properties of measure-preserving transformations, strong mixing of
all orders is the ‘most complex’: every finite collection of measurable sets tends asymptotically toward
independence, necessarily implying a significant amount of randomness. Despite this, ‘low complexity’
mixing transformations exist—there are mixing transformation with zero entropy-raising the question of
how deterministic a mixing transformation can be.

Word complexity, the number p(q) of distinct words of length ¢ appearing in the language of the subshift,
provides a more fine-grained means of quantifying complexity in the zero entropy setting, leading to the
question of how low the word complexity of a mixing transformation can be.

Ferenczi [Fer95] initially conjectured that mixing transformations’ word complexity should be superpoly-
nomial but quickly refuted this himself [Fer96] showing that the staircase transformation, proven mixing
by Adams [Ada98], has quadratic word complexity. Recent joint work of the author and R. Pavlov
and S. Rodock [CPR22] exhibited subshifts admitting mixing measures with word complexity functions
which are subquadratic but superlinear by more than a logarithm. We exhibit subshifts admitting mixing
measures with complexity arbitrarily close to linear:

Theorem A. For every f : N — N which is superlinear, f(a)/q — 0o, there exists a subshift, admitting
a strongly mixing probability measure, with word complexity p such that »(9)/f(q) — 0.

Our examples, which we call quasi-staircase transformations, are mixing rank-one transformations hence
mixing of all orders [Kal84], [Ryz93]. We establish their word complexity is optimal:

Theorem B. Every subshift of non-superlinear word complexity, lim inf P(9)/q < 0o, equipped with an
ergodic probability measure is partially rigid hence not strongly mixing,

Non-superlinear complexity subshifts are conjugate to S-adic shifts (Donoso, Durand, Maass and Petite
[DDMP21]). Named by Vershik and the subject of a well-known conjecture of Host, S-adic subshifts are
quite structured (see e.g. [Ler12] for more information on S-adicity).

Our work may be viewed as saying there is a sharp divide in ‘measure-theoretic complexity’, precisely
at superlinear word complexity, between highly structured and highly complicated: as soon as the word
complexity is ‘large enough’ to escape the S-adic structure and partial rigidity, there is already ‘enough
room’ for (strong) mixing of all orders.
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Cyr and Kra established that superlinear complexity is the dividing line for a subshift admitting countably
many ergodic measures: there exists subshifts with complexity arbitrarily close to linear which admit
uncountably many ergodic measures [CK20b] and non-superlinear complexity implies at most countably
many [CK19], [Bos85]. Our work implies that in the non-superlinear case, the at most countably measures
are all partially rigid (with a uniform rigidity constant). Their result, like ours, indicates that superlinear
word complexity is the line at which complicated measure-theoretic phenomena can manifest.

Beyond the structure imposed by S-adicity, linear complexity subshifts are known to be structured in
various ways (e.g. [CFPZ19], [CK20a], [DDMP16], [DOP21], [PS22a], [PS22b]). Our work indicates there
is no hope for similar phenomena in any superlinear setting.

1 Definitions and preliminaries

1.1 Symbolic dynamics

Definition 1.1. A subshift on the finite set A is any subset X C A% which is closed in the product
topology and shift-invariant: for all x = (z,)nez € X and k € Z, the translate (z,4x)nez of z by k is
also in X.

Definition 1.2. A word is any element of A’ for some £, the length of w, written ||w||. A word w is
a subword of a word or biinfinite sequence z if there exists k so that w; = x;44 for all 1 <i < |w|. A
word u is a prefix of w when u; = w; for 1 <@ < [Jul| and a word v is a suffix of w when v; = Wi |jw|—|v|
for 1 <4 < vl

For words v, w, we denote by vw their concatenation—the word obtained by following v immediately by
w. We write such concatenations with product or exponential notation, e.g. [ [, w; or 0™.

Definition 1.3. The language of a subshift X is £(X) = {w : w is a subword of some z € X}.

Definition 1.4. The word complexity function of a subshift X over A is the function px : N — N
defined by px(q) = |£(X) N A%, the number of words of length ¢ in the language of X.

When X is clear from context, we suppress the subscript and just write p(n).

For subshifts on the alphabet {0,1}, we consider:
Definition 1.5. The set of right-special words is £%9(X) = {w € X : w0,wl € L(X)}.

Cassaigne [Cas97] showed the well-known: p(q) = p(m) + Ez;fn H{w € LB ¢ ||wl|| = £}] for m < q.

1.2 Ergodic theory

Definition 1.6. A transformation T is a measurable map on a standard Borel or Lebesgue measure
space (Y, B, 1) that is measure-preserving: u(T-!B) = u(B) for all B € B.

Definition 1.7. Two transformations T on (Y, B, u) and 77 on (Y’, B, i) are measure-theoretically
isomorphic when there exists a bijective map ¢ between full measure subsets Yy C Y and Yy C Y’
where p(¢~1A) = 1/ (A) for all measurable A C Yy and (¢ o T)(y) = (1" o ¢)(y) for all y € Y.

Definition 1.8. A transformation 7T is ergodic when A = T~ A implies that u(A) = 0 or u(A°) = 0.

Theorem 1.9 (Mean Ergodic Theorem). If T is ergodic and on a finite measure space and f € L*(Y),
1 n—1 )
s 2o [ =

Definition 1.10. A transformation T is mixing when for all A, B € B, u(T"AN B) — u(A)u(B).
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1.3 Rank-one transformations

A rank-one transformation is a transformation 7' constructed by “cutting and stacking”. Here Y
represents a (possibly infinite) interval, B is the induced o-algebra from R, and p is Lebesgue measure.
We give a brief description, referring the reader to [FGH'21] or [Sil08] for more details.

The transformation is defined inductively on larger and larger portions of the space through Rohlin
towers or columns, denoted C),. Each column C), consists of levels I, ; where 0 < j < h,, is the height
of the level within the column. All levels I,, ; in C,, are intervals with the same length, u(l,,), and the
total number of levels in a column is the height of the column, denoted by h,. The transformation T’
is defined on all levels I, ; except the top one I, », —1 by sending each I, ; to I, j41 using the unique
order-preserving affine map.

Start with C; = [0,1) with height h; = 1. To obtain C,,4+1 from C,,, we require a cut sequence, {r,}
such that r, > 1 for all n. Make r, vertical cuts of C,, to create r, + 1 subcolumns of equal width.
Denote a sublevel of C,, by Ir[f’]j where 0 < a < h,, is the height of the level within that column, and i
represents the position of the subcolumn, where ¢ = 0 represents the leftmost subcolumn and ¢ = r,, is
the rightmost subcolumn. After cutting C,, into subcolumns, add extra intervals called spacers on top
of each subcolumn to function as levels of the next column. The spacer sequence, {s,;} such that
0 <i<r,and s,; > 0, specifies how many sublevels to add above each subcolumn. Spacers are the
same width as the sublevels, act as new levels in the column C,, 1, and are taken to be the leftmost

intervals in [1,00) not in C,,. After the spacers are added, stack the subcolumns with their spacers right
(4]

on top of left, i.e. so that I}ffg” is directly above Iwihnfl' This gives the next column, Cj41.

Each column C), defines T' on U?;a 2 I,,; and the partially defined map 7" on C,41 agrees with that of
C,, extending the definition of 7' to a portion of the top level of C,, where it was previously undefined.
Continuing this process gives the sequence of columns {C1,...,Cy,Cpy1,... } and T is then the limit of
the partially defined maps.

Though this construction could result in Y being an infinite interval with infinite Lebesgue measure,
Y has finite measure if and only if 3 ﬁ it Sni < 00, see [CS10]. All rank-one transformations
we define satisfy this condition, and for convenience we renormalize so that ¥ = [0,1). Every rank-one
transformation is ergodic and invertible.

The reader should be aware that we are making r,, cuts and obtaining 7, + 1 subcolumns (following
Ferenczi [Fer96]), while other papers (e.g. [Cre21]) use r, as the number of subcolumns.

1.4 Symbolic models of rank-one transformations

For a rank-one transformation defined as above, we define a subshift X (T') on the alphabet {0,1} which
is measure-theoretically isomorphic to T

Definition 1.11. The symbolic model X (T') of a rank-one transformation T is given by the sequence
of words: B; =0 and

Tn
Bn+1 _ Bnlsn’OBnls"’l ...Bnlsn,rn — HBnlsn,i
1=0

and X (T) is the set of all biinfinite sequences such that every subword is a subword of some B,,.

The words B,, are a symbolic coding of the column C,,: 0 represents C; and 1 represents the spacers.
There is a natural measure associated to X (7):

Definition 1.12. The empirical measure for a symbolic model X (T') of a rank-one transformation T
is the measure v defined by, for each word w,

H1 <j <|IBull = llwll = Bupjjtjw)) = w}
f— 1' :
v(lw]) = lim 1Bl — o]

Danilenko [Dan16] (combined with [dJ77] and [Kal84]) proved that the symbolic model X (T') of a rank-
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one subshift, equipped with its empirical measure, is measure-theoretically isomorphic to the cut-and-
stack construction (see [AFP17]; see [FGHT21] for the full generality including odometers).

Due to this isomorphism, we move back and forth between rank-one and symbolic model terminology as
needed and write £(T) for the language of X (7).

2 Quasi-staircase transformations

Definition 2.1. Given nondecreasing sequences of integers {ay }, {b,} and {¢,} tending to infinity such
that ¢; > 1 and ¢,41 > ¢, + by, a quasi-staircase transformation is a rank-one transformation with

cut sequence 7, = a,b, and spacer sequence s, + = ¢, + L%J for 0 <t <ry, and s,,,, =0.
The symbolic representation of a quasi-staircase is By = 0 and

b,—1

Bn+1 = ( H (Bnlcn—‘ri)an)Bn
=0

The height sequence of a quasi-staircase is hy = 1 and h,11 = (apby, + 1)hy, + anbpe, + %anbn(bn —1).

2.1 Quasi-staircase right-special words

Lemma 2.2. Let 01*0 € L(T). Then there are unique n and i with 0 < i < b, such that z =
en + . 0170 4s not a subword of By, for m < n and every occurrence of 0170 is as a suffiz
of 1C"+1(H;;B(Bnlcnﬂ)an)(Bnlc"Jri)qO for some 1 < q < a,, (adopting the convention that Hgl is the
empty word).

Proof. As every B, begins and ends with 0, the only such words are of the form 01¢»+%0. Since ¢, 41 >
Cn 4 by, such n and i are unique. This also gives that 1°» is not a subword of B,,.

The word 01¢»1%0 only occurs inside By, +1 due to ¢, 41 > ¢, + by, and only as part of the (Bnlc“‘i)“"
in its construction, and B, is always preceded by 1¢+1 O

Proposition 2.3. If w € LB9(T) then at least one of the following holds:
(i) w= 1wl
(i1) w is a suffiz of 10"“*1(Bn10"“)a" for somen and 0 < i < by,
(iii) w is a suffiz of 1°7Fb»=1B, 1% for some n

(iv) w =1 (B, 1)

Proof. Let w € LS(T). Since ¢; > 1, the word 00 ¢ £(T) so w does not end in 0. If w = 11*ll then w
is of form () so from here on, assume that w contains at least one 0.

Let z > 1 such that w has 01% as a suffix. Then w0 has 01%0 as a suffix so z = ¢, + i for some unique
n >1and 0 <i < b, by Lemma 2.2. As w0 has 01°¢»*0 as a suffix, w0 shares a suffix with the word
1en 1 ([T5g(Bn1on )2 ) (B, 16779)40 for some 1 < q < a,.

First consider the case when i > 0. If w is a suffix of 12 T#=1(B,1¢»T%)an then it is of form (ii) so we
need only consider w that have 01 +=1(B, 142 %%)4 as a suffix. For such w, the word w1 has the suffix
01 ti=1(B, 160 T4)a=1 B, 12 H+1 byt that word is only in £(T) if ¢ — 1 = a,, which is impossible.

Now consider the case when i = 0, i.e. 2 = ¢,. If w is a suffix of 1 =1(B,,1¢*)% then it is of form (ii) so
we may assume that w has 1¢»~1(B,1%)? as a strict suffix for some 1 < q < a,,. Since B, 1°" is always
preceded by 1¢» (possibly as part of some 1¢n+17¢ or 1¢2+%) 1 cannot have 01¢»~1B,,1¢ as a subword
so w has 1°»(B,1")9 as a suffix for some 1 < g < a,.

Take ¢ maximal so that w has 1¢»(B,,1°)? as a suffix.
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Consider first when w has 1°»(B, 1) as a suffix, i.e. when ¢ = a,,. If w = 1°(B,1°")% then it is
of form (iv). If w has 01°"(B,1°")% as a suffix then w0 ¢ L(T) as 0(1°»B,)*1°"0 ¢ L(T). If w has
117 (B, 1) as a suffix then w1l has 1¢»T1(B, 17 ) =1 B, 167 T1 a5 a suffix but that is not in £(T).
So we may assume ¢ < a,. Since 1°»(B,,1°")9 is then of form (i7), we may assume 1 (B, 1) is a strict
suffix of w.

Consider when w has 01°» (B,,1°")9 as a suffix. As 01°"(B,1°)? only appears as a suffix of B,,1°»(B,,1°)?
and that word is always preceded by 1¢» (possibly as part of some 1¢»+17%) ) then shares a suffix with
1¢(B,1)9%1. As ¢ is maximal, then w is a suffix of 1°#=1(B,,1¢7)9*! and, as ¢ < a,, this means w is
of form (i1).

We are left with the case when w has 1¢»T1(B,1%7)? as a suffix for some 1 < q¢ < a,,. If ¢ > 2 then
wl has 12TY(B,1¢)471 B, 142 F1! as a suffix but that is not in £(T') for ¢ — 1 > 1. So we are left with
the situation when w shares a suffix with 1~ t1B,,1°». So w0 shares a suffix with 1¢»T1B,1°*0 which
must share a suffix with 1¢»+! B, 10, meaning that w shares a suffix with 1¢~+1 B, 1¢». If w is a suffix
of 1¢n+tn=1B 1% then it is of form (7). If not then w has the suffix 1»T%» B, 1" so w1 has suffix
1enFon B, 1601 which is not in £(T) since B, 1°»*! is always preceded by B, 1" or B, 1»+1, O

Lemma 2.4. 1 € LRS(T) for all £.

Proof. For n such that £ < ¢, as the word 1°# B,, is a subword of B,,; 1, so are 1‘*! and 1°0 since £ < ¢,
and B,, starts with 0. O

Lemma 2.5. If w is a suffiv of 1°°(B,1°)% then w € LT9(T).

