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Abstract We prove that every infinite minimal subshift with word complexity p(q) satisfying
limsup p(q)/q < 3/2 is measure-theoretically isomorphic to its maximal equicontinuous factor;
in particular, it has measurably discrete spectrum. Among other applications, this provides a
proof of Sarnak’s conjecture for all subshifts with lim sup p(q)/q < 3/2 (which can be thought
of as a much stronger version of zero entropy).

As in [CP23], our main technique is proving that all low-complexity minimal subshifts have
a specific type of representation via a sequence {75} of substitutions, usually called an S-adic
decomposition. The maximal equicontinuous factor is the product of an odometer with a
rotation on a compact abelian connected one-dimensional group, for which we can give an
explicit description in terms of the substitutions 7. We also prove that all such odometers
and groups may appear for minimal subshifts with limsupp(q)/q = 1, demonstrating that
lower complexity thresholds do not further restrict the possible structure.

1 Introduction

In this work, we demonstrate some surprising connections between symbolically defined dynamical sys-
tems called subshifts and algebraic number theory. Our main result (see Section 1.3) shows that every
minimal subshift with word complexity function (see Section 1.1) of very slow growth is measurably iso-
morphic to a specific rotation of a compact abelian group called its maximal equicontinuous factor
or MEF (which can be defined as the character group of its eigenvalue group; see Section 1.2).

What’s more, the group in question has a very specific structure as the product of an odometer and a
compact abelian connected one-dimensional group about which we establish specific number-theoretic
properties. Sections 1.5 and 1.6 give more details about the latter object, but for context we mention
that a simple example is irrational rotation of the unit circle S' = R/Z, and all of the groups in question
can be thought of as rotations on p-adic extensions of S'.

In this introduction, we will describe our main results and consequences/connections to several disparate
areas, including Sarnak’s conjecture (see Section 1.4), Pisot’s substitution conjecture and so-called S-
adic representations of subshifts (see Section 1.7), and word complexity thresholds (see Section 1.8). To
explain these, we need some brief definitions/background; for full formal definitions, see Section 2.

1.1 Topological dynamics, subshifts, and word complexity

A topological dynamical system (TDS) is a pair (X,T) where X is a compact metric space and
T :X — X is a homeomorphism. A TDS is transitive if there exists x € X for which X = {T"z};
every TDS throughout this work will be assumed transitive to avoid degenerate examples such as disjoint
unions, for which it is impossible to give a unified structure. A TDS is called minimal if it does not
properly contain any nonempty TDS.
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A subshift is a TDS given by a finite set A (called the alphabet) and a set X C A% which is closed
(thereby compact) in the product topology and invariant under all powers of the left shift o (i.e. any shift
of a sequence in X must also be in X). Every subshift is endowed with the action by the homeomorphism
o, and so we generally refer to a subshift as X instead of (X, o).

The word complexity function p(q) of a subshift X simply counts the number of g-letter contiguous
strings which appear within at least one z € X. For instance, if X is the so-called golden mean shift,
consisting of 0-1 sequences without consecutive 1s, then it’s not hard to check that p(1) = 2, p(2) = 3,
p(3) =5, and in fact p(q) is the Fibonacci sequence.

The well-known Morse-Hedlund theorem ([MH38]) states that if there exists any ¢ for which p(q) < ¢,
then X is a finite set of periodic sequences, i.e. any infinite X must have p(q) > ¢ + 1 for all g. This
means that for infinite X, word complexity grows at least linearly. Ferenczi ([Fer96]) proved that minimal
subshifts with linear complexity have a recursive structure given by a sequence 73, of substitutions (such
subshifts are now called S-adic); see Section 2 for formal definitions.

This structure already restricts the dynamical behavior of such a subshift significantly; for instance
X must have finite topological rank ([DDMP21]), finitely many ergodic invariant measures ([Bos92],
[CK19], [DOP22]), and cannot support a strongly mixing measure ([Fer96]). (All o-invariant measures
on subshifts are assumed to be Borel probability measures.)

In [CP23], we showed that any minimal subshift X with lim sup p(q)/q < 4/3 has a quite restrictive S-adic
structure, which implies (measurable) discrete spectrum, meaning that X is measurably isomorphic
to the rotation of a compact abelian group. In this work, we improve that result in multiple ways. First,
we increase the threshold from 4/3 to 3/2, which is optimal since [CP23] also contains an example with
limsup p(q)/q = 3/2 which is (measurably) weakly mixing, which is antithetical to discrete spectrum.
Second, we describe the exact group in question (in terms of the S-adic decomposition) and show that
the canonical projection of X to the group rotation is a measure-theoretic isomorphism; this is in a
sense showing that X is as close as possible to a group rotation (since an infinite subshift cannot be
topologically isomorphic to a rotation).

We note for future reference that limsup p(q)/q < 3 is known to imply uniqueness of invariant measure
for minimal subshifts ([Bos92]), and so when we refer to ‘the measure’ on such a subshift X, there is no
ambiguity.

1.2 Eigenvalues, characters, MEFs, and Sturmian and Toeplitz subshifts

We say that f € C(X) is a continuous eigenfunction of the TDS (X, T) with continuous additive
eigenvalue v if f(Tz) = €2 f(z) for all x € X. The continuous additive eigenvalues form a subgroup
Ex of (R,+) containing Z; the continuous multiplicative eigenvalues £x = {exp(27iy) : v € E}
form a subgroup of the unit circle (S1,-) in the complex plane, which is always isomorphic to Ex /Z.

For any minimal TDS, its MEF is a rotation of the dual group or character group of the continuous
multiplicative eigenvalues, i.e. the group £x (under pointwise multiplication) of homomorphisms from
Ex to S', see [BK13].

Two well-studied classes of subshifts with known MEF are the Sturmian subshifts and Toeplitz
subshifts. Sturmian subshifts are particularly relevant for our purposes since they are subshifts of
minimal word complexity, i.e. p(q) = g+1 for all ¢. In addition, any Sturmian subshift S has Eg = Za+Z
for some « ¢ Q, and so £ = Za, which is isomorphic to Z. The MEF of a Sturmian shift is therefore 2,
which is an (irrational) rotation on the unit circle.

A subshift T is Toeplitz if it is an almost 1-1 extension of its MEF and has Er a subgroup of (Q,+)

(which must contain Z). Then Er is isomorphic to Er/Z, and so the MEF of T is given by Er/Z. One
way of viewing any such dual group is as an odometer, which is defined as coordinatewise addition by
1 in an inverse limit of the form imk Z/010s ...0k7Z. (In a slight abuse of notation, we sometimes also
use the term ‘odometer’ to refer to the group itself and not the rotation; since the only rotation ever
considered on such groups in this work is the coordinatewise addition by 1, we hope this will not cause
ambiguity.)




On minimal subshifts of linear word complexity with slope less than 3/2 D. Creutz and R. Pavlov

Unlike Sturmian subshifts, Toeplitz subshifts need not have low word complexity (it can even grow
exponentially) and may have many invariant measures; in fact one of the most celebrated results about
this class ([Dow91]) is that their measure-theoretic structure can be that of an arbitrary Choquet simplex,
and so measure-theoretically Toeplitz subshifts are no more restrictive than general topological dynamical
systems.

As will be seen in the next section, we prove that every minimal subshift X with sufficiently low word
complexity is a combination of Sturmian and Toeplitz subshifts in the sense that their MEFs are a
product of an odometer and a rotation of a compact abelian connected one-dimensional group which
generalizes and factors onto an irrational circle rotation; see Theorem 6.4.

1.3 Our main results

Theorem A. Let X be an infinite minimal subshift with limsupp(q)/q < 3/2. Then, if (M,n) is the
mazimal equicontinuous factor of (X,o0) and ¢ : (X,0) — (M,n) is the associated factor map,

e ¢ is a measure-theoretic isomorphism with respect to the unique invariant measures on (X, o) and
(M,n) (Proposition 6.5),

e the additive continuous eigenvalue group of (X,0) is Ex = {qa+ > {qep}p : ¢ € Q} + R for some
aé¢Q, e, €Q, and Q, R subgroups of Q containing Z (Theorem 5.3),

e (M,n) is isomorphic to a product of a (possibly finite) odometer Ox (controlling the rational con-
tinuous eigenvalues) and a rotation of a compact abelian connected one-dimensional group Mx
(Theorem 6.4), and

e for every odometer O and group M which can so appear in such an MEF, there exists a minimal
subshift with limsup p(q)/q = 1 for which the MEF is the product of O and a rotation on M. This
limsup in fact may take any prescribed value in [1,3/2) as long as either O is infinite or M is not
a finite extension of a circle (Theorem 8.1).

In particular, X has measurably discrete spectrum for its unique invariant measure (Theorem 4.1), factors
onto an irrational circle rotation (Corollary 5.9), and every eigenfunction is continuous (Theorem 5.3).