Proof. Byio has 17+1B, 1 = 1¢+17 12 B4 as a subword which has 1°~(B,1°")%" B,, as a sub-
word which gives 17(B, 1) 0 € L(T). Bp41 has (B,1°)% B,1¢%1 as a prefix which has suffix
1¢n(By1¢n)a =1 B, 17 F1 and that word is 17 (B, 1¢)%" 1 giving 1¢»~1(B, 1)1 € L(T). O

Lemma 2.6. If w is a suffiv of 1» T~ 1(B, 1) for 0 < i < b,, then w € LT(T).
Proof. B,y has 1# T 1(B, 12T B as a subword which gives 1¢»T=1(B,1¢»T%)an( € L(T). When
i < by —1, Bpyq has (16278B,,)an 1601 a5 a subword which gives 162 T¢=1(B,, 142 +%)an 1 € £(T); when

i = b,—1, B,y has the subword (12 H0n =1 B, Jan1en+1 g0 [entbn=2(B, 1entba—)ancnri—ca=butl ¢ £(T)
50 16ntbn=2(B, 1¢ntbn=1)an] ¢ £(T) as c,q1 > Cn + bp. O

Lemma 2.7. If w is a suffiz of 15 T0»~1 B, 1" then w € L5 (T).
Proof. B, 42 has B, 11"t B, 11 as a subword which has B, 111+ B,,1°» B,, as a prefix, and that word

has 1¢»t0»~1B, 120 as a subword since ¢, + b, — 1 < ¢p11. Also B,42 has B, 11+ as a subword
which has 1°»1t0»=1B, 1+ as a suffix which then has 1°»T*»~1B,1°"1 as a subword. O

2.2 The level-n complexity functions

Definition 2.8. For a word w, define the tail length z(w) such that w = u01%*("*) for some (possibly
empty) word u with the conventions that z(11“!l) = co and z(u0) = 0.

Definition 2.9. For 1 < n < oo, the set of level-n generating words is
W, = {w e LE(T) : ¢, < 2(w) < cpy1}
Proposition 2.10. LB(T) = {1¢: ¢ e N} U272, W,.

Proof. {c,} is strictly increasing so the W,, are disjoint. Lemma 2.4 says 1 € LE5(T) for all £ and as
every word in W, has 0 as a subword, these are disjoint from the W,,. If z(w) < ¢; then w0 ¢ L(T') by
Lemma 2.2 so all right-special words with 0 as a subword are in some W,,. O
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Definition 2.11. The level-n complexity is p,(q) = |[{w € W,, : ||w| < g¢}|-
By definition, p, (¢ + 1) — pp(¢) = {w € W,, : [Jw| = ¢}
Proposition 2.12. The complezity function p satisfies p(q) =1+ q+ Y ooy Pn(q).

Proof. Using Proposition 2.10 and that p(¢ + 1) — p(f) = [{w € LB : |lw|| = ¢},

=

-1

p(g) —p(1) = ) (p(L+1) - :Zl{w € L(T) : |lw]| = £}

<

=1
q—1 g—1 oo

Y (3w e Wl = 31+ 107H) = 3 (ol 1)~ pu(e)) 4 1)
=1 n=1 =1 n=1
o) q—1 e’}

=3 (X @alt+ 1) = pa(®) +a=1="3 (pala) = pa(1)) +a -1
n=1 (=1 n=1

All words in W, have length at least 1+ ¢, > 1 so p,(1) = 0. The claim follows as p(1) = 2. O

2.3 Counting quasi-staircase words

Lemma 2.13. If w € W, then exactly one of the following holds:
(i) w is a suffiw of 1+ 1 (B, 1) and ||w|| > ¢, + i for some 0 < i < by;
(ii) w is a suffiv of 17+ =1B, 1% and ||w|| > h, + 2¢,; or
(iii) w=1°(B,1° )
Proof. The only words in Proposition 2.3 which have ¢,, < z(w) < ¢p41 are of the stated forms; Lemmas
2.5, 2.6 and 2.7 state that these words are in £%(T). The forms do not overlap due to the restriction

on |lw| in form (i). O

Lemma 2.14. Fiz 0 < i <b,. Forc,+i < { < aphy,+ (an+1)(c, + 1) there is exactly one word in W,
of form (i) for that value of i; for £ not in that range, there are no words of form (i) for that i in W,.

Proof. For w € W, of form (i), w = ul®"** where u is a nonempty suffix of 1 **~1(B, 1+ t")en 1B, .
The word u is unique if it exists which is exactly when ¢, +i = ||[1° || < |Jw]|| < ||[1¢» T (B, 162 T8)an || =

anhy + (an + 1) (e, + 1) — 1.

Lemma 2.15. For h,, + 2¢, < £ < hy + 2¢,, + by, there is exactly one word in W, of form (ii); for £ not
in that range, there are no words of form (i) in W,.

Proof. To be of that form, w = ul® where u is a nonempty suffix of 1°»*to»~1B, that has 1°»*! as a
prefix. The word u is unique if it exists and it exists exactly when h,, +2c, +1 = |[|[1¢» 1B, 1 || < |lw| <
|16 Fbn =t B 1 || = Ay, + 265 + by — 1.

Lemma 2.16. If ¢ < ¢, then p,({ + 1) — p,(£) = 0.

Proof. Every w € W, has subwords 1°» and 0 so ||lw|| > ¢, + 1. O
Lemma 2.17. Ifc, <l <cp+ by, then p,(L+ 1) —pp(£) =€ —cp.

Proof. Lemma 2.14 applies for 0 < i < £—¢, but not for {—c¢,, <i < b,. Lemma 2.15 does not apply. [

Lemma 2.18. Ifc¢, + b, << h, + 2¢, then p,({ + 1) — p,(£) = b,,.
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Proof. Lemma 2.14 applies for all 0 < i < b, and Lemma 2.15 does not apply. O]
Lemma 2.19. If hy, + 2¢, < { < hyp + 2¢,, + by, then pp,(L+ 1) — pr(€) = b, + 1.

Proof. Lemma 2.14 applies for all 0 < i < b, and Lemma 2.15 applies. O
Lemma 2.20. If hy, + 2¢,, + by, <4 < aphy + (an, + 1)ey, then pp(€+ 1) — prp(£) = by,

Proof. Lemma 2.14 applies for all 0 < i < b,, and Lemma 2.15 does not apply. O
Lemma 2.21. p,(anh, + (an + 1)en + 1) — pp(anhy + (an + 1)ep) = by, + 1.

Proof. Lemma 2.14 applies for all 0 < i < b,, and Lemma 2.15 does not apply. Lemma 2.13 form (ii7)
gives one additional word in W,,. O

Lemma 2.22. Ifaphy, + (an +1)cp +1 <€ < aphy + (an +1)(cp + by —1) then p,(€+ 1) — p,(£) < by
Proof. Lemma 2.14 applies for some subset of 0 <14 < b, and Lemma 2.15 does not apply. O
Lemma 2.23. p(anhy, + (an +1)cn + (an +1)(by — 1)) = planhy + (an +1)cy) = 3(an +1)by (by — 1) + 1.
Proof. For each 0 < i < b,, Lemma 2.14 applies for £ = a,h, + (a, + 1)c, + y exactly when 0 < y <
(an + 1)i, therefore there are a total of (a, + 1)bn(b, — 1) words in W, of the enclosed lengths from
Lemma 2.14. Lemma 2.15 does not apply and Lemma 2.13 form (#i¢) gives one additional word. O

Lemma 2.24. If a,h, + (an + 1)(cy + b, — 1) < £ then p,(¢ + 1) — p,(£) = 0.

Proof. Neither Lemma 2.14 nor 2.15 apply. O

2.4 Bounding the complexity of quasi-staircases
Since p, (£ + 1) — pn(€) =0 for £ > aphy, + (an, + 1)(cp, + by — 1), we define:

Definition 2.25. The post-productive sequence is

My, = aphy + (an + 1) (cp + b, — 1)

Lemma 2.26. p,(my) = hyy1 — by

Proof. By Lemma 2.16, py(c,,) = ;"Z’gl(pn(ﬁ +1) —pn(0)) =0.
By Lemma 2.17, py(cn + bn) — pulen) = X257 20" 7 (€ — ¢p) = Lbn(by — 1).

By Lemma 2.18, pn(h +2¢n,+ 1) —pulcn +b,) = (hp + ¢+ 1 —by)by,.

By Lemma 2.19, p,(hy + 2¢5 + by) — pp(hn + 2¢, + 1) = (b, + 1) (by, — 1).

By Lemma 2.20, py,(anhn + (an + 1)cn) — Du(hn + 2¢,, + b)) = ((an — 1Ay + (@ — 1)cn — bn)by,.
By Lemma 2.23, p,(m;,) — p(anhn + (an + 1)¢y) = 3(an 4+ 1)bu (b, — 1) + 1. Therefore

1
pr(my) = §bn(bn — 1)+ (hn+en+1—=0by)by+ (by +1)(by, — 1)
1
+ ((an = Dhp + (an — 1)cy — bp)by + i(a" + Db, (b, — 1)+ 1

1
= apbphy + anbyc, + Eanbn(bn — 1) 4 bulby — 1)+ by — b2+ 02 102 +1=hyyq — h, O
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Definition 2.27. For q € N define
a(q) = max{n : m, < q} and B(q) =min{n : ¢ < cpy1}
Lemma 2.28. «a(q) < 5(q)
Proof. If B(q) < a(q) — 1 then my(q) < ¢ < Ca(g)+1 < Ca(q)—141 = Ca(q) < Ma(q) 1S impossible. O

Lemma 2.29. If ¢ < ¢, then p,(q) = 0. If ¢, < q < my then po(q) < (¢ — ¢n + Dby, If my, < q then
Pn(q) = hnt1 — by

Proof. Lemma 2.16 gives p,({+ 1) —p,(¢) =0 for 0 < ¢ < ¢,,. Lemmas 2.17, 2.18, 2.19, 2.20 and 2.22 all
give p,(£+1) —p,(£) < by, for ¢, <€ < m,, except for Lemma 2.19 which gives p,(¢+1) —p,(£) = b, +1
for exactly b, — 1 values of £ and Lemma 2.21 which gives one additional word. Then, for ¢, < g < my,

=

cn—1

Pal@) =) (pn(f+1) - Z 0+ Z Pl +1) = pu(£)) < (¢ = cn)bn + by
0 t=cp,

Q

o~
Il

Lemma 2.24 says p, (¢ + 1) — p,(£) = 0 for £ > m,, so when g > my, pn(q) = pn(my) and Lemma 2.26
gives the final statement. O

Proposition 2.30. p(q) < q(2 + Zi(:q;(q) bn> for all q.

Proof. For n such that 8(q) < n, by Lemma 2.16, p,(q) = 0. Proposition 2.12 and Lemma 2.29 give,
using that hy =150 1+ 3% (hyyq — hy) = Pa(g)+1

a(q) B(q) oo
pl@)=a+1+Y pal@d+ Y, @+ Y, a0

n=1 n=a(g)+1 n=p4(g)+1
a(q) B(a) B(q)

<qg+1+ Z(hn-i-l - hn) =+ Z (q —Cp + 1)bn +0<q+ ha(q)Jrl + Z
n=1 n=a(q)+1 n=a(q)+1

1
and ha(a)+1 = ha(e) + ba(g) (@ag) hate) T Ga()Cate) T 5%a(q) (batg) = 1))
< ha(g) + baq)Ma(q) < Ma(q) (1 + ba(g)) < (1 +ba(g)) O

3 Quasi-staircase complexity arbitrarily close to linear

Proposition 3.1. Let {d,} be a nondecreasing sequence of integers such that d,, — 00 and dy =ds =1
and dpi1 — dy, € {0,1} and dy11 — dy, does not take the value 1 for consecutive n.

Let {b,} be a nondecreasing sequence of integers such that b, — oo and by =3 and b, < n+ 2.
Set ap, =2n+2. Set ¢c; =1 and forn > 1,

o — Mnp—d, when d,, = d,—1
" en—1 + bt when dy, =dp—1 + 1

Then {an},{bn}, {cn} define a quasi-staircase such that aw?ﬁa”*ﬁf”““"“ < 0.

Proof. Since r,, = apby, we have 6n +6 < r, < (2n+2)(n +2). Then [[;Z 1(7“] +1) > n!so h, >

n—1 anb2+ani1by (2n+2)(n+2)2+(2n+4) (n+3)
12 (ry + 1) = nl so 3 @ebatnibun o 5 @ni(ne2)+@nid)(ndd) _ o
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For n such that d,, = d,—1 + 1, we have ¢, = ¢;,—1 + b1 and d,,—1 — dp—2 = 0 since {d,} never
increases for two consecutive values, so ¢,—1 = mp_1-4, ,- Asn—d, =n—1—d,_1, then ¢, =
Mp—1-dy_q +bn1 =Mn_q, +bp_1. SoMmy_q, < cp <My_g, + by for all n.

Since b, > 3, we have r, < %rn(bn —1). As b, <a,+1and a, +1 < ayb,,

1
My = aphp + (an +1)cy + 70 + by — ap — 1 < (apbn + 1Ay + anbye, + §rn(bn —1)=hpt1
and therefore, since d, > 1son —d, +1 < n,

Cn < Mp—d, + bn—l < hn—dn—i-l + bn—l < hn + bn—l < Zhn
meaning that, as r, + b, < h,,

My, = (an + 1)en + anhp, + 75 + by —an — 1 < 2(apn, + Dby, + aphy, + by < 3(an + 1)hy,

We now claim that ¢,+1 > ¢, + b, for all n. The case when ¢, = my,_g4, , which occurs when d,, = d,,_1,
is all we need to check. Since do = di = 1, we have ¢ = my > ¢; + by. Since d,, < we have

5
Un—d,—1=2(n—d, —1)+2>2(5 —1)+2=n. As b, <n+2and b, > 3,

Cn — Cne1 —bp_1 > Mp_q, — (Mp—q, -1 +bn_2) —bp_1=my_q, —Mp—_g,—1 — bp—2 —bp_1
> an—d, hbn—d, — 3(an—d,-1 + Dhp_gq,-1 —n—(n+1)
> On—d,0n—d,—1bn-d,~1hn—d,~1 = 3(@n—-a,~-1 + 1)hn_q,-1 —2n—1
= (an-d, n-d,—1bn—d, -1 — 3(an—-d,—1 + 1)) hpn—q,—1 —2n — 1
> (Ban—d,an-d, -1 — 3an—d,-1 — 3)hn_d,-1 —2n—1
> 3an—d,-1(an-d, —2)hn—g,-1 —2n—1>3n(n—2)—2n—-1>0

for n > 3. Then ¢p41 > ¢ + by, for all nso {c,}, {an}, {bn} define a quasi-staircase transformation.

Now observe that

Cn<zmn dh+bn 1<3Z an dn +1 n—d, Zh

n

and the second sum converges as shown at the start of the proof.

As hp > hp—a, ;L:_i—d" (Tj +1),

Z(and+1 ndn<z and+1 :Zand+1 1
n ]

n =n— d(rj+1) Tan—a, +1 H] =n— d+1(rj+1)
1
<3 = (ra- 1)t=dn
B (rn—d,+1 + 1)4n—1 (rn—d,r1+1)"

n v n

Since r,_g,+1 > 2(n —dp, +1) > 2(n —n/2 + 1) > n, we have (r,_q,+1 + 1)17% < n'=9. Then, as
dn > 3 eventually, > (r,_g,+1 + 1)1 79 < S n!=% < oo, Therefore = < oo.

Now observe that

Z ftt < o + b < o0
n:iCpp1=Ccn+bn n
and, since d,, > 3 implies my_q,, < Myp—3 < 2a,_3h,_3,

n 2ap—3hn— 265 —3hn— 2
2 Chilg; - hgn 3<; ——" :;Qn(Zn—2)<oo

Gp—1Gp—20p—3hpn
n:cn+1:mn_dn’dn23 n—1Un—-2Un—-3/tn—-3

and d,, > 3 eventually so > S+ < oo. O

Lemma 3.2. If f : N — N is any function such that f(q) — oo then there exists g : N — N which is
nondecreasing such that g(1) = 1 and g(q) < f(q) and g(qg+ 2) — g(q) <1 for all g and g(q) — oo.
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Proof. Set f*(q) = infy>q f(¢'). Then f*(¢) — oo and f*(¢) is nondecreasing and f*(q) < f(q) for all
q. Set g(1) =1 < f*(1). For n >0, set g(2n + 2) = g(2n + 1) and for n > 1 set

B 1 when f*(2n +1) > f*(2n — 1)
9(2n+1) = g(2n) + { 0 otherwise

Then g is nondecreasing and g(q + 2) — g(¢) < 1 for all ¢. Since f* is integer-valued, if f*(2n + 1) —
f*(2n—1) #0 then f*(2n+1) — f*(2n—1) > 1. Then g(2n+1) —g(2n—1) < f*2n+1) — f*(2n —1)
so for all n we have

g@n+1)=g(1)+ > (9(2m+1) — g(2m — 1)) Z “2m4+1)— f*@m—1)) = f*2n+1)
m=1

so, as g(2n+2) = g(2n+ 1) < f*(2n —|— 1) < f*(2n + 2), we have g(q) < f*(q) < f(g) for all ¢q. If

g(q) < C for all g then f*(2n+ 1) = f*(2n — 1) eventually, contradicting that f*(¢) — oo. Therefore

g(q) — oc. O

Theorem 3.3. Let f : N — N be any function such that f(q) — oo. There exists a quasi-staircase
anb? +ant1bnritcnit
hn

< 00, b 5 0 and complexity satisfying 29 — 0.

transformation with ' af (@)

Proof. By Lemma 3.2, we may assume f is nondecreasing and that f(n +2) — f(n) <1 for all n. Then
f(n+1)— f(n) € {0,1} and is never 1 for two consecutive values. We may also assume f(1) = 1.

Set di =dy =1 and d,, = {" f(n)J for n > 2. Then d,, — oo is nondecreasing. Also d,,+1 — d,, € {0, 1}
and is never 1 for two consecutive values.

Set b,, = 3 for all n such that {/f(n) < 3 and b,, = {WJ for n such that {¢/f(n) > 3. Then b, — oo
is nondecreasing and b, < f(n) +2 <n+2as f(n) <nsince f(1) =1 and f(n+2) — f(n) <1 imply
fn) <1+3.

Take the quasi-staircase transformation from Proposition 3.1 with defining sequences {a,} and {c,}.
As a, = 2n+2 and b, = max(3, {/f(n)) < /n, we have Z—Z — 0.

Since 0 < d,, 11 — d,, <1, the sequence n — d,, is nondecreasing and attains every value in N. For each g,

let ng be the largest n su.ch that m,_q, <gq. Then g < My 41—dp, 41 SO Ng + 1 —dp,41 > ng — dp, and
so 1> dp,+1 — dy, meaning that d,, 1 = dy,. Therefore ¢, 41 = Mg 1—dpy 41 = Ming—dp, +1-

S0 a(g) = 1 — dn, 88 Moy, —1, <4 < Mayi1-dy s = May—d,, 41 a0 B(g) <y since < Mo, 11 =
Cn,+1- By Proposition 2.30, since ¢ > n, and f is nondecreasing to infinity and n, — oo,

pla) _ 2+ Yo gy b _2t 2ontng—dn, 00 2+ (dn, + 1)bn,
af(q) ~ f(q) B f(CJ) - f(ng)
2+ (Y f(ng) + 1)/ F(ng) _ 2 P S 1 o .

<
o f(ng) f(ng) f/f(”q) (%/f(nq))Q
4 Mixing for quasi-staircase transformations

Proposition 4.1. Let T be a quasi-staircase transformation given by {an}, {bn} and {c,} with height
sequence {h,} such that c"hLb" < 00. Then T is on a finite measure space.

Proof. Writing S,, for the spacers added above the n** column,

rm+1 2 r,+1 hy,

p(52) = (a4 gl = D) = (e H(C)

and therefore y1(Cpy1) = p(Cy) + u(Sn) < (1 + %)u(Cn). Then p(Cry1) < [T, (1+ %jbj),u(Cl),

- 10 -
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meaning that log(u(Cp11)) < log(p(Ch)) + 327, log(1 + C’+b 1). As %ﬂb” — 0, since log(1 + z) = z for
0, limy, log(1u(Cry1)) S log(u(Ch)) + Y232, Cﬂ,j;?“ < o0, 0

For the remainder of this section, all transformations are on probability spaces.

Recall that a sequence {t, } is mixing when for all measurable sets A and B, u(T*" AN B) — u(A)u(B).

Notation 4.2. For measurable sets A and B, write

AB(A) = w(AN B) — u(A)u(B)
So {t,} is mixing when Ap (7% A) — 0 for all measurable A and B. The following is left to the reader:

Lemma 4.3. If A and A’ are disjoint then
)\B(AHA/):AB(A)‘F)\B(A/) and |/\B(A)‘ SM(A)
and, writing xp(x) = 1p(x) — p(B), for n € Z, \g(T™A) = [, xp o T"dp.

For a rank-one transformation 7', a sequence {t,} is rank-one uniform mixing when for every union

of levels B, Zh SHAp(Tt I, ;)| = 0. Rank-one uniform mixing for a sequence implies mixing for that
sequence [CSO4] Pr0p051tion 5.6.

Notation 4.4. For h, < j < hy+cy, let I, j = Tj’h"+1ln7hn_1 be the union of the (j — hy,)!" stage of
the c,, spacer levels added above every subcolumn. Write

Bn:hn—i—cn

Lemma 4.5. Let T' be a rank-one transformation, B a union of levels in some column Cn and n > N.
Then for any 0 < j < h,, and 0 <1 <y,

As(I [l]j)

s,

ALy
1 B(m])

Proof. Since B is a union of levels in Cly, either I,, ; C Bor I, ;N B ={. If I,, ; C B then u(I}f,]j NB) =
P12y = A uln,) = L yi(I,, ;0 B) and if I, ;N B =  then Wi NB)=0= 2qu(l,;nB). O

Lemma 4.6. Let T be a quasi-staircase transformation. Then for any n and 0 < ¢ < b, and k,i > 0
such that i+ k < a,, and any j > kf,

khy, [[an+1] [lan+itk]
r I - In ,j—ke

Proof. There are ¢, + LMJ = ¢,,+¥ spacers above I[ea"“] so Thn ][Eanﬂ] _ glantitl] g o ith <a,,

n,j—~L
there are also ¢,, + ¢ spacers above each I [&;"tz“’} for 1 < v < k so applying 7"+ repeated k times,

the claim follows. O

Lemma 4.7. Let T be a quasi-staircase transformation, k € N, B a union of levels in some Cn and
n>N. If k < a, and kb, < h,, then

hn—1
< k+1 kb,
Py | s P e

Proof. By Lemma 4.6 and then Lemma 4.5, for kb, < j < hy,

bp—1la,—1

h ban~+i ha Tl
ST Ap(THn Ly (T 1l
{=0 =0

Ap (T 1 5)| =

- 11 -
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bp—1lap—k—1 ~ ,
<3S ST As@ N bk + 1) (L)
£=0 =0
bp—1a,—k—1 )
=3 > M@+ Guk + Dallnsn)
£=0 1=0
b,—1a,—k—1
W 1 bok 4+ 1
= Z Z )\B<In,jfk€) + M(In)
= = o+ 1 rn+ 1
bp—1la,—k—1
B 1 n n e bnk+1
NEES! D D ATy 1 M)
=0 i=0
an — k |2 bok + 1 1| k41
== Ag(T*1, u I,) < — Ag(T7*1, I,
rn+1;B( ,J)+Tn+1u()_bn;)B( ,])+an (1)
b,—1 b,—1
1% B k+1 1% B +1
= *Z/ Xz o T  du| + M(In)S/ o 2 xso T M du+ ——p(l)
n =0 JIn.; n Ing |77 4=0 an
Therefore
hn_l - hn_l -
S BT L)< D (T L, )| + kbup(1)
7=0 j=kbn
hp—1 b,—1
: 1% Y k+1
< _Z ( /I W > xpoT M| du+ o ﬂ(In,j)>+kbnN(In)
j=kbn g £=0
=) o, &= X7 " e T,

Proposition 4.8. Let T be a quasi-staircase transformation and k € N. If T* is ergodic then {k;izn}
and {kh,} are rank-one uniform mizing.

Proof. Since Z—“ — 0 and a,, — oo there exists N such that for all n > N we have k < a,, and kb,, < h,,.

That {kizn} is rank-one uniform mixing follows from Lemma 4.7 since Tk is ergodic, b, — 0o, a, — ©
and % — 0. Then

hn—1 h hn—ke,
n n ke, n—ken 3 ke,
> PB(T L, < > (T )| + o= > (@) + 70
j=0 j=kcn " j=0 "
as 1= — 0, k is fixed and {khy} is rank-one uniform mixing. O

Lemma 4.9 ([CPR22] Proposition A.13). Let T be a rank-one transformation and {c,} a sequence such
that 3= — 0. If k € N and {q(hy, + cn)} is rank-one uniform mizing for each ¢ < k+1 and {t,} is a
sequence such that hy + ¢, <tn < (¢ + 1)(hn + cn) for all n then {t,} is mizing.

Lemma 4.10 ([CPR22] Proposition A.16). Let T be a rank-one transformation and {c,} a sequence
such that 7= — 0. If {q(hn +cpn)} is rank-one uniform mizing for each fized q and k, — oo is such that

n—1 .
%" <1 then for any measurable set B, [ |% S xgoT k| du — 0.
=0

j=

Proposition 4.11. Let T be a quasi-staircase transformation and B a measurable set. Then

1 n—1 ]
- —Jjk
11%1]?%%/”20)(301"' du — 0
j:

- 12 -
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Proof. As T is ergodic, Proposition 4.8 with k£ = 1 gives that {izn} is rank-one uniform mixing, hence
mixing, so T is totally ergodic. Then Proposition 4.8 gives that for each fixed k the sequence {kh,} is
rank-one uniform mixing so Lemma 4.10 gives the claim. O

Proposition 4.12. Let T be a quasi-staircase transformation, B a measurable set and QQ > 0. Then

max _ |[Ag(T'B)| — 0
hn+cn <t<Qhn

Proof. As in the proof of Proposition 4.11, for each fixed k the sequence {k'izn} is rank-one uniform
mixing so Lemma 4.9 gives the claim. O

Lemma 4.13. Let T be a quasi-staircase transformation. Letn >0 and 0 < x < b, and 0 < g < ay,.
If0<i<b,—zand0<i<a, —qandj> %anm(x—l)—f—qac—l—ix—i—ﬁ(wan—i—q) then

(xan+q)hn pllanti] _ pl(l+z)an+itq]
T Iny]' =1 n,j—sanz(z—1)—qr—iz—L(zan+q)
Proof. If x = 0 then Lemma 4.6 applied with ¢ in place of k gives the claim. So we can write
xan +q=(an — 1)+ (x — Day, + (¢ +1)
and assume all three terms on the right are nonnegative.
Using Lemma 4.6,
(an—i)hn [éan +i] _ yllan+titan—i] _ p[({+1)ay]

T L = L e = Injt(an-ie

Now observe that, by Lemma 4.6 with 0 as ¢ and a,, as k, for any 0 < v < z and any a,v < z < hy,

Tan;'/n I"[;jgn] I[(v""l)an]

so applying that z — 1 times forU:€—+—1,6—1—2,...,6—1—:3—17

(z=1)anhn [(Hl)an] _ glt+z)an]
e I —(an—1)f 1 ,j—(an—i)é—(x—l)ian—%x(m—l)an

since Zvﬂg_& v=12({+z)(l+x—1)—20({+1) = (x—1){+ Lz(x —1). Then applying Lemma 4.6 one
final time with ¢ + ¢ in place of k,

T((I-H)hn [[(Hx)an] _ [(t+x)an—+q+i]
nj—(an—i)l—(z—1)lan—Sx(z—1)an n,j—(an—i)l—(z—1)lan—2x(z—1)an—(z+£)(g+1)
[(t+z)an+q+i] 0

n,j—alan—Sx(z—1)a, —vi—xq—Lq

Lemma 4.14. Let T be a quasi-staircase transformation. Letn >0 and 0 <z < b, and 0 < ¢ < ay,.
IfO<l<b,—xz—1anda, —q<i<a, and j > Japz(z+1)+q@+1) +i(x + 1) + l(za, + 1) then

(zan+q)hy, pllan+i] _ 7[(t+z)an+itd]
T [n)j - In,j—%anx(x+1)—(q+i—an)(x+1)—€(mn+q)

Proof. The same proof as Lemma 4.13 except we write za,, + ¢ = (an, — i) + za, + (¢ + i — x). O

Lemma 4.15. Let T be a quasi-staircase transformation. Let B be a union of levels Cn. For n > N
and kphy, < t, < (kn + 1)hy,

hyp—1 hp—1 hy—1
Z Ap(T' 1, ;)| < Z Ap (T n " Tna) + enp(In Z IAp (T AR o)l
7=0 x=0 x=0

- 13-
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Proof. Write t,, = knhn + 25 for 0 < z, < hy,. Then

hp—1 hpn—2zn—1 hp—1

ZMBT"I N< S PeT L) +en@)+ S, el L)
j=0

Jj=hn—zn+cn

hp—2zp—1 hp—1 ~
< Z |AB( Tk"h gtz A+ eap(ln) + Z |/\B(T(k"+1)h"In,jJrzn—ﬁn)|
j=0 J:ﬁnfzn
hp—1 i hp—1 i
< T (@ L )| + enp(In Z Ap (Tt DR, ) O
=0

2
Proposition 4.16. Let T be a quasi-staircase transformation such that a;‘b—i”’ — 0 and Z—’; — 0 and B be
a union of levels in some fired Cn. For n > N, set

hn—1
Mg, = _ max > As(T'L )|

anhp<t<hpii

Then lim,_,oc Mp = 0.