Also, any two such subshifts are orbit equivalent iff they are strong orbit equivalent iff they have the same
additive eigenvalue group.

1.4 The Sarnak conjecture

The celebrated Sarnak conjecture states that for any zero entropy TDS (X, T), any f € C(X), and
any z € X,

N—1
1 mn
© 3 T u(n) 0, 1)
n=0
where p is the Mobius function. A simple application of Theorem A is the following.

Corollary 1.1. For any subshift (X, o) with limsupp(q)/q < 3/2, any f € C(X), and any z € X, (1)
holds.

Proof. Assume that (X, o) has limsup p(q)/q < 3/2, and consider f € C(X) and x € X. The subsystem
Y = {o"x} is transitive by definition. If Y is finite, then it is a finite union of periodic orbits, and it is
a simple consequence of the Prime Number Theorem that (1) holds for z in this case. If Y is infinite,
transitive, and non-minimal, then by [OP19], x is eventually periodic in both directions, in which case
(1) holds for x for the same reason.

Finally, if Y is infinite and minimal, then by Theorem A, it is uniquely ergodic with unique invariant
measure having discrete spectrum. By Theorem 1.2 of [HWY19], Sarnak’s conjecture holds for such a
system.

O
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Corollary 1.1 is, to our knowledge, the first result to show that sufficiently low word complexity (which
is just a stronger version of zero entropy) implies the conclusion of Sarnak’s conjecture.

Remark 1.2. We note that the previously mentioned [HWY19] proves that a different sort of low
complexity implies discrete spectrum, and so also implies Sarnak’s conjecture. Their property is called
measure complexity, and is a bit too long to define fully here. Roughly, for any n, they look at the
minimum size of a collection of points S so that most © € X (in the sense of the invariant measure)
maintain a small average distance from some s € S over the first n iterates. We do not believe that our
result implies theirs or the converse; their measure complexity is clearly bounded from above by word
complexity, but can be much smaller. In fact, their required upper bound is that measure complexity
grows more slowly than n° for all € > 0, and their proof actually shows that discrete spectrum implies
that measure complexity is bounded for some metric.

1.5 Adelic groups

The MEF of a low-complexity minimal subshift can be interpreted in purely algebraic terms as a group
rotation, a viewpoint which relates to both class field theory and Lie theory. Before discussing the general
case, a (relatively) simple example may be helpful. Let My = S x Z, (here and elsewhere, Z, are the
2-adic integers) and consider a distinguished element (a,a2) € Ma. One can define a skew product
action on Ms by

0+ a,z+a) ifo+a<l
(0,2) = { (@+a—1,z+as+1) otherwise

This action is not a rotation on My viewed as a product group, but it can be viewed as the restriction
of the rotation by (a, az) on (R x Qz)/Z[!/2] to its natural fundamental domain My = S x Z,. We note
that the projection to the real coordinate is precisely the factor map onto S! under rotation by «a.

The ring of adeles A over Q is R x Hp Qp where p ranges over the primes and Q, are the p-adic
numbers, restricted to elements where all but finitely many terms lie in Z,). The field Q sits naturally

as a lattice (discrete co-compact subgroup) diagonally in A, and its character group is @ =A/Q.

The eigenvalue groups of the low complexity subshifts in Theorem A involve arbitrary subgroups of Q
containing 7Z, and describing the MEF via their character groups requires more refined techniques. It’s
not hard to check that such subgroups are in one-to-one correspondence with sequences (£,,) in Z>oU{oo}
indexed by primes p, where Q) := {7 :n = Hp p' such that 0 < ¢ < ¢,}. This case (where infinitely
many £, are allowed to be nonzero) is often called the adelic case in the literature.

Adapting relevant proofs to the adelic setting requires a bit of care since Q(,,) generally does not sit as
a lattice in A (being of infinite covolume). We can define a natural substitute A,y for A, and we then
verify that % = A,)/Q,)- This also explains why adelic subgroups arise naturally in connection to
odometers (Proposition 6.9): for any odometer O = @Z/okZ, if ¢, = sup{t : p* divides oy, for some k},

then O ~ Q(/gp)\/Z.

Theorem A shows that the character groups in question cannot be purely p-adic, i.e. must have nontrivial
real component. The phenomenon of nontrivial real component being more ‘natural’ in the study of Lie
groups/lattices is not new; one example is the generalization of the Margulis Arithmeticity Theorem
([Mar91]) proved in ([OhO1]).

1.6 Nilmanifolds and nilsystems

A quotient G/T" of a nilpotent Lie group G (above Ay, ) by a lattice I' (above Qy,)) is called a nilman-
ifold, introduced by Mal’cev. When G is a 1-step nilpotent group (i.e., abelian), a nilmanifold is also a
compact abelian group. However, abelian nilmanifolds are a strict subclass of compact abelian groups,
since not all groups have the necessary Lie structure. (Any compact abelian group rotation, however,
can be viewed as an inverse limit of rotations on abelian nilmanifolds.)

Such rotations are called 1-step nilsystems; more generally, nilsystems are actions on higher-rank nilman-
ifolds, which may not even be group rotations, and have been used in breakthrough work by Host-Kra
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[HKO05] and Bergelson-Host-Kra [BHKO05] to prove convergence of nonconventional ergodic averages.
Since then, they have proved invaluable in ergodic theory and dynamical systems (e.g. [Lei05], [Zie07],
[GTZ12], [BLM12], [Wall2], [Ziel4], [HK18], [BL18]).

Nilsystems are often thought of as the ‘simplest’ type of dynamical system. Given this heuristic, the
phenomenon that some irrational eigenvalues yield lower complexity than rational alone makes sense;
when all eigenvalues are rational, the character group is purely p-adic, and so cannot have nilmanifold
structure.

Our Lie group can contain p-adic parts for infinitely many primes, and we refer to this case as an adelic
nilmanifold. This is itself a generalization of the so-called ‘S-adic’ theory of nilmanifolds, in which
p-adic parts can exist for finitely many primes, and which was studied for instance in [BG21] and in
[SY17] in connection with solenoids.

1.7 Substitutions and the Pisot conjecture

As mentioned earlier, Ferenczi proved that all minimal subshifts of linear complexity have a so-called
S-adic structure, meaning that all z € X have a recursive structure coming from a sequence (py) of
substitutions. As was done in [CP23], the main component of the proof of Theorem A is a proof
(Corollary 3.3) that low word complexity implies a very special type of S-adic structure, where all
substitutions (denoted by Ty, ny.,r,, it the proofs) have a very particular form.

Connections between substitutive structure and discrete spectrum have been known for many years, and
the most famous such connection is the so-called Pisot conjecture. A full treatment is beyond our
scope here, but informally it states that if X is defined by a single substitution (i.e. all py are the same
in the description above) and if that substitution has the Pisot property (this means that its associated
adjacency matrix has Perron eigenvalue which is a Pisot-Vijarayaghavan number) and is algebraically
irreducible, then X has measurably discrete spectrum. The conjecture remains open, though there has
been substantial progress, including a complete solution for X for alphabet of size 2 ([BD02], [HS03]).

Much more difficult is the general S-adic case; even finding a proper plausible formulation seems quite
difficult. There have been multiple impressive recent results in this direction, including a version of S-
adic Pisot for two-letter alphabets ((BMST16]). However, their result includes several hypotheses which
cannot hold even for all Sturmian subshifts, most notably recurrence, which means that for every m,
there exists n so that py = pp1x for 1 < k < m. In particular, their results seemingly cannot be used to
verify discrete spectrum under any complexity hypothesis alone.

Another hypothesis required for previous versions of the S-adic Pisot conjecture is that such subshifts
are balanced on words, see Section 2 for a definition. This property is often difficult to verify, but we
do so (Theorem 7.1) in the course of finding the dimension group for minimal subshifts of low word
complexity (Theorem 7.2), which can be used to characterize orbit equivalence and strong orbit
equivalence for these shifts.

Our proof of Theorem A can then be, at least in part, thought of as a direct verification of a version
of the S-adic Pisot conjecture for only the restricted class of substitutions appearing in our S-adic
decomposition. In fact, the eigenvalue group and the abelian nilmanifold M and odometer O appearing
in the MEF can be explicitly defined in terms of these substitutions; this is too technical to describe here,
but is done in Theorems 5.3 and 6.4. This allows us to explicitly define some simple examples (including
traditional substitutions rather than S-adic) which have certain MEFs which, to our knowledge, haven’t
appeared in the literature. (See Section 8 for proofs.)

Example 1.3. If p is the substitution on {0,1} defined by p(0) = 001 and p(1) = 00001, and we define
X = {o"z} by z = limy p*(0), then its MEF is a rotation of the abelian adelic nilmanifold M as in
Section 1.5.