Proof. Let t,, attain the maximum in Mg ,. If ¢, > (r, — l)ﬁn then hpi1 + cng1 — tn < cpy1 + 20y, +
cn + %anbn(bn —1)so

hn+171 hn+171
> (T I y)] < > AB(T*" Ly ,)] + (hnr + cpr — ta) (L)
j=0 j=hnti1+cnt1—tn
tn—Cnt1—1 1
. c + 2hy, + ¢nsanby (b, — 1
< D P L) + e nt ngtnbnlon — 1) —+0
=0 hn+1

since {hp41} is rank-one uniform mixing.

So we may assume t, < (rn — 1)iLn and therefore write t, = kphn + zn for an < k, < rn — 1 and
0 <z, <h,. By Lemma 4.15,

hn—1 hp—1 hp—1
S AT L) < Y Ap(Th P T o)| + cnpi(In Z Ap(Thnt DR )
j=0 =0

We will show the sum on the left tends to zero; the same argument with k,, + 1 in place of k,, gives the
same for the right sum. As ¢, u(I,) — 0, this will complete the proof.

Write k, = z,a, + ¢, for 0 < ¢, < a, and 1 < z,, < b,,. Observe that

hnp—1 hp—1|bp—xpn—2an—1
A A Cay+1i

ST @L< 31 ST ST Ap@ P 1T 4 20, () (%)
j=0 =0 =0 =0

hn—1 bp—1 a,—1 ~ [ : 1

K By, TllQR 1
LD DN D DEED DRVIU AR b i) s (%)
=0 [£=b,—z,+1 =0

We handle the sum (¥*) first and return to the sum in (%) shortly.
For 0 </ < b, and 0 < i < a,, we have that

[ban—+i] _ pp(fan—+i)h, 7l0]
In,O =T In,QZ(K Dan+il

since 2006 — L)ay + 10 < @b + anby < hy, (as %2 — 0).

- 14 -
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For b, —z,+1</¢<b, and 0 <i<a,,sincex+¢>0b,+1,

knhy, + (Lan, + z)ﬁn = (Tnan + Gn + Lan + 1) (hn + cn)
> (bnan + an)hy,
= (bpan + Dhy, + bpanc, + (an — Dhy + ancn > hpga

since %anbn(bn —1) < hy,. Also,
nhy + (Cayn + i) hy + 8(8 —Da, +il = ((xp +Oan + qn + 1) (hn +cn) + %6(6 - Da, + ¢

1
< 2bpan (hy + ) + §bn(b" — Day, + anby, < 2hpyqq

Since a sublevel in I, is a level in I,,11 and {h,11} is rank-one uniform mixing (Proposition 4.8),

hn—1 bp—1 a,—1 hny1—1
S X P LT < 3T s(TM L) 0
7=0 ¢=b,—z,+1 =0 y=0

As 2anhpp(Ing1) < 2;3” .

e < 2 — 0 and r, — oo, it remains only to show that the sum in (x) tends to
zero. Observe that

bpn—Tn—2a,—1 bpn—Tp—2an—qn—

Z Z )\B Thkn hnI éan+z] Z Z )\B Thkn hnlr[ff;nJri]) (T)

£=0 i=an—qn

First, we address (f): set y, = 1anzn(xn —1) + gnxyp. Fori < a, —q, and £ < b, —x, — 1, we have
Yn + 1Ty + Ly < Sanb so for j > 3anbn, by Lemma 4.13 and Lemma 4.5,

bpn—2n—2an—qn—1 bpn—2n—2an—qn—1
K hun [fanﬂ _ [(t+zp)an+itqn]
2o 2 PRI = ) 3 it n)
=0 =0 i=
bpn—2p—2an—qn—1 bpn—rn—2an—qn—1
— 1 )\ 1 )\ T_ékn_iwn_ynl
= > > AsUngoye—iva—th,) = — > > sl n.j)
" £=0 =0 =0 i=0

Then, summing over all 3a,b? < j < hy,

hp—1 bpn—xp—20an—qn—1
ST i
j=3anb2 | £=0 i=0
hn—1 1 bp—2n—2an—qn—1
_ —Lkp—iTn—Yn .
—_Z L e,
J:3anb2 £=0 =0
bp—Tn—2|@n—gn—1
= > AT, )
j=0  ¢=0 i=0
1 by —xn—2 an—Qqn—1
< T—tkn—izn—yn| 4
T rp+1 Z / Z XB © H
=0 =0
an—qn—1
_ (bn — Tp — 2)(an - Qn) / 1 Z 5o T*’Lin, d'u
T+ 1 an = Gn =

- 15 -
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< min (an_qn,/ du)
an

since ( 2) < 7 and [|xp| du < 1. For a subsequence along which z,, < a,, — ¢y, Proposition 4.11
imphes the integral tends to zero. For n such that a,, — ¢, < x, < by, the quantity on the left is bounded
by Z—" — 0.

1 an—qn—1

> xpoT

=0

Gp — dn

For (}): set y, = 2an@n (2, + 1) + (¢ — an)(zn + 1). By Lemma 4.14 and Lemma 4.5, for j > 3a,b2,

bn—Tn—2 an— bp—2n—2 an—1
Kn hn [fan-ﬁ-l] [(l+zpn)an+itqn]
Z Z Ap(T™2 L, Z Z Ap(I, n,j—yh —i(zn+1)—Lhn )
1=Qp—qn 1=0pn—Qn
1 bp—Tp—2 anp—1 1 bpn—Tn—2 ap—1
_ Z Z Z Z —Lhn—i(Tn+1)—yL T .
- o+ 1 )‘B n,j—yl —i(xn+1)— ékn) 1 AB (T ( ) 'In,])
n (=0 i=an—qn n =0  i=an—qn

Similar to the sum (), then

hyp—1 bpn—Tn—2 ap—1

SN s

j=3anb2 | £=0 i=a,—qn

hp—1 bpn—Tn—2 ap—1

1 ke —i Y

TS ey

, rn+1 4

j=3anb? £=0 1=an—qn

anp—1

(bn —Tp — 2)qn / 1 <
< _Tn o 2 Tt g
- n + 1 dn i= (J,Zq X5 © a
_ (bn — Tp — 2)Qn / Z o~ i/ (zn+1) du < min ( qi: o T i (2 +1) d )

rn"_]- q’ﬂZ/OXB = an /OXB :

and along any subsequence where z,, + 1 < g, this tends to zero by Proposition 4.11, and for ¢, <
xn + 1 < by, + 1, the quantity on the left is bounded by 52 0, completing the proof. O

2
Proposition 4.17. Let T be a quasi-staircase transformation with Z—" — 0 and Z—" — 0 and B be a
union of levels in some fized Cn. For n > N, set

- hp—1
Mpy=_max_ Y [Ag(T'I,;)|
nSt<bohn TG

Then lim,, s ]\//.TB,n =0.

Proof. Let t, attain the maximum in M\B,n- By Lemma 4.15, writing t,, = kniLn + 2z, for 1 <k, <b,
and 0 < z, < hy,

hy—1 hy—1 hy—1 }
Z |>\B T Inj | < Z |AB Tk hnIn I)l _|_ch Z |)\ k:n"rl)hn[nwﬂ
=0 =0
By Lemma 4.7,
hy—1 bp—1
< 3 < k 1 kpb
D P I < [ = Y xso T du+ ”a+ +—— 0
3=0 " =0 " "

since k,, < b, so Proposition 4.11 implies the integral tends to zero. Similar reasoning for k, + 1 < b,
then completes the proof. O

- 16 -
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Lemma 4.18. Let T be a quasi-staircase transformation, B a union of levels in some Cn, n > N,
by <k < an and 0 <y < h,,. Let € > 0 such that SUpP;>yp, ( %Zf;é xgoT™H du+ %) < €. Then

hn—y

>

Jj=anbn+bnii+cnr1—cn

R

>

J=anbntbnt1+cnt1—cnthn—y

bp—1

- n—k—1 -
Ap(TFRntv ], ) — GTT Z Ap(TV—Fn=(+DEp | <

k+1
€

Qn

Proof. For anb, +bpi1 +cpe1 —cp <j < izn — vy, by Lemmas 4.13 and 4.14,

an—1b,—1 5 ) .
(T 0 E5) = 37 3 AT VL5 4 ap(TH )

=0 (=0

anp—k—1b,—1 anp—1 b,—2

_ —ke [L’an+z+k —kb—(i+k—ap) lan+itk+1]
- Z Z AB( 1, Jty Jr Z z /\B(T ( )In,j+y )
i=0  £=0 i=an—k =0
k -~ .
+ 3 Ap(Trherv )
i=0

and since kf < apb, and j+ vy > j > apb,, using Lemma 4.5,

n—k—1b,—1 An—k—1b,—1 bn—1
k

; z::/\ L) = +1 Z; ZZ:AB T ML) = T 20 AT M)

Likewise, since k€ + (i + k — ap,) < anby,

an—1 b,—2

Z Z)\ T kl—(i+k— an)l +y)

i=an,—k £=0
£ xmoT

anp—1 b,—2

—kb—(it+k—ay) pllantith+1]\| _
Z Z Ap(T (ke )Ina+y )| =
i=an,—k £=0

k—1b,—

7ZZ>\BT'£/ ke— 'LIJ

i=0 £=0

<

_Tn“rl Z/Ty ker,

and therefore

an—1 bp,—2

—kl—(i+k—ay) rllan+i+k+1
5 S|
i=an,—k £=0

hyp—y

)y

j=anbn+bpi1+cnyi—cn

k(b, —1)
rn—i—l

ZXBOT

For 0 <i <k — 1, using that 7 > ¢c,41 — ¢ + bpn41 + apb, and that I}g]j = Int1,5,
kaz,n+yl7[::;7i] _ Tkﬁn+y+hn+1—hn—i(%,ﬁbn—l)lr[g]j

_ phpp1+(k—i—1)hn+cn—cni1—i(by—1)4y 70 _ prhop
=T In, =T In+1 J+(k—i— l)hn-l-cn—cn+1 i(by,—1)+y

therefore, since [Ag (Th+1 Iy ;)| = | S0mit = (0 E "2 A p (T~ tIT[Zi”lJ;1+7+1])+>\ (T~ 117[51‘:[13)%“]))4—

h [Tnt1] An41 +1— 1 t 20y ya,57) -/
Ap(Thm+1 )| < Tn+1+1|2tn B(T ' It )| + # whenever j' > b,11,

bpy1—1
khn+y 7lrn—1] _ On41 Q’u(InJrl)
AB (T I"] )‘ “rpar +1 Z AB ( n+1 4 (k—i—1)hp4cn—cni1—i(bn 1)+y) + o1 + 1
bpy1—1
_|_On+1 —t 7[k—i—1] ) 2u(In41)
e S (e 2lan)
Tpt1 + 1 ; n,j+cn—cny1—i(bn—1)+y + Tpy1 + 1

- 17 -
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bny1—1

An+1 1 —t 2u(Iny1)
=\ 7 A T In j+cn—c —1 — D
T’rLJrl + 1 Tn + ]. ; B ( Jt+cen n41 (b" 1)+y) + Tn+1 + 1
b 1 et 2%(Ipsirs)
Gnt10n+1 —t Hlnt1,5
T d —
= (Tn+1 I 1)(% + 1) /7\1y+cncn+1i(bnl)1n’j bpi1 ; XB © o+ g1 + 1
and so
ﬁn_y k B )
Yyt
j=anbp+byr1+cny1—cn =0
bn+1 1
k 1 1 2
< o T du+ +
o Tn + 1 / bn-‘rl ; X5 K Tn + 1 (Tn-‘rl + 1)(7"»” + 1)
Therefore, since sup;s, (f ’% S axpoT™! %) <,
hn—y by—1
7 —k kb k
Ap(TFhatuy, oy 9o Ap(TVHr, Y < on oo &
) Z B( ,J) o+ 1 Z B( ,]) < 7"n+1€ ane
J=anbp+bnr1+cnpi—cn =0

Foranbn—l—cnﬂ—cn+ﬁn—y§j<ﬁm

kb + (k4+1) i +0
T ;=T Ina (hn—y)

and since anby 4 bpy1 + Cog1 —cp < — (?ln —y) < h,, — 0, the claim follows from the above replacing
kby k+1,jbyj— (h,—y) and y by 0. O

Apt1bniitenirtanb?
- 0. Let B

n

Proposition 4.19. Let T be a quasi-staircase transformation such that
be a union of levels in some column Cy. Forn > N, set

Bp_1—1

Mp, = max max > (T, )]
bn<k<an Qn— lhn 1<y<h —0n— lhn 1 =0

Then lim,,_, o ],\\4/3,” = 0.

%Zf;é xgoT™ ! du+ %) < €. Writey = Zap—1hn_142hn_1 4w

for 1<z <b,and 0< 2z < a,_1 and 0 < w < h,_1. Observe that if 0 < i < (bn—1 —x)an—_1 then 17[1] 1.

Proof. Let € > 0 such that sup,,, (

is a level in C}, below In’;ln and that if (b,—1 — x)an—1 < i < 71p_1 then Ig}_l,j is a level in C,, above

-y

In.ﬁnfy' Then by Lemma 4.18, as 2’;—“6 < 2—’“6,
Bp—1—1 } bp—1—x)an_1—1
Z ’)\B(Tkh"ﬂ[ ~1,5) - +1 Z Z Ap(TY™ ML[Z] 1)
j=0 £=0
b,—1 Tn—1
7](571 < _h 7 3k n 4 nbn+bn +n
_ 3 3 A (TV P (k+1)417[1]_1)j)’ Bk L _an 4 i1+ Cnt1)

Tn + 1 Qnp Tn + 1 hn

=0 i=(bp—1—z+1)an—1
Now observe that, via Lemma 4.15, writing k' = za,,_1 + 2,

Rp_1—1 n—1—)an—1—1 =1 |{(bp—1—x)an—1—1

—1(b _
> z S Al %Z S el )
=0

j=0 j=0 i=0

- 18 -
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c hn—l_l (bn—l
n—1
_|_
n—1 j

Darren Creutz
<

_I)anfl_l 5 ) (bn—l_l')anfl_l N .
- Z )\B(Tk hn_llr[lz]ilﬁj) + Z )\B(T(k +1)hn,_117[1211’j)
i=0 i=0 i=0
which are precisely the sums (x) in the proof Proposition 4.16 (since > 1 so k¥’ > a,,—1). Therefore
hp_1-1 bp—1(bp_1—x)an_1—1

OIECD DEED DENIP VI AR
j=0 s i=0

n717j) —0

Now observe that for 0 <i < a,_7 and 0 < g < b,_1,

IT[:Ifi}l“ri] _ Tqanf1ﬁn71+%an71Q(Q*1)+if_ln71+iQI7[lO]_1)j
sofor0<i<ap—1—1,a8 (bp—1 —2+¢)(bn—1 —xz+qg—1)—qlg—1) = (bp—1 — ) (bp—1 — z — 1 + 2q),
Igiqjjl_x+q)an_l+i+l] — T(bn_l7m)an_1f~1n_1+%an_1(bn_l7x)(bn_17171+2q)+f~1n_1+q+(i+1)

(bn_lfm)l’,[lqj’;b)gl"ri]

Set Q = Qq = —¢ntcn_1—(k+1)l+Fan_1(bp—1—2)(bp—1—2—142¢)+q— 5an_1by_1(bp_1—1)+by_1—2
and note that |Q| < ¢, + anby, + 2a,_1b2_,. Then, since b, 10, _1hp_1 4+ hn1 —hn = —Cp +Cpn1 —
%anflbnfl(bnfl - 1)7

Ty_(k"l‘l)e_;bnl[(bnlf}*$+Q)an71+i] _ Tziln,1+w+i(bn,1—w)-i—QI[qan—lJri]
n—1,j

n—1,j
Consider j such that 0 < j 4+ Q — ap_1b,_1 < Bt —w — an_1bn_1. If 2 +1i > Ap_1,

Ty—(k—‘rl)e—ﬁnl[(bnl—.l_I+q)an71+ﬂ — TZiLW,fll[qanfl"Fi] [qan71+i+z]
n—1,3

n—1,j4+Q4w+i(bp_1—z) — Tn—1,j+Q+w+i(by_1—)—2q—(2+i—an_1)
_ Ti(bn,l—x—l)l[qan71+i+z]

n—1,j+Q+w—z2q—(z—an—1)
and therefore

h a 7 1
g (Ty—(k+1)é—}m]?[1q—i}1+ ]) _

— Ap (Ti(bn—l—-’L’—l)[ni17j+Q+w72q7(zian_1)>
e
Similarly, if z 4+1¢ < ap—1,

Ty—(k+1)£—}~znl[(bn71—:c+q)an,1+i] _ Tziln_ll[qan,ﬁi]  lqan—1+itz]
n—1,j - n—l,j+Q+w+i(b7171—$) - n_17j+Q+w+7;(bn71_I)_Zq
_ mi(bp—1—1x) l[gan—1+i+z]
=T In—l,j+Q+w—zq
SO .
—(k+1)f—hy, plaan—1+4]y _ (b1 —
Ap(TY (k+1) Infl,jl ) = , 1)\3 (Tl( 1 w)ln,1’j+Q+w7zq7(zfan,1))
—
bn_1 1
Tn—1 — Tn-1

Therefore, as

ap—1’

hp—1—W—an-1bn—1

Tr—1
> > Ap(TvHDEIL T )
j=an_-1bp_1—Q i:(bn_l—m—&-l)an_l

Rp—1—w—ap—1bn_1 bpn_1—1

an,172
h : +1
< A y—(k+1)e—hp plaan—1+1] T
S R I S S e R
j=an_1bp_1—Q |q=bp_1—xz+1 =0
r—1 an-—1—2—1 z—1 a1
! ‘ 1 j r+1
< Z/ Z XB OTZ(bn—l—I—l) d/J/+ Z/ ZXB OTl(bn_l_z) d/,j,—f—
Tn—1 q=0 i—0 Tn—1 7=0 e Tr_1
1 n-1zl 1 z—1 " 1
< / Z XB © Ti(bn—1—z—1) du +/ ZXB o Tibn—1—2) du+
a/n—l i=0 an—l =0 ,',,n_l
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Now consider j such that iLn,l —WHay_1bp 1 —Q <j< iLn,l — @p_1bp_1. Then

k4+1)0—hp 7lqan—1+1] +1) P
v~ (kD e=hn placn 7 =g 1j+Q+w+ti(bp—1—2)—hn_1

so similar reasoning as above shows that

hp—1—an—1bn—1 Tn—1

Z Z Ap(TY™ (k+1)6— hnI['L]_l,])

j=hn—1—wtan_1by_1—Q |i=(bn_1—z+1)an_1

ap_1—2—1 —
1 " : 1 1
e T B e S P
n—1 i—0 n— Tn—1

Note that y < h — Qn— 1hn 1 = (bn—l - l)an—lhn—l + hn—l + %an—lbn—l(bn—l - 1) +cp < (bn—l -

Dan— 1hn—1+ 2hy,_1. Therefore x < b, 1 — 1 and if = b,_1 — 1 then 2 < 1. When z < b,,_1 — 1, both
bp—1—x>1land b,_1—x—1>1so0both integrals tend to zero by Proposition 4.11. When r=b,_1—1,
the first integral tends to zero by

Q| < entanbntan—1b2_,
n—1 hn—1

Tn—1 Ap(T¥~ (k+1)6— hnI[l]

Since 7 i=(bn—1—2+1)an_1 n—1,j

— 0, then ZjiBl ) —0. O

Notation 4.20. Define 1, = 4(a"b"+l;-:+1+c"+1).

Lemma 4.21. Let T be a quasi- staircase transformation, B a union of levels in some Cn, € > 0 such

that sup;>y, (f‘ oXB o™t %) <5 n>N,b,<k<a, and 0 < Jy| < an—1hn_1. Then
b,—1 b,—1
—k k B\ 1 %=l oy — ke
AB Tkh ] Ag(TY~ ke p < — 1—— ) — —_—
( ) T + 1 Z B ) €+ Ty + @, ) by ez:g h

Proof. Consider first when y > 0. Write 8 = {anby, + bpy1 +cny1 < j < hy —y : I, ; € B} and
B = {anbn +bnyr+cnp1+Hhy —y<j<hy: In,; C B} . By Lemma 4.18,

b,—1

~ Lk
Z )\B(Tkhn—‘rylnd) - Z 1 Z)\B y ke I 7]) ail Z)\B y h —(k‘-'rl)fl )
JEBUB’ =0 \'" + jep Tn+ jep’
is bounded by f% + k= le < ke and therefore
o bnl
A (T ) — S ST ST Ap( )
{=0 jepup’
< ﬁﬁ + 7” Ty kZIn ) anp — k — 1)\B(Ty_ﬁn—(k+1)éln ])‘
2 = = a, — k )
k Tn an_ 2an—2]€—1 k Tn k 2|5/‘
< — _n b, / A P L Tn -k |
< ety el — — <ane+2+< an> -

so the claim follows for y > 0 as || = y — anbp — cn1 < |y — K| for all 0 < £ < b, (and if y <
Anbn + b1 + cory then ' = ) and since |A\g(T*+vB) — Zjeﬁuﬁ’ Ap(TkhatvT, )| < o

Now consider when y < 0. Then kh, +y = (k — l)ﬁn + (iLn + y) so, following the same reasoning as
above and swapping the roles of 8’ and S,

bn—1

i anp —(k—1)—1
)\B(Tkhn+yB) _ - 1 Z Z /\B y+h —(k— 1+1)ZI )
=0 jepuUp’

920 -
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141, 141 2
<k+6+7+<1_k+> 18|

an 2 an A

so the claim follows as in this case || < |y — k¢|. O

Lemma 4.22. Lete > 0 and q,k,p,Q,L € N and for all0 < ¢ < L, let 0 < §, < 1. If% <€ (md% <e€
and |Ag(T*P'B)| < € for all 1 <t < Q then

L—-1

1

7 > 0AB(THB)| < (20017 + €
£=0

Proof. Using that T is measure-preserving and the Cauchy-Schwarz inequality,

LZ/5ZXBOTq Modu| < /| ZfSZXBOTq ke

L-1

! Zag)\B (T *B)

dp

lpgl=1 p-1 0-1
R Y / 1 pQ
- ) oT~ kpt o T4~ kipQ— Imd L e
a L Z ipQ+i+pt X B
L LEJ -0 Pi= Q — 7
L_1 -
1 = 15 1 = —kpt
Sz p Q 0jpQ+itptxB T dp + €
LEJ j=0 p i=0 t=0
1 Lﬁj_l 1 p—1 1 Q-1 2 1/2
= L Z D / @ 5jPQ+i+thB o T—hpt dp +e
LEJ j=0 p =0 t=0
el e Qo 1/2
= L Z - (2 6ij+i+pt6jPQ+i+pu)\B (Tkp(t—u)B)> + ¢
LPQ—J j=0 p i=0 Pr
RS S 1/2
k
= LLJ Z D N2 5j2pQ+z+pt/\ (B Q2 Z§JPQ+Z+Pt6JPQ+Z+pu)\B(T p(t— u)B) te
PQ 7=0 p =0 =0 et
1 LﬁJ*l 1 p—1 1 1/2 ) 12
< LLJ Z D Q Qg Z 6]pQ+$+pt5]pQ+z+pu€ +e< @ 4+ = o Z Le
Wl =0 Piso t#u t#u

2
Proposition 4.23. Let T be a quasi-staircase transformation such that Z—Z — 0, a}]—b — 0 and Z—Z — 0.
Let B be a union of levels in some column Cy,. Then

. Lk _
Jm, s e | | Z Joxp o T du=0
Proof. Fix € > 0. Let m such that b,, > 2[e '], w < e and sup,,>,, ]/W\Bn < € (using

Proposition 4.17). Take any N such that f 1 < €. Let k and §; attain the maximum for V.

Consider first the case when k > h,,. Let n > m such that h, <k < hn+1 Let p such that ( -1k <
hn+1 < pk so that pk < hpyt +k < 2hn+1 Then for every 1 < ¢ < [e '], hni1 < qpk < [e 1)2hn41 <
bph,, meaning that |\p(T%*B)| < MB n < €. Now

ple ™1 _phle ] _ 21 e ] A A D] Alra+ Dl ] Alrp + D]

N Nk Nh, N - k - han

<€

so Lemma 4.22 implies that f ‘% Zévz_ol Sexp o T~ du < (26)1/2 +e.
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Consider now when k < h,,. Let p such that (p—1k < hm < pk so that pk < 2k, and p < A,
~ ~ ~ — -1

Then h,, < gpk < [€ ]2y, < bphy, for 1 < g < [6*11 so [Ap(T9*B)| < Mp,, < e. Since % <

fon (6 1 < ¢, Lemma 4.22 again implies that [ ‘ LS Sexp o T dp < (26)/2 + e O

Notation 4.24. Fort € Z, write a(t) for the unique positive integer such that /~1 o <t < iz

Fort,q,k € Z and n > 0 such that |qg— k| < Bni1, let d be the unique integer such that |(q—2k)— diNLn| <
7hn and define

n,q,k _
Ve =

Qn

aldlir (b, < |d| < an or d=0) and |(q — k) — dhp| < ap_1hn_1
0 otherwise

Lemma 4.25. Let € > 0 and set eg = (2[¢ 1]l ' 1#1) =L, Let L k,q € Z with L > e and for each
0<{l<L,let0<§ <1.

Let ag = max{a(q —¢k) : 0 < ¢ < L}. Assume that max(MB,ao,MB’ao,h]/\/l\B}aO,MB,QU) < € and

bao—1 > 4 eyt and sup,,5,. ([ ‘% Sy g o <&
Then either ‘% 54)\B(T‘1 ““B)‘ + + E (1 —80)e < 6¢'/2 or there exists integers t >0, 0 < L' <
L/t, qv.ky € Z such that ayr = max{a(qy - ké,) 0<U< L'} <ap and
= L—1
—tk
ZZ(SMB(TQ B) +ZZ(1—5£)6
=0 £=0
1 by —1 1 L—1 _
'q5 1=k, a4,k
<5 ( Z 1Z<L’5€o+ét')/zo+%e Ap(T9% ~FetB) z Z (1 — LocrOnorervo it ) 6)
¥ =0 £=0 £=0
bao_l L—-1

1 a K
,q,k Qpr,qpr Ky
+ b E Z § ]1E<L’5Zo+tlf}/goo+tg (1 — Ve ¢ ) €+ Tay
A0 =0 T =0

Proof. Write q — ¢k = kghao + yp with |y,| < % . Define

L= {0 <Ul<L:(ke=0orby, <|ke| <ag,) and |ye| < aao,lﬁao,l}

Since Ap(T~'B) = Ap(T"B), then for ( ¢ L, |)\B(T‘1_ekB)| < € as it is bounded by one of Mg 4,,
Mp.ag-1, MB ap OF MB - Write k = zhao +y for |y| < hao and g = xhao +r for |r| < hao

Claim: Either __0 Ap(TT*B)| + e S '(1 = 8s)e < 6€/2 or there exists p € Z, t > 0 and
0</ly< L' <Lsuchthat LC {{y+it:0<i< L'} and |ztyfzpha0| < ghao forall0<i< L.

Proof Let pe Z and 0 < t < by,—1L such that -2l < ﬁ and either (p = 0,t = 1) or p,t are
hayg o=
1
e Tt S
For ¢ € L, there exists n € Z such that |r — €y — nhay| < Gay—1hag— 4—n| < 5 -. Then
>0
u—ép . 1
| nl < g + ey o T, < +bao 1
Case: |p| < 7% =T
F 2t 2t Ly
or 0 < ¢ < L, then |[fp| < - < — = 2¢t so | \<
o—1€0 de ey Yeo uo 1
consecutive. Also [£-1-y— K 0-hay| = [ty = ha0| fy \ < hao( — +2¢) < %hao. This proves the claim

replacing ¢ with 1 and p with 0.
bag—
Case: t < =4— and [p| > 0
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% < &+4 =+ sou—Lp (mod t) = 0. Let £ be the minimal element of L.

Forl € L, ’“%p —n’
As p,t are relatively prlme, every ¢ € L is of the form ¢ = £y +ti. Also |ty—pha0| < Lb - ﬁao < 4Lh
oo

bag
Case: =94— <t < L and |p| >0

For ¢ € L, ‘u;Zp

onto),

‘ < bao% + % < ba:)lfl . Since p and t are relatively prime (so £ — sz is cyclic and

8_1 [%] values of 0 < £ < L have the property that u — fp (mod t) <
[ (L‘f't) < e 16 L < 4eegL. Therefore |+ EL 01 Ap(T % B)| +
I 5_01(1 —dp)e < l|£| —|—e < 4660 —|—e_

Case: L <t and |p| >

t—

bag— 1€0L
Set po = p (mod t) and p; 1 = f;}pj (mod t). Suppose that et < p; and pj41 < pj—et for 0 < j < [e71].
J
Since p; > et, fpi} < [e7!7 so pj = m;p (mod t) for some m; < [e!] ['1-1 < L <t. As p and t are
J
relatively prime, then m;p (mod t) # 0 so p; > 0.

Since pj11 < pj — et, then 0 < pre-17 < p — [e=1]et < p—t < 0 is a contradiction. So there exists
0 <m < [e!] such that 0 < p,,, and either p,, < et or p,, > pm_1 — €t.