Example 1.4. If p is the substitution on {0,1} defined by p(0) = 00000011 and p(1) = 0000000011,
and we define X = {o"z} by = = limy, p*(0), then its MEF is the product of the binary odometer with
a rotation of My as in Section 1.5.
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Example 1.5. Let 7 be the substitution on {0,1} defined by 7(0) = a and 7(1) = ab, let w; be the
substitution on {0,1} defined by w;(0) = 001 and w;(1) = 00001, and let wy be the substitution on
{0,1} defined by wz(0) = 00001 and wy(1) = 0000001. Define a sequence of substitutions p € {w1,ws}
by pr. = wi if 2¥+2 divides the length of (m o pg o --- 0 pr_1)(1), and wo otherwise. (For instance, po is
ws since 22 does not divide the length 2 of (1) = ab, and p;y is wy since 23 does divide the length 8 of
(0 pp)(1) = bbbbbbab.) If we define X = {o"x} by x = limg(m 0 pg o --- 0 p;)(0), then its MEF is the
product of the binary odometer and an irrational circle rotation.

We note that the weak mixing example of [CP23] in fact was generated by a sequence of Pisot substitu-
tions, and so each individual substitution being Pisot is (unsurprisingly) not enough to guarantee discrete
spectrum. This was not the first such weak mixing example; [CFMO08] contains one on a three-letter
alphabet involving the so-called Arnoux-Rauzy substitutions (and word complexity p(n) = 2n). We are
not, however, aware of an earlier example with a two-letter alphabet.

1.8 3/2 as a threshold

Several recent works have demonstrated that lim sup p(¢q)/q = 3/2 is an important threshold for several
different types of dynamical properties. First, Theorems 1.2 and 1.3 of [OP19] imply that if a subshift
X is transitive and nonminimal and has limsup p(q)/q < 3/2, then it is the orbit closure of a sequence
which is eventually periodic in both directions. (In particular, this means that Theorem A automatically
applies to all transitive shifts not of this degenerate form.) We can rewrite as the following threshold
result.

Theorem 1.6.

3/2 = min{limsupp(q)/q : X is transitive, not minimal, and contains a non-eventually periodic sequence}.

In [Cre23], it was shown (Theorem C) that every aperiodic rank-one subshift satisfies limsupp(q)/q >
3/2, and an example was given there (Theorem D) of an aperiodic rank-one subshift with lim sup p(q)/q =
3/2. This immediately implies the following.

Corollary 1.7.

3/2 = min{limsupp(q)/q : X is an aperiodic rank-one subshift}.

Theorem A implies similar results for different dynamical properties. Theorem A, when combined with
the weakly mixing example from [CP23] with lim sup p(¢q)/q = 3/2 mentioned above, yields the following
result, which shows that any bound on lim sup p(q)/q which implies existence of eigenvalues automatically
implies discrete spectrum.

Corollary 1.8.

3/2 = sup{limsupp(q)/q : X has discrete spectrum} = min{limsupp(q)/q : X is weakly mizing}.

Surprisingly, the same number is also the complexity threshold for Toeplitz subshifts. Our results already
show that limsupp(q)/q < 3/2 precludes X being Toeplitz; all Toeplitz shifts are minimal, and have
no irrational continuous eigenvalues, so cannot have the structure of Theorem A. In the other direction,
[Sel20] gives word complexity estimates for a subclass called simple Toeplitz subshifts, and those estimates
show that there exist simple Toeplitz subshifts with limsupp(q)/q = 3/2 (this happens whenever the
parameter sequence (ng) from that paper is unbounded). We now have the following.

Theorem 1.9.
3/2 = min{limsupp(q)/q : X is Toeplitz}.

A nearly identical proof shows that 3/2 is a threshold for irrational continuous eigenvalues.
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Corollary 1.10.

3/2 = min{limsupp(q)/q : X is minimal, infinite, and has no irrational continuous eigenvalue}.

1.9 Summary

Section 2 contains definitions not fully given in the introduction. In Section 3, we describe and prove the
S-adic structure for minimal subshifts of low complexity. Sections 4, 5, 6, 7, 8 contain, respectively, proofs
of discrete spectrum, the eigenvalue group, the structure of the MEF, classification of orbit equivalence
and strong orbit equivalence, and realization of all possible M, O for all limsupp(q)/q < 1.5.

2 Definitions

Let A be a finite subset of Z; the full shift is the set A” equipped with the product topology and o is
the left shift homeomorphism on A%. A subshift is a closed o-invariant subset X € A%. The orbit of
x € X is the set {o"x}nez. In a slight abuse of notation, we sometimes define X as the orbit closure of
a one-sided sequence y € AN: this can be interpreted in the obvious way using natural extensions.

A word is any element of A" for some n € N, referred to as its length and denoted by |w|. For any
word v, the number of occurrences of v as a subword of w is denoted |w|,. We say A* =J,~, A" and
represent the concatenation of words wy,ws, ..., w, by wiws ... w,. -

The language of a subshift X on 4, denoted L(X), is the set of all finite words appearing as subwords of
points in X. For any ¢ € N, we denote L,(X) = L(X)N.A%, the set of g-letter words in L(X), and define
the word complexity function of X to be p(q) := |Ly(X)|. For a subshift X and a word w € L(X)
we denote by [w] the clopen subset in X consisting of all 2 € X such that x¢...2|,-1 = w.

A substitution (sometimes called a morphism) is a map 7 : A — B* for finite alphabets A and
B. Substitutions can be composed when viewed as homomorphisms on the monoid of words under
composition, i.e. if 7: A — B* and 7 : B — C*, then mo7 : A — C* can be defined by (7o 7)(a) =
w(by)w(b2) ... m(by), where 7(a) = by ...br. When a sequence of substitutions 7 : A — A* shares the
same alphabet, and when there exists a € A for which 74 (a) begins with a for all k, clearly (710---07%)(a)
is a prefix of (11 0+ o741)(a) for all k. In this situation one may then speak of the (right-infinite) limit
of (ry 0+ o7)(a).

For any subshift X, there is a convenient way to represent the n-language and possible transitions between
words in points of X by the Rauzy graphs: the nth Rauzy graph of X is the directed graph Gx
with vertex set L, (X) and directed edges from wy ... w, to wa... w41 for all wy ... wp1 € Lypg1(X).
Then, a vertex with multiple outgoing edges corresponds to a word w = ws . .. w, which is right-special,
meaning that there exist letters a # b for which wa, wb € L(X). Left-special words are defined similarly,
and a word is bi-special if it is both left- and right-special. The reader is referred to Section 1 of [CP23]
for more details.

We will sometimes endow a subshift X with a measure p; any such p is understood to be a Borel
probability measure which is invariant under o. A subshift has (measurably) discrete spectrum with
respect to a measure ;1 when the eigenfunctions span L?(X, ). It is well-known, e.g. ([Wal82], Theorem
3.4), that:

Theorem 2.1. An ergodic transformation on a standard probability space with discrete spectrum is
measure-theoretically isomorphic to the space of characters of its (multiplicative) eigenvalue group, en-
dowed with the Haar measure, under the ergodic “rotation” of multiplication by the identity homomor-
phism.

A subshift X is balanced on words when for every word v € £(X), there exists C,, > 0 such that for
any w,w’ € L(X) with |w| = |w'|, |[|w|, — |w']y| < Cy, i.e. the number of occurrences of v in any two
words of the same length differs by less than C,. We say that X is balanced on letters if the above
holds whenever v has length 1.
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3 Substitutive structure of minimal subshifts with low complexity

This section is devoted to establishing the following proposition, which establishes a substitutive structure
for minimal subshifts with complexity lim sup @ < 1.5.

Proposition 3.1. Let X be an infinite minimal subshift with lim sup 24 ~ 1.5, Then there exist v > 0
and words uy, and vg for k > 0 such that, writing py, for the mazximal common prefix of uy and vy and
s for the mazimal common suffix of vi° and vi°uy, the following hold:

o cvery x € X is uniquely decomposable as a concatenation of vy and ug;
o |v| < |ug| and vk is a suffi of u;
o |pl + [skl < |ve|+ [ul;
o for k> 1, also |px| + |sk| < 2|vk| + |vk—1] < 3|vg|; and
e p(q) < (1.5 —v)q for all ¢ > |vo|.
For each k, exactly one of the following holds:
e there exist positive integers my < ny such that

1 —1
Vky1 =0 ug and  upgr =0 ug; or

e there exist positive integers ri < my < ny such that

Vg1 = v,’f’“ilukvzkﬂuk and  Upr1 = v,’zkflukvgrluk.

Notation 3.2. For k such that r; does not exist, set r, = 0 and for all k set

1. — 1 rp,>0
e 0 r.=0

The substitutive structure can be explicitly stated as follows:
Corollary 3.3. For integers 0 <r < m < n, define the substitutions Ty, nr : {0,1} — {0,1}* by

{ 0 0m—11 { 0 0m—t10m 11
Tm,n,0 - Tm,n,r * when r > 0.

1~ Qr—mom—11 1— or—mom—1107—11
Then X is the orbit closure of WM T © Tyyg ng.re O+ © T mi,ri (0) for m:{0,1} — A* for some finite A.

Proof. Define m(0) = vp and 7(1) = ug. Write {& = T 0 Tingngro O * T 1.1 1,751 -

It follows immediately from Proposition 3.1 that if vx, = £;(0) and uy = €,(1) then, when 5 > 0,

verr = VT ot g = (€0(0))™ T HER(1) (66 (0))™ T ER(L) = €k © T (0) = Ek1(0)

and similarly for uyy;. Similar reasoning applies when r; = 0. The claim then follows by induction. [

We first collect several several basic facts established in previous work of the authors.
Definition 3.4. A word v is a root of w if |v| < |w| and w is a suffix of the left-infinite word v>°.

Lemma 3.5 ([Cre22] Lemma 5.7). If w and v are words with |v| < |w| such that wv has w as a suffic
then v is a Toot of w.

Lemma 3.6 ([CP23] Lemma 2.5). Let u and v be words with |v| < |u| and let s be the mazimal common
suffix of v™° and v>¥u. If |s| > |vu| then u and v are multiples of the same word.

Lemma 3.7 ([CP23] Lemma 2.6). Let v and u be words with |v| < |u| which are not multiples of the
same word and where v is a suffix of u. Let s be the mazimal common suffiz of v>° and v>°u. Then s is
a suffiz of any left-infinite concatenation of u and v.
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Lemma 3.8 ([CP23] Lemma 2.7). Let v and u be words and s be the maximal common suffix of v>° and
v>®u. Lety and z be suffizes of some (possibly distinct) concatenations of u and v, both of length at least
|s|. Then for any word w, the maximal common suffiz of yvw and zuw is sw.

Lemma 3.9 ([CP23] Lemma 1.4). Let X be a subshift on alphabet A, for all n let RS, (X) denote the
set of right-special words of length n in the language of X, and for all right-special w, let F(w) denote
the set of letters which can follow w, i.e. {a € A : wa € L(X)}. Then, for all ¢ > r,

pl@=pr)+d . > (Fw)-1).
i=r weRS;(X)

Lemma 3.10. Let w and y be right-special words with |w| < |y| and mazimal common suffix s. Then

p(lwl])

|w]

o1y lel=ls

|w]

Proof. For all |s| < ¢ < |w]|, the suffixes of w and y of length ¢ are distinct and are both right-special so
|{w € RS,(X)}| > 2. By Lemma 3.9, then p(|w|) > p(|s|) + S ., 2 = p(Js]) + 2(juw| — |s]). O
Lemma 3.11 ([CP23] Lemma 2.8). If p(¢+ 1) — p(q) = 1 then there exists a bi-special word which has
length in [q,q + p(q)], has exactly two successors, and is the unique right-special word of its length and
also the unique left-special word of its length.

The starting off point for our construction of the words v, and uy is the following lemma.

Lemma 3.12. Let X be an infinite minimal subshift satisfying lim inf % < 2. For any @ > 0, there

exist words u and v with |v] > Q such that, writing s for the maximal common suffix of v*>° and v™=u,
e u and v begin with different letters;
e v is a proper suffix of u;
e s is the unique left-special and unique right-special word of its length;
o cvery word which has s as a suffiz is a suffix of a concatenation of u and v; and

e cvery x € X can be written in exactly one way as a concatenation of u and v.

Proof. Since lim sup @ < 2, there exist infinitely many ¢ such that p(¢ + 1) — p(¢) = 1 and eventually
p(¢) < 2q. By Lemma 3.11, there are then infinitely many ¢ such that there exists a word w, which is

the unique left-special and unique right-special word of length ¢ (which will have exactly two successors).

Let y, and z,, with |y,| < |z4|, be the two shortest return words for w, which will be the labels of the
two paths from w, to itself in the Rauzy graph Gx |,,|- Then y, and z; begin with different letters and
every x € X can be written in exactly one way as a concatenation of y, and z, since every x € X must
label a path in the Rauzy graph. Since 2|yq| < |yq| + 2] < p(Jwq]) + 1 < 2|wg| + 1, we have |y,| < |wq|
so by Lemma 3.5, y, is a root of w,. Since w,z, has w, as a suffix, it has y, as a suffix and as |y,| < |z,|
then y, is a suffix of z,.

If |y,| = |24| then |z, < |w,| so both y, and z, are suffixes of w, of the same length which would imply
Yq = Zq 50 |Yq| < |74]. Since y, is a suffix of w,, it is also a suffix of wy for ¢’ > ¢. Then y, must be a
suffix of y,/ since y4 is a return word for wy hence for wqy so |yq| < |yq|. Suppose |yq| is bounded. Then
Yq = Yo for some fixed @) eventually but that would make yg a root of w, for arbitrarily long w, making
vy € X which contradicts that X is infinite and minimal.

Let s, be the maximal common suffix of y;° and y7°z,. Since y,; and z; are return words for w,, then
wqyézq has w, as a suffix for all ¢ > 0 so w, is a suffix of y;°z,. Since y, is a root of wg, then wy is a suffix
of s,. Since w, is left-special, the two words y,w, and z,w, differ on the letter prior to w,. Therefore
84 = wq. Then any word which has s, as a suffix must be a suffix of a concatenation of y, and z, as
those are the labels of the two return paths. O
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The inductive step in the construction of vy and uy comes from our next lemma.

Lemma 3.13. Let X be an infinite minimal subshift, and let v and v be words where all x € X can be
written as a concatenation of u and v, |v| < |ul|, v is a suffic of u but not a prefix of u, and p(q)/q < 1.5
for all ¢ > |v|. Let p be the mazimal common prefix of u and v and s be the mazximal common suffic of
v>® and v*™°u. Provided that |p| + |s| < |u| + |v|, ezactly one of the following holds:

o there exist positive integers m < n such that every x € X can be written as a concatenation of

v Ly and v Lu; or

e there exist positive integers r < m < n such that every x € X can be written as a concatenation of

v L™y and v ue" .

Proof. For brevity, we will use ‘concatenation’ to refer to a concatenation of u and v corresponding to
some z € X. Consider the set S = {t > 0 : uv'u appears in a concatenation}. If |S| = 1 then the
subshift would be periodic by minimality contradicting that X is infinite. If |S| = 2 then the first of the
two possible conclusions hold by setting m = min(S) 4+ 1 and n = max(S) 4 1 since every concatenation
is of the form ...uv"'uv2uv®u ... where all i; are either m —1 or n — 1.

So we may assume that wv®u, uv¥u, uv*u for x < y < z all appear in the concatenations and take x to
be the minimal such value and y to be the next smallest value.

Suppose that uv*uv®u appears in a concatenation. Then, using Lemma 3.6, sv*uv®uv®p is right-special
as uv*uv®u must be preceded by v* due to the minimality of x and the v*ux®u pattern cannot continue
forever (by minimality) and when it is broken we see v*uv?. Also sv®uvYp is right-special due to x being
minimal and z > y. By Lemma 3.8, the maximal common suffix of sv*uv*uv®p and svTuv¥p is sv*p.

In the case when |sv*uv?yp| < |[sv®uv®uv®pl, since z <y — 1 and |p| + |s| < |v| + |u|, by Lemma 3.10,

p(|sv*uv¥pl) - u| + y|v| 51 lu| + ylv|
|svtuvyp| Ip| + [s| + |u| + (= + y)|v| 2Ju| + (z +y +1)|v|
lu| + ylv] 3

20ul + (y—1+y+ 1| 2

In the case when [sv"uv*uv®p| < |sv*uv?p|, since |u| > |v|, by Lemma 3.10,

p(|sv*uvuv®p|) < 2|u| 4 2z|v|
|svPuvsuvep| T Ip| + |s| + 2|u| + 3z|v|
14 2Ju| 4 2z|v| 2Ju| 4 2z|v| > §
3lul + 3z + 1) |v| 4u| + 3zlv| ~ 2

Since p(q) < 1.5¢q for g > |v|, this is a contradiction and therefore uv™uv™u never appears in a concate-
nation.