Subcase: 3 2t - < pm < €t
ag—

For 1 < i < [(2¢)7!], then ;2 - < ipp < [(2¢)71]et < 1t + et. So, writing g = [——]--- [p%] <
~0—

Pm—1
T
ag—1 Lbogy-1 bag—1"

ig9y _ igp
R

[e=117< " 1=1 we have igp (mod t) € [~2—t, (3 +€)t). Then
ap—1
So

@0
19y
hag
i9zhay + igy, then [Ag(T*B)| < Mp oy < € (or < Mp a,_1 if z = 0). Since gr(2€)711 2r€71y6 ]

[e71]17! < ¢, by Lemma 4.22 then ‘L Ze o )\B(Tq_ekB)‘ Z (1 —dp)e < (26)1/2 +ete < del/?,

. 2t
Subcase: Y <pm <

> %%1 and < %—i— €+ ba;_l‘ Then [igy| > aao,lha;,l and < ﬁao - aao,lha;,l. Since igk =

2t
baD -1

Let g € N minimal such that gp, > ;2=. Then gp, < ;7 so g < 2¢L. For 1 <i < [e7],
g — g —

then bof)tfl < igpm < 4[] ba;—l < it e KL (piﬂp (mod t) € [b(jt,lv%) so, since
fe_l]g[ﬁw fp%} < [e )< egL < €L, as above Lemma 4.22 implies . ZL;OI Ap(T%B)| +

Y(1—6p)e < 4€'/2.

I e 0
Subcase: 0 < p,, < 2t b or and Ip| > bafﬁ and L <t < €pbay—1L
Set g =[5 2t1p 1sog< baotf +1< 2601;‘*“’1L +1=2eL+1. For1l<i<[e!], then ; < z2gpm <

— -1 —
[e ](260L+ )ﬁ < . Since 9l 71] (piw < (2eoL + D[e 1T 11 < Jem ] 2L then, as
above, we can apply Lemma 4.22 to obtain |+ 1, o " Ap(T9*B)| + Z (1 — 0p)e < 4€'/2,
Subcase: 0 < p,, < m and |p| > 7L and t > €gbag-1L
Set g = fp"f_l] f—1 < [e 1l -1, Since lp|] > ﬁ, m > 0 and therefore there exists an
integer v # 0 such that vt < gp < vt + Py u oI and we may assume v and g are relatively prime.
For ¢ € L, there exists n such that |u — ¢p — nt\ <3+ baotil, Therefore |nvt — ngp| < % and

2t[v|
bao 1’

[nvt — v(u — €p)| < l L4

Since |n| < L‘p‘ and |v| < glpl and t <bg,—1L and L <

bao 1’

2nft v 2t 2lp|  glpl | 2glp|
—v(u—Llp)| < ——— + =+ <
Ingp U(U p)‘ bagflﬁoL + 2 + ba0,1 b o—1€0 + 2t + ba0,1
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(28 Ly
bag—1€0  2€0bag—1L  bag—1 Pr=3lP

as g < €?eg < €2by,—1. Write vu = c¢p+d for ¢ € Z and |d| < “2'4'. Then |ngp — cp — d + vlp| < %I S0
|ngp — cp + vlp| < @ + |d| < |p| meaning that npy — ¢ + v€ = 0 for every ¢ € L.
Let ¢y be the minimal element of £. As g and v are relatively prime every ¢ € L is then of the

—v| < zha0|q— —v| + bZh“"lgL <

form ¢ = £y + ig for some i > 0. Also |igy — ivﬁa0| = ih

-1
= [e=110< 1=t
ihayy—cp 1€oL +zha0| —v|+

g for t ‘and v for p.

o ha et r6711_1}1
2 o ey [

ap—1€0 bag—1

20 < %hao so the claim holds with

bao—l

Subcase: pm > Pm_1 — €t
Set p* = |~

me 1:|— ]pmfl_pmflzpm"’_t_pmfl>t_6t'
Pm—1

Subsubcase: t — et < p* <t — 2L

bao—l

For 1 <i < [(2¢)7'], 2t —et < ip* (mod t) <

- Then i| -~ |[-t—1 -+ [--]p (mod ¢) is nonzero

Pm—2 Po
L) < [e e e L < €L, as

Po

and at least 3
above Lemma 4.22 implies |+ 25;01 Ap(TT=B)| + Z (1 — 0g)e < 6/,

2t
bchfleOL

2t |
o away from every multiple of t. Slnce [ Hpm -]

. 2t
As in the subcase where bonoiel = < P <

Let g € N minimal such that gp* (mod t) < t — 5

2t
bao,

1 [ o (1 = Gp)e < 4€'/2,
Subsubcase: t — % <p*<tand L <t <¢€by,L

ag—1€0L

2t

, g < 2¢pL and then similar reasoning as there using Lemma 4.22 gives ’% ZL:_O AB (Tq*%B)’

mw < 2¢yL + 1. Then igp* (mod t) < t — %(t —p*) =1t— bait—l and
igp* (mod t) >t —[e (2L + 1)ﬁ so again similar reasoning gives ‘% eL;ol )\B(TQ—ékB)‘ +
1 Z 0 1= dp)e < 461/2

Subsubcase: t —

Set g = |

<p* <tandt > eyba,—1L and [p| > 3

ag— 160L 160L

Set g = Lp 1J [p t_z] [p—(ﬂ < [e=1Te” “1-1. Then p* = gp (mod t). Here, as above, m # 0 so there
exists v # 0 such that vt — % < gp < vt and the same argument as in the 0 < p,, < 7 21‘/160
ag X0~

_1€0L
subcase shows that the claim holds. Therefore the claim is proved as all cases have been covered. O

For £y + ti € L, since r — loy = aﬁao + y¢, for some |a| <1

q— (o +ti)k = (z — (Lo + ti)2)hay +7 — (bo + ti)y = (x — loz — tiz — ip + a)hay + Yo, + iPhag — tiy
Since |ye,| < tag—1hay—1 as by € L, then |yg, + iphay — tiy| < Gag—1hag—1 + + i~L %il meaning that
Yoo+ti = Yoo + 1Pha, — tiy and kg,44; = x — loz — tiz —ip + a.

Then yoo1ti — Koo+ = Yo, + ip?zau —tiy—(x — Loz —tiz —ip+a)l’ = (ye, — 2’ + Lozl —al’) — i(—pizao +
ty — tzl' — pl') so define qp = yo, — 2l + Loz’ — al and kj = —phq, +ty —tz¢’ — pl’ so that
Yeo+ti — keo+tz‘5/ =qe — kfgli
and observe that [ye i — koo’ | < Shag + Gagbag 50 A(Yegtti — kegtil’) < ag for all ¢ and i.
For ¢y + ti € L such that kg, 44 # 0, by Lemma 4.21,

bag—1
)\B(TQ7(Zo+ti)kB) _ Oay — |i£ol+ti| Z )\B(Tyfw“*kfoﬂi"B)
Tao
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bag—1 ,
< Qa0 — [Fegtuil 1 Z 2|Yeq+ti — keg+eil'| n |7%+ti|e+T
— -~ (077}
Gayg bay =0 hay Gag

For i, ¢' such that a(ge — kji) = ap, if dg ; is the unique integer such that |ge — ki — der, 4ha/,\ < %iza
then

0!

[Yeo+ti — Kegttil'| _ lqer — Ky il < (Ider 4| + 1)ha,, < |de i +1 < (1 _ 7{1@/,%«,%,) 2
_ _ : —

hoto ha() hOéo aae/ baofl aofl

/, /,k/
and for i, ¢ such that a(qy — ki) < oy, as |qe — kji| < h%, < hy, ao—1 and 7, a‘ e —

g0 — kel < hag—1 < L <2 _ (1 —vf‘”’w’kz,) :
hOt[) h(xo aaoflbaofl bOé(]*l ¢ baofl
. ag —|keg+ti o a4,k
Then for £ + ti € £ such that kg, 4 # 0, as = OTQIO _i"l” | — rf(,iﬂZfﬂz ,
) bag —1
, T
A (TON) LTt 37 dp(@ven b )
O‘O 0=
1 el 4
24,k >4, Qyr 54 Mkl/
< (1= 50+ oo + 9054 = D (1‘7/ B
(e 7)) ZIZO 04071
For ¢y + ti € L such that ke,¢ = 0, we have Ag (T~ (éo‘m)kB) Z, )\B(Tyfoﬂl_kfoﬂzé B) and
72)0+th =1

For ¢y +ti ¢ L, 'yZ)U_;‘]{’Zk = 0 by definition and |\g(T9~ otk B)| < € 50 |04y i Ap(TTCoTDEB)| + (1 —
Storti)€ < € =04 Ap (Tq—“O*“)’“B) + (1= 70025 e

WO"‘“ ™ Yeo+ti
Therefore, as 7 <land ;— <,
L'-1 L'-1
> Srtidp (T CFEB) 4 37 (1= b i) €
=0 i=0
1 bao H|LI] L'—1
k S —k i
D |2 AR (T ) g+ 3 (1= g
beo =0 i=0
L'—1 1 bao_l y 4
., 4, Ayl yQyt K pr
+ Z 5€0+ti (1 _/YZ]O"FZJ ) +’VZ)O-£«2 bf Z (1 —; o 5qet Ry ) ;
=0 a0 g o —1
1 b”O_l L'—1 L' —1
k ;7= /,' q.k
- bf Z Z 620+tZ’YZJO‘£; )\ (qu K 1B) + Z ((1 - 5fo+ti) + 5E0+ti (]— /YZJO+ZI )> ¢
w0 e=0 \|1 i=0
L'—1 1 bag—1 y
(e} !y 7y ’
+ Toc() Z 5(0+tz'72100_|’_%; T Z (1 — Y% e qer "y ) €
baw 525
1 bag—1 L—1 1
k k!, “
e Z < Z Locrrbeoreivg 7 A (T v'B)| + Z To<r (1 — OtotiVgn b ) )
@0 pr—g i=0 =
L—1 . bag—1 .
3 ’ Qpt qpr Ky
RO D D (R E L
=0 9 0'=0
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Since |A\g(T9**B)| < efor £ ¢ L and |{€: ¢ # lo+ti}| =L — L',

> SAs(TTHB) |+ > (I-6d)e< (L—L)e

C£Lg+ti (0o +ti
and therefore
= -
LZ(SMB T B) Zlfég
=0
1= 1
— _ — q—Ltk _
<72 (-Tecw)et |z 30 AT B) 4+ 7 3 (1-8)e
=0 L=Lo+t1 b=Lo+t
1 bag—1 /|L—1 L-1
4.k 1=k, 24,
<3 ( Z Vo< Oeo+tivgits AB(T ki B)| + Z Locr (1 — ObottiVgy 1t ) >
@0 pr—p i=0 i=0
L-1 1 bag—1 W 1 L-1
+ Tag + Z ]1‘3<L’5ﬁo+tﬂeo+m b Z (1 — e e,) et (1—Tecrr)e
i=0 @0 pr= =0
1 bag — L-1 L—1
2 (Zﬂe<v5eo+nwo£;’“ (e KiB)| + 37 (1= TecrdunanH) )
=0 \|i=0 i=0
L—-1 1 bao—l &
Qs qpr K,
L By T D DN (EER O F 0
ba0
i=0 v=0
Proposition 4.26. Let T be a quasi-staircase transformation such that > a"b"%;ﬂ < oo and

n

nb2 n n . .
% — 0 and a*,i& — 0. Let B be a union of levels in some fized Cn. Then

lim max max.
n—oo bp<k<an \q\<0«n—1hn—1

Ap (T )| = 0,

Proof. Fix € > 0 and set ¢ = (2[¢1]l¢ 1+1)-1, Us1ng Propositions 4.16, 4.17, 4.19 and 4.23 and
that ) 7, < oo, there exists N such that by > 4e~ teg sup,,>n—1 MBm < € sup,,>n MBm < ¢,

dp + E) 5

Take any n such that b, > ilN+1- For b, <k < a, and |q| < an1hn_1, by Lemma 4.21,

Z)\ (T7*B)

} r oo 3 m 1 ik
SUP,, >N MBm < € 307§ Tn < € and Sup,, >y, 1 SUPg<pp (f ‘E o xpoT™d

by—1

1 —kl
™ > A(T7*B)

£=0

(A (T“L“*‘IB)‘ ¥ 2

6+Tn

Set L = b,. By L__Ol )\B(Tq*MB)’ < 6€'/2 or there exists gy, kj,, L', £y, t such that
L1 1 - - -
ke aky J—KL b .k
Z Ap(T*"B) f Z ( i3 Z Lecrvgyyie Ap(T% " B) t7 Z (1 — Locvpi% ) )
L= =0 =0 =0

QD -1 L— &
0,4,k Qpr el sRgr
Ty Z Z Lecrggie (1 Ve ‘ ) €+ Tag

Oto 0=

Let £ = {0 < ¢ < by, : ap > N and Lemma 4.25 does not bound the ¢’ weighted average by 6¢'/2}.
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Since N is large enough that Proposition 4.23 implies if k), < hy41 < L then |% 5;01 SeAp(THB)| <,

S K £']
+7 z_j (1= et e> < (1 - b) Ge'/?

@o

— @k
Z Z (1 = Le<rr, 0+§z ) 6)
=0

1 bay—1 1 L-1
) 7k 1= /,/

hon <L2h<m0°+‘w (T10 ¥t B)

@0 =0 £=0

|£’ 1 1

ba, |L£'] 2 L

el

El k /7]6 E
Z ]lf<L"Yeoo+%e )\B (qu el B

Therefore, applying Lemma 4.25 to each ¢’ weighted average, since ayr < a9 — 1 (and suppressing the
explicit dependence on ¢ of L” ¢, t" for clarity),

1 L'
= Ap(T7HB)| < (1 - |) 6€'/2 + 7oy + Tag—1
=0 ba
IE’I 1 p et = K,
QprsqglsRyr 7 o1 —kgr 11l
+ 7 Z [ Z ( Z ]15<Lu]1¢/+t,5<L/’y€D+tu,_H,Z)fye/f_i_t/ze ¢ /\3(qu N o0 B)
0‘0 | | er O‘z’ =0 £=0

«o,q,k az’ﬂehkz/
E (1 — ]15<L”]146+t/€<1/’y€0+t(€' f/z)'-Yg/ e ) €>

Z Z Z <]1/<L’7e0°j£€k (1 _ 72"2'#1@/,]%,)

ver Doty £=0

0,9,k Oyt 3Gt vkél Quprrqor o117 5Kgr g1
+ ]1€<L//ﬂ€6+t’€<Ll’Ygo+t(g6+t/£)'}/Z6+t/Z 1-— Ye €

IE’I

Now observe that

L
1 K, K, k

«p,q,k az/’qu o ap,q,k Qs 3Gl Kypr CQuprt Qo g1 5Kt pt1
L Z (]IKL Vit (1 ) Lecr gy oot Veg ooy 400 Vey vt (1 e ))

=0
L”fl
1 . oo y .
0,9,k VARL ZELyY Qpr Qo sk Cprr,Qer grr5kgr g1
T : : 7€0+té (1 - /7 ) + = E ]]'Z/ +t’£<L"7g0+t(g/ th/e) (1 - /.YE()J"t/Z 7@ )
(#f’ +t'i
<L’

and that the sets of the original 0 < ¢ < L the two sums range over are disjoint.