Now suppose that vYuv?Y appears in a concatenation. Then sv¥uv®p is right-special as uv®u must be
preceded by v¥ as y is the next smallest value (and uv*uv®u does not appear). Also sv®uvYp is right-
special as uv*u must be preceded by v* by minimality of . By Lemma 3.8, the maximal common suffix
of sv¥uv®p and sv¥uv¥p is sv¥p. Therefore, as x < y — 1, by Lemma 3.10,

pllsvrutpl) lul + ylel
|svYuvtp| Ip| + [s| + |u] + (z + y)|v]
e blrell L gkl 3
2Jul + (x +y + 1)|v] ul+(y—1+y+ 1) 2

which again contradicts that p(q) < 1.5¢ for ¢ > |v|; therefore vYuv? never appears. Then every
appearance of uwv™u for w > x appears as part of uvuv”uv®u. As uvuv®u never appears, then every
occurrence of uwv™u appears as part of vYuvTuv®uv®uv?y by the minimality of y as the second smallest
possible value. By Lemma 3.7 then uv*u for w > x always appears as part of sv¥uv®uv™uv®uvYp.

Since z > z, then svYuvuv*uv®uvYp appears in a concatenation. That word has sv¥uv®uvYv as a prefix

- 10 -
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(as z > y) and sv¥uv®uv¥uv®uv?yp, which also appears, has sv¥uv®uv¥u as a prefix so svVuv®uv¥p is
right-special. If uwv™u for w > z also appears then by the same reasoning, sv¥uv®uv?p is right-special.
By Lemma 3.8, the maximal common suffix of sv¥uv®uv¥Yp and sv¥uv®uv?p is sv¥p so we would have,
by Lemma 3.10,

pllsvruntuntpl) (& + o] +2Ju
sorworuorpl = " G 2g)lol + 2ul + [+ 1)
@Al 3 Ge-Dlrdl 3 3l 3

= — >7
(@+2y+ D[ +3u] 2 (@+2y+ Dol +3Jul = 2 (w+2y+ o[+ 3] ~ 2

contradicting that p(q) < 1.5¢ for ¢ > |v|; therefore |S| = 3. Therefore every concatenation is of the form
- uruv P urTunt uur 2wt uw P un®u .
where i; are all either y or z. Setting r = x4+ 1 and m = y + 1 and n = z + 1 then proves the claim. [

We are now prepared to prove Proposition 3.1.

Proof of Proposition 3.1. Since lim sup @ < 1.5, there exists v > 0 and qo so that p(¢) < (1.5 —v)q for
all ¢ > go. Let up and vy be the words guaranteed by Lemma 3.12 such that |vg| > go. Then pg is empty
as up and vg begin with different letters. Lemma 3.6 implies |so| < |ugvog| so |po|+|so| = |so| < |uo|+|vol-

Proceed by induction assuming we have constructed the words uy and vg. By Lemma 3.13, there
either exist positive integers mjy < nj such that every z € X can be written as a concatenation of
Vgt1 = v,@”’“*luk and ug4q = vZ"‘fluk or there exist positive integers ry < my < ng such that every

-1 —1 ni—1 rr—1

x € X can be written as a concatenation of vg4q 1= UL”"" ukv?" ug and ugy1 =0, UuRv T U

Since vg41 has v?’“_luk as a prefix and ugy1 has v,z”’“_lvk as a prefix (as my < ng), pp+1 = v,;"’“_lpk‘
Since v, has ugvg41 as a suffix and ugq; = v* """ 41 has vpvkyr as a suffix, by Lemmas 3.7 and
3.8, we have sg11 = sgvk41. Therefore

Iper1| + skl = (me — D)|vk| + [vksa] + [pe] + sk < (mg — Dlok] + [via] + |uk] + |[vk] = 2|vis1| + |vk]

and as [ug+1] = [ves1| + |vkl, then [prya] + [spr1] < |wrsa] + |vrga]-

By induction on &, each x € X can be decomposed uniquely into words v and ug. For k = 0, this follows
from Lemma 3.12 since vy and ug were constructed using that lemma. If z can be uniquely represented
as a concatenation of v; and uy then the same must be true of v;nk‘luk and v,?’“_luk, or of both followed

immediately by v;’“_luk for k for which rj, exists. O

Remark 3.14. For all k, pyy1 = v}?’“*lpk and spy1 = SpVUk41 as shown in the proof of Proposition 3.1.

3.1 Complexity estimates

Having established the substitutive structure of low complexity minimal subshifts, we can now determine
what their right-special words are, which allows us to estimate word complexity using Lemma 3.9.

Proposition 3.15. Let X be an infinite minimal subshift satisfying the conclusions of Proposition 3.1.
For the words {uy} and {v}, the following hold:

L ) . _ -1 1 )
e the left-infinite word ps = lim sppy, = lim sqvy - - - Vg vg " 11}?_’“1 gt s right-special;

e for each k, the word skvzrzpk 1s right-special and the maximal common suffix of it and pe is
spoy™ pr; and

o for k such that ri > 0, the word skv;’“_lukv;’“_lpk is right-special and the mazimal common suffix
of it and pss and of it and skv,?’“_ka is skvzk_lpk.

- 11 -
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Proof. Clearly py, is right-special as uy # v and pg must be followed by different letters in each due to
maximality so Lemma 3.7 implies sips is right-special. By Remark 3.14, sxi1pr+1 = skvk+1v,7€"’°_1pk,
and as this, by Lemma 3.7, has sgpy as a suffix, p, exists and is right-special.

Since vg’“_luk appears in a concatenation (if not then w41 never appears so the subshift would be
eriodic) and is precede a concatenation of u; and vy emma 3.7, Spv.* “ui appears. Since
period d is preceded by tenat f d vy, by L 3.7, sgvp*uy, app S
skv,f’“_%k is a prefix of that word and skak_2uk is a suffix of it, skv,?"‘_ka is right-special.
Since Sg41pr+1 = 8kvk+1vz¢k71pk has skukvzl’rlpk as a suffix, by Lemma 3.8, the maximal common
suffix of ps, and skvzkdpk is then skvzlkflpk.
For k such that r, > 0, the word viy1 = v,?”’“‘l
~1

ugv,* 'y, appears in a concatenation preceded by a con-
catenation of uy, and vy, showing that s;v,* ukv,’;’“_luk appears (as 1, < my). The word ukvzk_lukv,zn’“_l
appears in a concatenation (in fact with the second wuy being a suffix of any vp41 or ugy; that ap-
pears in a (k + 1)-concatenation) showing that spvp*~'uzvi* 'y appears (as ry < my). Therefore

skvzk_lukvzk_lpk is right-special.

As both p,, and skv,?’“_gpk have v,’cn’“_lpk as a suffix and ry < my, both have vkvzk_lpk as a suffix. By

Lemma 3.8, the maximal common suffix of skvzk_lukvlzk_lpk and either of them is then SkU]:k_lpk. O

Lemma 3.16. Under the hypotheses of Proposition 3.15, every right-special word of length at least |so|
is a suffix of one of those from that proposition, and so for q > |sol,

o0 oo
plg+1)—plg) =1+ kZ Loy spore 2, () kz L oo el s o (9):
=0 =0

Proof. By Lemma 3.12, sq is the unique right-special word of its length. Therefore every right-special
word of length at least |sg| has sg as a suffix. Lemma 3.12 also implies every right-special word of length
at least |sp| is a suffix of a concatenation of uy and vg. Assume that every right-special word of length
at least sppy is a suffix of a concatenation of uy and vy followed by pi. Let w be a right-special word of
length at least |sg+1pk+1]- Then w is a suffix of a concatenation of uy and vy followed by py so has sipy
as a suffix.

By Remark 3.14, sgpx = Skp—10xpk S0 w has vipy as a suffix and also |w| > [skr1pr+1]| = |5kvk+1v?k_1pk|.
Since viuy only appears in a concatenation of vy and uy as a suffix either of vgy41 or of vk+1v;n’“‘luk,
then w either has vkﬂvzlk’lpk as a suffix or has vg1p, as a suffix. Since vgyiup only appears when
my = 1 and since w is right-special, in both cases w has vk+1v;nk_1pk as a suffix. As the vgyq1 is
preceded by a concatenation of ugy; and vii1 of length at least |sgx|, by Remark 3.14, then w has
s;@vkﬂv;nrlpk = Sp+1Pk+1 as a suffix. By induction, every right-special word with length at least |sxpx|
has sipy as a suffix and is a suffix of a concatenation of u; and vy followed by py.

Let w be any right-special word with |w| > |sg| = |sopo| which is not a suffix of po. Let k maximal such
that |w| > |sgpx|. Then w = ypy where y is a suffix of a concatenation of uy and vy of length at least
Sg. Since w is right-special, yuy and yv, must both appear in a concatenation. So y must share a suffix
either with v;"*~! or with vj* Mugvy* ™" (in which case r), > 0).

-1 -1

When y shares a suffix with v;"* ™", as w is not a suffix of p, then y has spv,"*

and shares a suffix with syop* ="', If |y| > |spop* 2| then w being right-special would force sgv, "~ py, or

as a proper suffix
skukvg’“_lpk to be right-special but siv,* never appears in a concatenation. So when y shares a suffix
with v,’cn’“_l, w is a suffix of ska’“_ka.

When y shares a suffix with v,""ugvp* ", since w is not a suffix of p,, it must be that y has syv, "~

as a proper suffix. If w is not a suffix of skvzwlukv;"’lpk then y must have either ukvzwlukvzrl or
viFurv," ' as a suffix. In the first case w being right-special would force ukvzk_lukvzk_luk to appear,
which is impossible, and in the second case it would force v;*uv;* to appear in a concatenation, also

impossible. So in the case y shares a suffix with vzkflukvzrl, w is a suffix of skvzwlukv;’“flpk.
The right-special words of any length n > |sg| are then: the suffix of length n of p., the suffix of length

n of some syv* ~2py (which exists and is different from the first word iff n € (|sgv™ ™ pil, |skvp* 2pel]),

- 12 -
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and the suffix of length n of some (|sgvy* " pil, [spv*~ lukv,:k 'pe|] for which 7 > 0 (which exists and

is different from the first and second words iff n € (|svpt ' pil, [skvp* ~'urvi* " 'pil]). The complexity
difference formula is now an immediate consequence of Lemma 3.9, along with the observation that there
is no overlap between the right-special words for distinct k, since by Lemma 3.8, the maximal common

suffix of spvkpr and Sk41Vp+1PE+1 1S Sppr (recall that vii1 has ug as a suffix). O

Knowing the set of right-special words, we can write an explicit formula for the complexity function at
some specific lengths, which determine lim sup p(q)/q.

Corollary 3.17. Let X be an infinite minimal subshift satisfying the conclusions of Proposition 3.1. Set

NE—Tk— 1 ’I"kfl -
C =p(|so|) = |so|. Then for every k, writing £ = { gnn(\v k" unl) i > 0

otherwise ’
k
pUsevp* 2pil) = [skvp 2okl + Loy b + Y (n — my — D]oy| + Z Dlvj| + |wi) Ly, +C
§=0
and for k such that ri > 0,
pUskvp ™ unvp " pil) = [skvpt T unvpt okl Y (= my — 1wy +Z D)oy] + [ug]) 1,

+ | (s il Iskvps el N (1,|8kvk ot pf]| + ©

p(a)
q

and lim sup is attained along some subsequence of these values.

Proof. This is a fairly immediate corollary of Lemmas 3.9 and 3.16; we note only that ¢ is, when r; > 0,

the number of elements of (|syvp* " k|, [skvp* ~ ugvy* ™ 'py|] which are less than |spvi* 2pyl.

The limsup must be attained along a subsequence of the indicated sequences since they are the right
endpoints of the intervals in the characteristic functions from Lemma 3.16. O

Remark 3.18. We could make a similar formulation of liminf p(q)/q using the left endpoints of the
intervals from Lemma 3.16, but since we do not have need of that in this work, we do not do so here.

3.2 Restrictions on the substitutions

By Corollary 3.3, the complexity hypothesis lim sup # < 1.5 ensures that X is defined by substitutions
Tmg,ni,re - 10 this section, we give some restrictions on how these integers are related.

Throughout this section, X is an infinite minimal subshift with lim sup (q) < 1.5 and v > 0 and the
sequences of words {ug}, {vr}, {pr}, {sk} and integers {my}, {nr}, {rr} are from Proposition 3.1.

Lemma 3.19. For all k,

|5k + [pr] < (Mi—3 + 2)|vk—3] + Mmr—2|vk—2| + Mmp_1|vr_1]| + |vk[;
‘Sk| + |pk| < (mk_z + 2)|’U;€_2‘ + mk_1|vk_1| + |’Uk|; and
sk + |pr] < (Mmi—1 + 2)|ve—1] + |vk]-

Proof. By Remark 3.14 applied three times and that |sg_3| + |pr—3| < 3|vk—3|,

Isk| + [Pk = |sk—1| + |vk| + [pr—1] + (Mmp—1 — 1)|vp_1]
= [sk—a| + [vk—1] + [vk| + [Pr—2| + (Mr—2 — D)|vk—2| + (Mp—1 — 1)|vk_1]
= [sk—3| + (mr—3 — 1)|vr_3| + (mr—2 — 1)|vr_2| + mp_1|vi_1| + |vr| + [pr—3] + [vr—2]
< (mp—3 + 2)|vg—3| + mr—_2|ve—2| + Mmr—_1|ve—1] + |vk]-

- 13-
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Since |Sk71| + |pk71| < 3‘U}€,1|, |8k71| + (mk,1 — 1)|U;€,1| + |pk71| + |Uk| < (mk,1 + 2)‘Uk71| + ‘Ukl and
since [sy—2|+|pr—2| < 3|vk—2l, |sk—2|+ (Mr—2—1)|vk_2|+mi_1|ve—1]+[pr—2|+|vr] < (Mr_2+2)|vk_2|+
my—1|vg—1] + [vk]. O
Proposition 3.20. For k > 2 such that ni > 2my, exactly one of the following holds:

(i) nEp=2mp+2, ng_1=mp_1+1, np_o < %mk_g +1andry =0 and ry_1 = 0;

(i) ng=2mg+1, ng_1 < 2mg_1 and rp =0; or

(i) ngp=2mp+1, mg_1 =1, ng_1 =3, ng_o =Mmg_o+1 andry =rg_1 =715_2 = 0.

Proof. Let k such that ng > 2my. Since |pg| + |sk| < 3|vg|, Corollary 3.17 implies

p(lskvp* > pel) (ng —my — 1+ 1, )|y np—me—1+1, 3 gng—mp—3+1,

|5kvzk_2pk| - (nk72)|vk|+|pk|+|sk| ng—2+3 2 ng +1

and therefore ny —2my —3+2-1,, < 0. So if r, > 0 then ny < 2my + 1, a contradiction, and if not
then ng < 2my + 3.

By Corollary 3.17 and Lemma 3.19,

p(lskvp* > pil) (ne —mp — D)|og| + (-1 — mp—1 — 14+ 1y ) |vp—1]

oo ] = (s — Dloel + [l + ol
14 (nk —myg — 1)|Uk| + (nk,l —mp_1— 1+ ]l"‘k—l)lvk71|
(kg — 2)|vg| + [vi] + (Mp—1 + 2)[v—1]
_3 + (316 — mue — 3)|vk| + (ne—1 — 3my—y — 2+ 1, ) |vp—1]
2 (ng — D)|og| + (mp—1 + 2)|vg—1]

and therefore (%nk —my — %)|vk| + (ng—1 — %mk_l -2+ 1, _)|vk-1] <0.

If ng = 2my, + 2 then %|Uk| + (ng—1 — %mk,l —2+1,,_,)|vg—1] < 0 and since, |vg| = \v?_’“l’l_luk,ﬂ >

Mp—1|vk—1]|, then ng_1 —mp_1 —2+1,,_, <080 rp_1 =0 and ng_1 = mi_1 + 1. By Corollary 3.17
and Lemma 3.19,

p(|skvp* 2 pil) o p 4 (ma F DJe] + (a2 =m0 = Dlve—s|
lsko® Ppr) T (e = 2)uk] + ok] 4 [oe—1] + (M2 + 2)[vk—2]

3 Lop] — Hok—1| + (ng—2 — 3mp_o — 2)|vp_2|

2 (2mg 4 D)Jor] + |vk—1| + (mi—2 + 2)|vk—2|

Since |vg| — |vg—1| > |uk—1| — |[vg—1| = (Ng—2 — Mg _2)|vg_2|, this implies %nk,g —2my_o —2 < 0 meaning
that ny_s < %mk,g + 1, putting us in case (i).