Continue iteratively applying Lemma 4.25 until all terms are bounded by 6¢'/2 or have kpgr.. < L,
which must occur as a decrements at each application of the lemma (and the hypotheses of the lemma

hold as long as ayr... > N). Then |1 5;01 Ap(T97*B)| is bounded by a convex combination of terms

less than 6¢'/2 plus a sum of 7’s bounded by Z:’:N Tn < € plus an average over 0 < £ < L' of terms of
the form

,yozo (1 _ ,yocz/,yoc,_;u .. .,yaz(m) ) €
which are all bounded by € as 0 <y < 1. Therefore

Z (T7*B)

£=0

<62 fete meaning that )\B(T’“B"""IB) < 6e'/2 + 4e O

. ) . , : nb2
Theorem 4.27. Let T be a quasi-staircase transformation such that % < 0o and & —

0 and a"ﬂiﬁ — 0 and 2 — 0. Then T is mizing.

Proof. By Propositions 4.16, 4.17, 4.19 and 4.26, for any B which is a union of levels in some Cy,
limy, 0o max; -, <nis [Ag(T*B)| = 0. As unions of levels generate the measure algebra, T is Renyi
mixing hence mixing. O
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5 Non-superlinear word complexity implies partial rigidity

Theorem 5.1. Let X be a subshift with word complexity p such that lim inf @ < 00. Then there exists
a constant dx > 0 such that every ergodic probability measure p on X is at least 0x -partially rigid.

5.1 Word combinatorics

Notation 5.2. For z a finite or infinite word and —oo < i < j < 00,

T[4 = the subword of x from position i through position j — 1
Notation 5.3. [w] = {z € X : x[ |,|) = w} for finite words w.

Notation 5.4. For a word v and 0 < q < ||[v||, let v¥/I*! be the suffiz of v of length q.
Let vt/ 10l = y%Ivly™ for n € N.

Definition 5.5. Let w € £(X) be a word in the language of a subshift. A word v € £(X) is a root of
wif wv € L(X) and ||v|| < [Jw| and w is a suffix of v°°, i.e. there exists ¢ = P/||v|| with p > ||v|| such that
w = v?. The minimal root of w is the shortest v which is a root of w.

Every word has a unique minimal root as it is a root of itself.

Lemma 5.6. If uw = wv and ||v| < |Jw|| then v is a root of w.

Proof. As w has v as a suffix, w = w'v. Then vw'v = vw = wv = w'vv so vw' = wv. If |[W'|| > ||Jv]],
repeat this process until it terminates at w = w”v™ with ||w”| < ||v||. Then vw” = w"v so w” is a suffix
of v. O

Lemma 5.7. If uv = vu then u = v§ and v = v§ for some word vy and t,s € N.

Proof. If ||u|| = ||v|| then wv = vu immediately implies u = v. Let
V = {(u,v) : wv = vu, ||v|| < ||lu||, there is no word vy with u = v§ and v = v} for s,t € N}

and suppose V # 0. Let (u,v) € V such that |Ju| is minimal. As |Ju|]| > ||v||, vv = vu implies
u = vu’ = u”v for some nonempty words u’,u”. Then vu'v = wv = vu = vu”’v so v/ = v” and vu’ = v'v.
If |«/|| = ||v|| then v’ = v so u = v? contradicting that (u,v) € V.

Consider when ||o/|| < |jv]]. Since |[«'|] < |lul| and ||v|| < |Ju|, the minimality of ||u| implies that
(v,u') ¢ V. Then v = v% and v’ = v§* for some word vg and n,m € N. So u = vy ™™ meaning (u,v) ¢ V.
When |[|v]| < ||u']|, we have (v/,v) ¢ V so v’ = v} and u = vy™™. So V = ().

Lemma 5.8. If u and v are both roots of a word w and uu is a suffic of w and ||v|| < ||u|| then there
exists a suffix vo of v such that u = v§ and v =v§* for some n,m € N.

In particular, if v is the minimal root of w and u is a root of w and wu is a suffiz of w then u is a
multiple of v, i.e. there exists n € N such that u = v™.

Proof. Writing v’ and v’ for the appropriate suffixes of u and v, we have w = u’'u’ = v'v? for some t, ¢ € N.
Then u = ugv® for some proper (possibly empty) suffix ug of v and 1 < a < ¢q. So u/(ugv®)! = v'v?
meaning that u/(ugv®) " tug = v/v77% As t > 2, |07 = ||u/ (upgv®) " Lug|| > [Juov®uo| > |Jvugl| so,
as ug is a suffix of v, then v/v?~® has ugv as a suffix. This means vug = ugv so Lemma 5.7 gives vy such
that v = v and ug = vg* so u = vy "*". If v is the minimal root then v = v since vy is a root of w. [

Lemma 5.9. Let w be a word with minimal root v. If 0 < i < L|w|| and T*w] N [w] # O then i is a
multiple of ||v]|.
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Proof. Let u be the prefix of B of length i and vy be the suffix of B of length i. For # € T¢[w] N [w],
then x[_; ||y = vw = wvg. By Lemma 5.6, then vy is a root of w. As [Jv|| =i < %HwH, w has vgvg as
a suffix. By Lemma 5.8, since v is the minimal root then vg is a multiple of v. O

5.2 Language analysis

Proposition 5.10. There exists C, k > 0, depending only on X, and £,, — oo and, for each n, at most C
words B,, ; so that Xo = {x € X : every finite subword of x is a subword of a concatenation of the B,, ;}
has measure one.

Let hy, j = || By j||. Then max;j hy, ; < kl,, and min; h,, ; — co. Let

Wg, , = Wnj={x € Xo:x can be written as a concatenation such that xgp, ;) = Bn ;} C [Bnj]

n,j
There exists cp ; < kly, such that the sets TiWnyj are disjoint over 0 < i < ¢y, ;.
For j such that h, ; > %En, Cnj > %gn.

t/hniB, ] and By is the

n,j

For j such that h, ; < %En, Cn,j = hyn,j. For such j, also W, ; = Tt [B

. €n/hn j
minimal root of B,"; "’ By, ;.

Zn/hn‘j/
n,j’

If x € TP Wi i N Wy i for j # j' and hy, j < %En then x(_ ) has B

€/l 0
have B ¥ By as a suffiz.

Y
n,J

as a suffix and does not

Proof. Since lim inf % < 00, [Bos85] Theorem 2.2 gives a constant k and ¢,, — oo such that p(¢, +1) —
p(4n) < k and p(¢y,) < kf,. We perform an analysis similar to Ferenczi [Fer96] Proposition 4.

Let G4 be the Rauzy graphs: the vertices are the words of length ¢ in £(X) and the directed edges are
from words w to w’ such that wa = bw’ € L(X) for some letters a and b and we label the edge with the
letter a. As p is ergodic, exactly one strongly connected component has measure one and the rest have
measure zero so we may assume G, is strongly connected.

Let VqRS be the set of all vertices with more than one outgoing edge, i.e. the right-special vertices. Let

B, be the set of all paths from some v € V:]RS to some v’ € ‘/:IRS that do not pass through any v” € V:]RS.
Then every v € V is necessarily along such a path. Given any word w in £(X), there exists € X such
that z[g |j,|) = w so w is the label of the path from the vertex corresponding to x[_, ) to the vertex
corresponding to Z[jju | —q,|w|) hence is a subword of some concatenation of labels of paths in B,.

The labels of the paths between right-special vertices are nested: B,11 is necessarily a concatenation of
paths in B, since words corresponding to elements of Vqlﬁ necessarily have right-special suffixes. There
are therefore recursion formulas defining By in terms of B, though we do not make use of this fact.

Writing outdeg(v) for the number of outgoing edges of a vertex, Zvevﬁs (outdeg(v) — 1) = p(¢, + 1) —
p(ln) < k meaning that [V;S| < k and therefore ZUGVZRS outdeg(v) < 2k. Therefore |Be, | < 2k. No
path in By, properly contains a cycle so || B|| < p(¢,,) < k£, for any label B of a path in By, .

Let BY be the set of all concatenations of paths in By, of total length at least %En and at most k¢, not
properly containing any cycles. As such a path contains no cycle properly, it has at most |By, | < 2k
segments from some vertex in V/js to another, so there are at most K = Zfil@k)t such paths.

Let B¢ be the set of all concatenations of paths in By, of total length less than ¢, which are simple
cycles. Then |B¢| < K as each path has at most 2k segments and at most 2k choices for each segment.
Every biinfinite concatenation of paths in By, is necessarily a concatenation of paths in BZ U B¢,.

Let B be the label of a path in B and let v be its minimal root. Suppose that ||v|| < 1¢,. Then the
vertex at which the path corresponding to B ends is the word v//I?ll as it must be a suffix of B. Let
B’ such that B = B'v. Then ||B'|| = ||B| — ||v|| > 2¢, — ||v|| > £,. Then the path corresponding to
B reaches its final vertex twice as B’ has suffix v‘»/II?ll corresponding to that vertex. This means the
path properly contains a cycle which is a contradiction. So all labels of paths in B¢ have minimal root of
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length at least 1¢,. By Lemma 5.9, then T°W,, ; N W, ; # 0 for 0 < i < $||B|| only when i is a multiple
of [[v]|. Set ¢ ; = min(||v|, 3| B||) = 3¢, and then T*W,, ; are disjoint over 0 < i < ¢, ;.

Let B be the label of a simple cycle beginning and ending at the word w. Since B is the label of a path
beginning at w, every appearance of B as a label in 2 € X is preceded by w, i.e. W C T [wB]. Since
B either has w as a suffix or B is a root of w by Lemma 5.6, B is a root of wB. Let v be the minimal
root of wB and write B = B’v. Then wB’ has v as a root and |[wB’|| = ¢, + ||B’|| so wB’ has suffix
vi/IPlTf B’ is nonempty then the path corresponding to B passes through its final vertex before the
path ends, contradicting that it is a simple cycle. So B = v is the minimal root of wB.

Then Lemma 5.9 implies that T°Wg N W # 0 for 0 < i < $||wB]| only when i is a multiple of || B|. So
if | B|| > ¢, then set ¢, ; = min(||B||, 3[|[wB||) > $€n. If | B|| < 345, set ¢, ; = || BJ|. For such B, since
Wy C Tt [wB], we have that every occurrence of B as a label of a path is preceded by w = B /IBI,
Moreover, if x(_;, ) = wB then x|y ) is the label of a path beginning at the vertex w and ending
at wso x € Wpg.

For ¢ € Wp, if 2(_c0) has B/IIBIB as a suffix then the path reaches w prior to the final B in
that suffix. As no word B’ appearing in the concatenation is the label of a path properly containing
a cycle, this means the word preceding zp gy = B in x must be B, i.e. z € TZ"H'B”[B@"/“B”B] S0

z € TIBIWE N Wp and z ¢ TIBIWg N Wy for every B’ # B as the path for B’ does not properly
contain a cycle.

Let B = BI UBS. Then |B:| < 2K = C for all n and every word in £(X) is a subword of some
concatenation of labels of paths in B};. Let R,, be the set of all labels of paths in B;.

Let Dy = {B : ||B|| < M and B € R,, infinitely often}. Then |Dys| < oo as there only finitely many
words of length at most M (as non-superlinear complexity implies finite alphabet rank [DDMP21]). Let
X be the set of x € X such that for infinitely many n, = cannot be written as a concatenation of labels
in B} without using at least one label in Dj;.

For x € Xy, there exist infinitely many ¢ such that = has Bj* as a subword for some B; € Dj; and
ry — oo (since the label By is preceded by the word By"/(”B"”)J). As |Dy| < oo, there exists B such
that B; = B infinitely often. Then B"* is a subword of = for r; — 0o meaning x is periodic. Therefore
Uy Xur € {periodic words} so u(J,, Xar) = 0 as p is ergodic hence nonatomic and a periodic word of
positive measure would be an atom (there are at most countably many periodic words).

Define {B,, ;} to be the set of all labels of paths in B, which are in R, \{,; Pa. If liminf, min; || B, ;|| <
oo then B, ; = B for some fixed B infinitely often (as there are only finitely many words of up to some
fixed length). But then B € Dy gy, a contradiction, so lim,, min; || B, ;|| = co. As Xo = X \ U,; X, we
have u(Xp) = 1. O

5.3 Measure-theoretic analysis

hn‘j—l
Definition 5.11. Let C,; = | ) T'W, ;.
=0

Definition 5.12. For j such that ||B, ;|| < 3¢, let

én hn j i en, hn j
Znj = B Bu )\ T (B " By )
_ BZ,,L/h

n.j) n,j

ZTL/h

n,J

={z e X :zp,0,+n "By and T, ;0. # B, B}

Proposition 5.13. For j such that || By ;|| < %En, the sets T3 7, ; are disjoint over 0 < a < LhZ“_J.
n,J

Proof. For 0 <a <b < Lhe",J and z € T%n.i Znj N Tbhn,; Zn.j, writing z = £, — LJ—"J hy,j, we would
n,j n,j
b

have Z(. (a4 1)h, ;. 2—ah, ;) 7 Bn,j but T(z_pn, ; -y = By ; which is impossible. O
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Proposition 5.14. For j such that | B, ;|| < 1€y, the sets T'Z, ; are disjoint over 0 < i < cy .

Proof. Lemma 5.9 as By, ; is the minimal root of Bﬁ’j’j/h"’j B, and ¢, j < 30, < %HBf:j/h"’j B,;ll. O
Definition 5.15. For j such that ||By, ;|| > 3£y, let, for 0 <i < ¢y,
Inji=T"Wa;

and for j such that || B, ;|| < %En, let, for 0 <@ < ¢y 5,

L]

In,j,i - TZ( |_| Tahn’j an)

a=0

As T is measure-preserving, (I ;i) = p(In, j,0) for all n, j and 0 <i < ¢, ;.
Cnijl hn,]‘fl
Definition 5.16. Let é’n)j = |_| I, ;. For j such that || B, ;|| < %En, let C), ; = |_| TiWn)j.
i=0 i=0
Proposition 5.17. For j such that | B, ;|| > 1¢,, we have w(Ch ) > 2 h(Chj).
hoj - ke, - .

Proof. p(Cn.j) < b jt(Waj) = hn,jptlInj0) = = p(Cn.j) < 1,7 1(Cnj) = 2kp(Conj)- O

n,j 2tn

Proposition 5.18. lim, max;{u(I, o)} = 0.