So we may assume from here on that ny = 2my + 1. Since 1, = 0, if nx_1 < 2my_; then we are in
case (ii). So we may assume from here on that ny_1; = 2my_1 + a + 1 for some a > 0. The above gives
that ng_1 — 3mg_1 —2+1,, , <0so 2mp_1+a—1+1, , <0. Thenry_; =0 and Smy_1 +a <1
meaning that mi_; =1 and a = 0 so ny_1 = 3. By Corollary 3.17 and Lemma 3.19,

my|ve| + (k-1 — Mi—1 — 1)|vg—1| + (Nk—2 — Mp—o — 1+ 1, _,)|vk_2|
(nk — 2)[vk| + [pr] + skl
My |vk| + [vk—1] + (k-2 — Mo — L+ 1;, _, ) |vg—2]
(2muy; — 1)|vk| + (mr—2 + 2)|vg—2| + [vk—1] + |vk]
3 Logo1| + (ng—2 — 3mpg_o — 2+ 1L, _,)|vk—2]

B )

_ >1+
kvt 2 py|

> 1+

2 2mi|vk| + [ve—1] + (Mi—2 + 2)[ve—2|
and, since |vk_1| > mg_2|vg_2|, therefore ng_o —mp_o —2+1,,_, < 0. Then r,_2 = 0 and ny_o =
mg—o + 1, putting us in case (iii). O
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Proposition 3.21. For k > 2 such that rp4+1 > 0, ng < %mk + 1 and exactly one of the following holds:
(i) np < 3my;

(i) mi =3, ng=>5,nk—1 =mg_1+1 and ry, =0 and rp,_1 =0;

(i) mp =1, ng =2, ng—1 < 2my_1 and rp, =0; or

(iv) mp=1,ng=2, mg_1=1,ng_1 =3, ng—2 =mp_2+1 and rp, =0 and r,_; = 0.
Proof. Let k > 2 such that r,1q1 > 0. For brevity, we will write

. -1 . -1
P P(Isk1v ) wk1v ) P ])
k=

-1 -1 :
k10 w10 P
By Corollary 3.17 and Lemma 3.19,

(Tr+1 — Dvgr| + Juga ] + (o — mye — 1+ Loy )|
2(rk+1 — Dfvkgr] + [ugs1| + [vksa] + (ma + 2) ||
_3 + slust] = gloeea] + (e — Sme — 2+ 1) oy
2 (2ri1 = Dorga | + [upga | + (ma + 2)|vi|
and, as |ugt1| — |vkt1| = (ng — mg)|vk|, therefore %nk —2my —2+1,, < 0. As ny is an integer, then
3ng +2-1,, <4my + 3 so in particular ny < %mk + 1.

P, >1+

Assume that nj; > % as otherwise we are in case (i). Then w +2-1,, <4mj + 3 meaning that
k421, < 3. Sor,=0and my < 3. The only possibilities for (my,n;) are then (3,5) or (1,2) since
3ng < 4my + 3 (and (2,3) is ruled out by the assumption that nj > %(Smk +1)).

We now estimate using Corollary 3.17 again, knowing that 7, = 0. By Corollary 3.17 and Lemma 3.19,

(Th+1 = Dlvksa| + [upsa| + (e — me — Dok + (g1 — mp—1 — 1+ 1, )vp—1]

P, >1+
2(rkr1 — Dfvega] + [ugga| + [vkgr| + mglok] + (me—1 + 2)|vg—1]
3 N Lugs1] = Slows1] + (ne — 2my — D)|og] + (g1 — Smp_1 — 24+ 1y, ) |ve—1]
2 (2rkg1 = Dvkga | + [uea] + mifve] + (me—1 + 2)|vp—1|

and, as |ugt1| — |vkt1| = (ng — my)|vk|, then

3 3
(27’Lk —2my — 1) ‘U;c‘ + (nk71 — Emk,1 — 24+ ﬂrk_l)‘vk,ﬂ < 0. (1‘)

Consider first when (my, ng) = (3,5). Then (1) gives that %|vg|+ (ng—1 — Smyp—1 —2+ 1L, )|vp—1]| <0
and, as |vg| > mg_1|vg—1|, then ng_1 —mr—1 — 2+ 1,,_, < 0 meaning rp—1 =0 and ng_1 =mp_1 + 1
so we are in case (ii).

Assume from here on that (my,ng) = (1,2). If ng—; < 2my_; then we are in case (iii) so we may also
assume ng_1 = 2my_1+1+a for some a > 0. Then (}) gives that ny_; — %mk_l —2+1,, , < 0meaning

that that %mk,l +a—-1+1, , <0. Then rp,—qy =0 and a = 0 and my_; = 1 and so ny_; = 3. By
Corollary 3.17, asny —mip—1=0and ny_1 —mi_1—1=1and rp, =0 and r,_; = 0, and Lemma 3.19,

(re1 = Dlvrga | + Jupga | + Jop—a1| + (ne—2 —mp—2 = 1+ 1y, )[ve—2|
2(rkv1 — Dlvea] + [ugga | + [org| + |[vk] + [vk—1] + (mp—2 + 2)[vr—2|
3 Lups1] = Slors1] — 3lvwl + Sloe—1] + (ne—2 — Emy_o — 2+ 1, ) vp—2|

Py >1+

2 (2rk+1 — D|vkg1] + |urg1] + o] + |vk—1] + (mpg—2 + 2)|vk_2|
and, as |ugt1] — |vk41] = |vg| and |vg—1| > Mmp_a|vk—2], then ng_9 — mr_o — 2+ 1, _, < 0. Therefore
rr—o =0 and ni_9 = myi_o + 1, putting us in case (iv). O

Remark 3.22. Any specific substitution of the form 7,, ,, , in Corollary 3.3, with parameters compatible
with Propositions 3.20 and 3.21, can be used infinitely often in the construction of a subshift with
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lim sup% < 1.5. Indeed, preceding that specific substitution by enough substitutions of the form
Tm,m-+1,0 for appropriate m will provide such a subshift; we do not elaborate further as we do not make
use of this.

Remark 3.23. The above reasoning can also be used to show that certain substitutions are ruled out
at various complexity cutoffs (we omit proofs since we will not use these facts):

® Tpy.2m42,0 cannot occur when lim sup % < 1.4

® Tp.m.r, > 0 cannot occur when lim sup @ < % (c.f. [CP23]); and

® Ty, 2m+1,0 cannot occur when lim sup @ < 1.25.
We also note that Aberkane proved a slightly different substitutive structure for lim sup %q) <
[Abe01].

in

SN

Our last fact regarding the substitutive structure is that limsup @ < 1.5 imposes a bound on :Ti

Recall that @ < (1.5 = v)q for all g > |vg|.

Proposition 3.24. There exists § > 0 and N € N such that for all k > 2 where my > N, if rp41 >0
then ng < %‘;mk and if rg41 = 0 then ng < (2 — §)my,.

Proof. By Proposition 3.21, if rg11 > 0 then n; < %mk + 1 so if my, > 8 then ::Ti < % + % = % - 2—14.
Takei>5>0andN288uchthat%§u.

1y_m—3
Suppose that there exists k with 7, = 0 and my > N and ng > (2 — §)my. Then, since % is

increasing with n, by Corollary 3.17 and Remark 3.14,

dmyg + 3
2(2 = 8)my +2°

o1+ (ng — mg — 1)|vg| :§+%nk—mk—% >§_
(nk—2)|vk\+3\vk\ 2 ng + 1 -2

p(lskvp*2prl)
|skvpt il

vy, —2
p(skvy " “pil)

Sm43 - : : 3 SN+3 3 ‘4
Therefore, as z(zf’gm is decreasing with m, owor ] > 5= B0 NT2 > 55—V contradicting that
p(q) < (1.5 —v)q for all ¢ > |vg]. O

4 Discrete spectrum

The first consequence we derive from the substitutive structure and inequalities established in Section 3.2
is that infinite minimal low complexity subshifts have (measurably) discrete spectrum.

Theorem 4.1. Every infinite minimal subshift with lim sup @ < 1.5 has discrete spectrum.

(We remark that finite transitive subshifts have unique measure supported on a periodic orbit, and the
same is true for infinite transitive subshifts with limsup p(q)/q < 1.5 by [OP19], and so Theorem 4.1 in
fact applies to all transitive subshifts.)

The key ingredient in this proof is the following proposition, which proves exponential decay of a sequence
related to the substitutive structure, and which plays the same role in our analysis as exponential decay
played in Host’s [Hos86] proof of the existence of eigenfunctions for subshifts coming from certain single
substitutions.

Proposition 4.2. Let X be an infinite minimal subshift with lim sup @ < 1.5. Let mg, ni and ry, be
the sequences from Proposition 3.1. Then there exists €x with ZZO:O € < o0 such that for all k,

k e TThk—1
221:0IL j Hj:0 (nj - mj)

||

< €.
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The proof of Proposition 4.2 will first require a few technical lemmas. Throughout this section, let X be

an infinite minimal subshift with lim sup %q) < 1.5 and uy and vg be the words from Proposition 3.1.
We define some auxiliary sequences which will be crucial throughout the remainder of the paper. For all
k > 0, define

Qg1 = 2Lkt (ng —mg), bp =my +ry, and ag = 2%, (2)

Alsosetﬁk=w>0fork20.

[Vit1]
Lemma 4.3. For allk > 2, ap41 < by + 2. If agy1 = bg + 2 then 141 = 0 and ny, = 2my, + 2.

Proof. By Proposition 3.20, ny < 2my, + 2 so if rx41 = 0 then ag11 = ngp — my <my +2 < by + 2.

If rk11 > 0 then by Proposition 3.21, either nj < %mk or (mg,nk) = (1,2) or (mg,ng) = (3,5), all of
which preclude ag1 = b +2. If ny < %mk then agt1 = 2(ng —myg) < my < b. If (mg, ng) = (1,2) then
Aft1 = 2(2—1) =2=mp+1<b+1.1If (mk,nk) = (3,5) then ag4q1 = 2(5—3) =4=3+1<b+1. O

Lemma 4.4. For allk > 1,
[Vk+1| = br|v| + ak|vk—1].

Proof. Since |ug+1| — k41| = (nge — my)|vgl, if v > 0 then

[ves1| = (Mg + 1 = 2)|og| + 2|lug| = (M + 7x)|vk| + 2(|uk| — [vr])
= (mg + 7)) v + 2(ne—1 — Mg—1)|Vk—1| = br|vk| + ar|vi—1]

and if 7, = 0 then |vg 1| = (my — V)|vg| + |uk| = mu|vk| + (ne—1 — mp_1)|vk_1| = be|vk| + aglvg_1]. O

Lemma 4.5. For k> 1,

3 Ak+1
k =
br + Br—1
o ak,+1|'Uk| _ Ap41 _ Ak 41
PT‘OOf. Br = bi|ve|+aklve—1] — bk-‘r(lkM T b tBe-1 -

Tvg T

The next several lemmas establish that the £ or products of them are always less than one, the first
step in establishing the desired exponential decay.

Lemma 4.6. Ifk > 1 and a1 < by then B, < 1.

Proof. Since B,_1 > 0, by Lemma 4.5, 8, = bk?“érkil <HE <L O

Lemma 4.7. If k> 1 and a1 < by + 1 and B_1 < 1 then Byfp_1 <1 — 21 <1,

Proof. Since 81 < 1,1 — B;_1 > 0 and since % is then increasing with b, by Lemma 4.5,
_ b 1)6k— br(1 — B— bi(1 — B— 1— Br_
5kﬂk71:ak+1ﬁk1§(k+)5k1:1_ k(1 — Br 1)<1_ k(1 — Br 1)§1_¢<1. 0
by + Br—1 b, + Br—1 by, + Br—1 br +1 2

Lemma 4.8. Ifk > 2 and ny, = 2my+1 and ng_1 < 2my_1 then ay < bi_1 and BPr—1 < 1_1*'3% <1.
Proof. By Proposition 3.21, ry11 = 0. By Proposition 3.20 (cases (ii) and (iii)), rx = 0 so by Lemma
4.6, Bx—1 < 1. As agy1 = ng —myp = my + 1 = by + 1, Lemma 4.7 gives the claim. O

Lemma 4.9. If k > 2 and nip = 2myg + 1 and ng_1 > 2myp_1 then a1 < bp_o and BipPr—_10k—2 <

1—Bj—
- —5==<1.
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Proof. By Proposition 3.21, ri41 = 0. By Proposition 3.20 case (iii), rp =0 and my_1 = 1 and ny_1 = 3
and rg—1 = 0 and ng_2 = mg_2 + 1. So axy1 = by +1 and ap, = 2 and b1 = 1 and ax—1 = 1. By
Lemma 4.6, then Sx_2 < 1. Then by Lemma 4.5,

bk+1 2 (Qbk+2),8k_2 —1_ (bk+2)(1_6k—2)

BrBr—1Bk—2 = bt 1+ﬁ . 26k-2 Tt biBrat2 bi + bpfBr—2 + 2

and since By < 1 implies by +2+bgSr_a < 2bp +2 < 2(by +2), then B Bp_18r—2 < 1—-5=2 < 1. O

Lemma 4.10. If k > 2 and rgy1 > 0, ng > %mk and nip_1 < 2mp_1 then ap < bg_1 and BpPr_1 <
1— 10
5 .

Proof. By Proposition 3.21, 7, = 0 and either (mg,nx) = (1,2) or (mg,n;) = (3,5). By Lemma 4.6,
since ng_1 < 2my_1, then 1 < 1. When my = 1,n; = 2, we have ax11 = 2 and by = 1 and when
my = 3,n; = 5, we have ap1 = 4 and by = 3 so Lemma 4.7 gives the claim. O

Sme and ngp_1 > 2mp_q1 then ap_1 < br_o and

Lemma 4.11. If k > 2 and rg41 > 0, np > 3

BrBr—18k—2 < 1— W <L

Proof. By Proposition 3.21 case (iv), mi = 1 and ny = 2 and mi_1 = 1 and nxg—; = 3 and nyp_o =
mg—o+ 1 and ry, = 0 and r,—1 = 0. So ag4+1 = 2 and by, = 1 and ax = 2 and by_; = 1 and, by Lemma
4.6, Br_o < 1. Then

9 9 4B 3 —3Bk—2
_ = 9 = - 1 -
BreBr—1Bk—2 = [ — . 25 2T 34 Bk 3+ Br—2
and since f;_2 < 1 implies 3 + S;_2 < 4, we have [y 0k—10k—2 <1 — W <L =

Lemma 4.12. Ifk > 2 and np =2my + 2 then a1 < bg_o and BrBr_18k—2 < 1 — W < 1.

Proof. By Proposition 3.21, ri+1 = 0. By Proposition 3.20 case (i), rx = 0 and r,_1 = 0 and ng_1 =
mr_1+1,80ar =1, and ng_o < %mk—2 + 180 ng_g < 2my_s. Therefore a1 = by +2 and a, = 1 and
Br—2 < 1 by Lemma 4.6. Observe that

b +2 1 (b + 2)Br—2

PPz = b, + m br—1 + Br—2 P2 = br—1bp + b fr—2 +1

which is decreasing in both b;, and bg_1 so

(b +2)Br—2 3Be—2 21— Pr-2) ~2(1 = fBr—2)
Pl 1Bk2_b + b Br— 2+1<2+6k7271 2+ Br—2 <! 3 '

O

We now combine all of the above lemmas bounding Sy or products of them by 1 into a single statement.

Lemma 4.13. For every k > 2 there exists 0 < iy, < 2 such that ax—i,+1 < bg—;, and Hfzkﬂ-k B <
1—2(1—Br_s) <1

Proof. For k such that agy1 < by, set i, = 0. Lemma 4.6 gives that S < 1. Then 1 — %(1 — Br—i,) =
. k

3+ %> =11, B

By Lemma 4.3, ap+1 < by + 2 and they are only equal when ny = 2my + 2 and r;4+1 = 0. For k such

that a1 = b + 2, set i, = 2 and the claim follows from Lemma 4.12.

Let k such that a1 = by + 1. Consider first when ri11 > 0. Then 2(ng — mg) = b +1 > my + 1 so
ng > %mk. If ni_1 < 2my_q then set i = 1 and the claim follows from Lemma 4.10; if ng_1 > 2myg_q
then set 7, = 2 and the claim follows from Lemma 4.11.
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Now consider when rg11 = 0 so np —mg = myp + 1. If ng_1 < 2my_1 then set i, = 1 and the claim
follows from Lemma 4.8; if ni_1 > 2my_1 then set iy = 2 and the claim follows from Lemma 4.9. O

Our next pair of lemmas reframes the bound on :T’Z established in Proposition 3.24 in terms of ag, by,

and Sy.

Lemma 4.14. For k > 2, if apy1 < bp and B, > 1—0 and Bx—1 > 1 — 0 then by > %'
Proof. Since 1 — 4 < fj < 5—— < s then by(1 — 8) + (1 — §)> < by, s0 (1 — 6)? < dby. O

Lemma 4.15. There exists 6 > 0 such that for k > 2, if ag11 < by then at least one of B, <1 —0 or
Br_1<1-—246.

Proof. By Proposition 3.24, there exists §g > 0 and N such that for £ > 2 and my > N, if rg41 > 0
then ny < 3_25°mk in which case ag+1 = 2(ng — my) < (1 — do)mi < (1 — 0g)bg, and if r, = 0 then
ng < (2 — dg)my in which case ag11 = ng — myg < (1 — dg)my < (1 — §g)bg. So for k such that my > N,

by Lemma 4.5, B = bk?‘gkil <1-—dg.

Let 0 < § < &g such that a—9* > N. Let k such that a1 < b and Sx—1 > 1 —J. By the above, if
25

myg > N then 8, <1—3§p < 1—90. If my < N then, as rp < my, b < 2my < 2N < %so, by Lemma

4.14, B < 1— 4. O

We are now ready to prove exponential decay of the S, from which Proposition 4.2 quickly follows.

Lemma 4.16. There exists 0 < k < 1 and C > 0 so that for all k, we have H?:o B; < Ck*.

Proof. By Lemma 4.15, there exists § > 0 such that for k > 2, if a1 < by then at least one of f, < 1—4
or fr_1 < 1—246. Let k > 3 such that gy > 1 —J. By Lemma 4.13, there exists 0 < i < 2 such that

H?:k—ik 5]' <1- %(1 — Bk—