Proof. For j such that ||B, ;| > 1¢,, we have 1 > 1w(Cr i) = cnjpt(In o) > (I j0) and £, — oco.
For j such that || B, ;|| < 3¢,, we have 1 > 11(Cri) = hn (I j.0) and ming hy, ; — oo. O

Proposition 5.19. Th=iW,, ; C U Wh,jo and Xo =, Cn;-

Proof. Every x € Xy is a concatenation of words of the form B,, ; so every occurrence of B, ; is followed
immediately by some By, j» and [ o) = uB1 By - - - for some u a suffix of some B,, ; and B, € {B,,}. O

Proposition 5.20. Let E C W, ;. Then there exists j' such that u(T"i ENW, ;) > &u(E).

Proof. T""E = Th»ENT"iW, ; C Th»E N Uj Wh,j» and there are at most C choices of j'. O
Lemma 5.21. p(W, ;) > iﬂ(én,j)-

Proof. For j such that ||B, ;|| < 3£,, by Proposition 5.10, T~ W, ; = [Ben/h"”j B, ;] 2 Z, ; so

n,j
(W) 2 1(Zng) = —g——hlIni0) 2 5= h(Cn) = -1(Coy)
14 n,j) = W 4nj) = th;nJJ +1M n,j,0) = h{:j hn,j’u n,j) = gn,u n,j
and for j such that ||B,, ;| > 3¢,, we have u(W, ;) = iu(é’nj) > ﬁﬂ(én,j) since ¢, j < kb, O

Proposition 5.22. If u(T"i W, ; "W, j1) > 6u(Wyjn) for j # 5 then u(Chp i) > 5201(Ch o).
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Proof. For j" such that h, ;; < En, Proposition 5.10 states that, as j # 5/, for x € T/ Whyj N Wi,
the word z(_ ) has Be"/ ™" as a suffix but does not have Bz"/h
_ . o /b Lo /b
T~ (Th Wy j O W) C (B, ™ B ]\ T' [B,"),
W3 Wiy Wi ) > 6(Wi o) 50

v
""" By j as a suffix. Therefore

"' By, y1] = Zyjr. This means that u(Z, ;) >

o en én
t(Crjr) = b pi(In g 0) = hn,j'qh , J + 1>M(Zn,j') > P gt 3= 0u(W,j1)
n,j’ n,J
1 . 1
> > s = _— s
= En(SijN N(Cn ) l 6]% /‘(Cnu ) (Sk:u(cn,j )

For j’ such that hy jo > £,, using Lemma 5.21 and that u(W, ;) > 6u(Wy ),

- 1
p(Crjr) = Cnjrt(Whjr) 2 e jr0pp(Wh ji) 2 € jr 07—

> ns ) = —

1
Proposition 5.23. For j such that || B, ;|| < %En, we have ,u(ThW' 0.0 N Injo) > Eu(lmj,o).

Proof.

ot J

) ' ah Ly 1

U(Thm] 13,0 N In,j,0) = |_| T thZn,j) { _J/‘(ij) = { J 1 n.3,0) = QM(IH j0) O
a=1

5.4 Partial rigidity
We employ ideas similar to Danilenko’s [Danl6] proof that exact finite rank implies partial rigidity:

Proposition 5.24. If there exists § > 0 and j, and t, — oo with u(Cy;,) > & (or ,u(an’jn) > 6 when
applicable) and (T 1, ;, N1, ;.) = 6u(ly ;) then (X, p) is $6%-partially rigid.

Proof. Let A =Wy ; for some fixed N and J. Define o,, = {0 < i < ¢y, —hng:In;, i C A}

For j, such that h,; > %én, if x € Inj,: N Wn,y then T(—i—ith,,,) = B, ;, and Z(0,hy. ) = By j
meaning that (By,j, )jii+hy.,) = Bn,s. This implies that T°W, ; € Wy, provided i < hy, j, — hn,J.

. Ln/Pn jn
For j, such that h,, ;, < 2€n, ifw €l , NWnythenz; iy /n,, )= Bn,j/n 7
fL’:LJ{L}LTL,jTL)[ivi+hN,J) = By,s which implies I, ;. € Wi,j provided i < hy,_j, — hn,J.

and ‘r[o,hN,J) = BN)J
so (B

Therefore (|| + hn,7)p(Inj, 0 ) > wW(ANCnj) > lan|p(In g, o). Likewise, if |B, . | < 14, then

,

(lan| +hn )W 5. ) > ,u(AﬂCn n) = o (W, 5 ) using o, = {0 < i < by j, —hn,g: TiWn_’jn C A}

For m < ¢ j s p(T™Crj ACri) < 2mpu(ln . 0), (and likewise M(Tan’jACn,j) < 2mp(W,_ ;) when
applicable) therefore

—m 2 A m A
/’]léwn o™ — ]lén,jn‘ dp =2u(Chr j,) —2u(T™Ch j, N ne, gn) < 2mp(In . 0)

Therefore for M < ¢, ;,,

1 M B B 1 M ~
|+ DM AN Crs) = WAN G| = = S WANT™Co,) = w(AN Coy)
m= m=1
M _ 1 M
Z ANT™C ;) — (AN Cyj)| SMZ A|néonfm_ co | du
1=1 m=1
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1 U . 2 21 Y
S > (/ e, , T~ e, d“) S > \/2mﬂ(fn,jn,0) < \/QMM(In7j7L,0)
m=1 m=1

The mean ergodic theorem gives M such that [ |57 >, LaoT™ — M(A)‘Qdu < (36u(A))?% so

_(/ 7Z]1A0TM—M(A)CZM’

Ch sin

M
1 ., ~
|27 S HT AN Co,) = w(Ap(Cr,
m=1

1 & 1 /2 1
S/ 97 2 TaoT™ —u(A)| du < (/|M § ﬂAon—u(A)fdu) < {0u(4)
m=1 m=1

Chn jn

For n large enough that c,, j, > M and \/2M u(1,, j, 0) < $6u(A) (Proposition 5.18 states u(,, j, 0) — 0)
then [u(ANCy ) — w(A)u(Cr )| < $6p(A). Then

p(T AN A) > (T (AN Cry, ) NV(ANCoy)) = > w(TT 5, 0N T g, 0)

1€ay,

= [ (T I 5, 0 VI 0) > om0 In g, 0) = 6(u(AN Crj,) = b, spilTn g, 0))
~ 1
> 6((A)a(Crz,) —

SO(A)) = S spiTn g, 0)
1
> 5 (u(A)5 — 5u(4)) — Shiw,su(T ) = 56%(A) — b su(Tr s, 0)

with the same applying to én,jn when applicable. Therefore for fixed N and J and 0 <% < hy_;,
. . 1 1 ;
liminf (T T*'Wx y N T"W. ) = liminf u(T" Wy ;0 Wy, j) > 5(s“p(WN,J) = 5<52,¢(TZWN,J)
and since the sets T"Wy, ; generate the Borel algebra, p is §42-partially rigid. O

Proof of Theorem 5.1. We aim to apply Proposition 5.24. Set ¢ = ﬁ which depends only on X.

There exists ag such that 11(Cyy q,) > & since X = U; Cnj- I Braoll < 14, then u(@n,ao) = w(Chay) >

% and Proposition 5.23 implies p(T""20 I, 4, 0 N In,ao,o) > 2M(In,a0,0) so take t,, = hy,q, and j, = ao.

Now consider when || By, q,|| > 3¢, so Proposition 5.17 implies 1(Cha0) > 55 1(Choay) = 525

By Proposition 5.20, there exists a; such that p(T"maw0 W, 40 N Wya,) > %M(Wn,ao)- If a1 = ag then
N(Cn,al) = N(Cn,ao) > % and if a1 # ag then Proposition 5.22 implies ,u(C'n,al) > ﬁﬂ(én,ao) > ﬁ.
Proposition 5.20 then says there exists ay such that

1 1
,u(Th"’“l (Th"’ao Wiao N Wn,al) n Wn,az) > 5:“ C2p“(W"’a0)

and then Proposition 5.22 gives j(Ch.a,) > 2z 5 i(Choae) = 505 -

Repeating this process, we obtain a; for 0 < £ < C' such that ;L(CN'n,aZ) > 4k2é@+1 > 4k2éc+1 and

c—-1

c-1 1
,U(Wn,ac N ﬂ T2t Pas Wn,ag) > Fﬂ(Wn,ao)
=0

If any of the a, are such that h, . < € then Proposition 5.23 implies u(T hnar T, ae0 N Lna,0) >
2;1(]”,% ) so take t, = hy o, and j, = az

If hypa, > %En for all 0 < £ < C' then, since there are at most C' choices of j, for some ¢ < s we must
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have aq = a, so setting j, = a4 and ¢, = ZS:1 hna.

z=q
c-1 o 1

(T L, 00 g, 0) = (TS50 100 W, OWia) 2 p(Waao 0[] T2 M0 W) 2 (W)
£=0

1 ~ 1 1 1 1 1 1 ~
A Wn ap) = In a = n,a = > Cn j
S lu’( ) 0) M( s 0’0> Cn,ao ,LL( s 0) na 2]60 kg 2]€C ]CE ch ( aJn)
1 1 1 1 4, 1
=——cnin(l, > (I,
kén chc ;]nlu’( ;]n;o) — ken 2]90 2 ,U/( 7]n70) 4]{72CM( n,jn,0 )
we then have (T I, j, 0 N Inj,0) > greerriIn,j,.0)-
In all cases, by Proposition 5.24, we have that (X, u,T) is %52—partially rigid. O

Acknowledgments The author would like to thank Ronnie Pavlov for introducing him to this question
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References

a errence . ams, moroains s conjecture on rank-one mixin s roc. mer. ath. OcC.
Ada98] T M. Ad Smorodinsky’s conj e iwing, Proc. A Math. Soc. 126
(1998), no. 3, 739-744. MR 1443143

[AFP17]  Terrence Adams, Sébastien Ferenczi, and Karl Petersen, Constructive symbolic presentations of rank
one measure-preserving systems, Colloq. Math. 150 (2017), no. 2, 243-255. MR 3719459

[Bos85] Michael Boshernitzan, A unique ergodicity of minimal symbolic flows with linear block growth, J.
Analyse Math. 44 (1984/85), 77-96. MR 801288

[Cas97] Julien Cassaigne, Complezité et facteurs spéciauz, Journées Montoises (Mons, 1994), no. 1, vol. 4,
Bull. Belg. Math. Soc. Simon Stevin, 1997, pp. 67-88. MR 1440670

[CFPZ19] Julien Cassaigne, Anna E. Frid, Svetlana Puzynina, and Luca Q. Zamboni, A characterization of
words of linear complexity, Proc. Amer. Math. Soc. 147 (2019), no. 7, 3103-3115. MR 3973910

[CK19] Van Cyr and Bryna Kra, Counting generic measures for a subshift of linear growth, J. Eur. Math.
Soc. (JEMS) 21 (2019), no. 2, 355-380. MR 3896204

[CK20a] , The automorphism group of a shift of slow growth is amenable, Ergodic Theory Dynam.
Systems 40 (2020), no. 7, 1788-1804. MR 4108905
[CK20Db] , Realizing ergodic properties in zero entropy subshifts, Israel J. Math. 240 (2020), no. 1,

119-148. MR 4193129

[CPR22] Darren Creutz, Ronnie Pavlov, and Shaun Rodock, Measure-theoretically mizing subshifts with low
complezity, Ergodic Theory and Dynamical Systems (to appear), 2022.

[Cre21] Darren Creutz, Mizing on stochastic staircase tansformations, Studia Math. 257 (2021), no. 2, 121-
153. MR 4194950

[CS04] Darren Creutz and Cesar E. Silva, Mizing on a class of rank-one transformations, Ergodic Theory

Dynam. Systems 24 (2004), no. 2, 407-440. MR 2054050
[CS10] Studia Math. 199 (2010), no. 1, 43-72. MR 2652597

[Danl6] Alexandre 1. Danilenko, Actions of finite rank: weak rational ergodicity and partial rigidity, Ergodic
Theory Dynam. Systems 36 (2016), no. 7, 2138-2171. MR 3568975

[DDMP16] Sebastidn Donoso, Fabien Durand, Alejandro Maass, and Samuel Petite, On automorphism groups
of low complexity subshifts, Ergodic Theory Dynam. Systems 36 (2016), no. 1, 64-95. MR, 3436754

[DDMP21] ____ | Interplay between finite topological rank minimal Cantor systems, S-adic subshifts and their
complexity, Trans. Amer. Math. Soc. 374 (2021), no. 5, 3453-3489. MR 4237953

[dJ77] Andrés del Junco, A transformation with simple spectrum which is not rank one, Canadian J. Math.
9 (1977), no. 3, 655-663. MR 466489

34 -



Mixing subshifts of minimal word complexity Darren Creutz

[DOP21]

[Fer95)

[Fer96]
[FGH™21]
[Kal84]
[Ler12]
[PS22a]

[PS22b]
[Ryz93]

[Sil0g]

Andrew Dykstra, Nicholas Ormes, and Ronnie Pavlov, Subsystems of transitive subshifts with linear
complezity, Ergodic Theory and Dynamical Systems (2021), 1-27.

Sébastien Ferenczi, Les transformations de Chacon : combinatoire, structure géométrique, lien avec
les systemes de complexité 2n + 1, Bulletin de la Société Mathématique de France 123 (1995), no. 2,
271-292 (fr). MR 96m:28018

, Rank and symbolic complezity, Ergodic Theory Dynam. Systems 16 (1996), no. 4, 663-682.
MR 1406427

M. Foreman, S. Gao, A. Hill, C.E. Silva, and B. Weiss, Rank one transformations, odometers and
finite factors, Preprint, 2021.

Steven Arthur Kalikow, Twofold mizing implies threefold mizing for rank one transformations, Er-
godic Theory Dynam. Systems 4 (1984), no. 2, 237-259. MR 766104

Julien Leroy, Some improvements of the S-adic conjecture, Adv. in Appl. Math. 48 (2012), no. 1,
79-98. MR 2845508

Ronnie Pavlov and Scott Schmeiding, Local finiteness and automorphism groups of low complexity
subshifts, Preprint, 2022.

_, On the structure of generic subshifts, Preprint, 2022.

V. V. Ryzhikov, Joinings and multiple mizing of the actions of finite rank, Funktsional. Anal. i
Prilozhen. 27 (1993), no. 2, 63-78, 96. MR 1251168

C. E. Silva, Invitation to ergodic theory, Student Mathematical Library, vol. 42, American Mathe-
matical Society, Providence, RI, 2008. MR 2371216

-35-



	Introduction
	Definitions and preliminaries
	Symbolic dynamics
	Ergodic theory
	Rank-one transformations
	Symbolic models of rank-one transformations

	Quasi-staircase transformations
	Quasi-staircase right-special words
	The level-n complexity functions
	Counting quasi-staircase words
	Bounding the complexity of quasi-staircases

	Quasi-staircase complexity arbitrarily close to linear
	Mixing for quasi-staircase transformations
	Non-superlinear word complexity implies partial rigidity
	Word combinatorics
	Language analysis
	Measure-theoretic analysis
	Partial rigidity

	References

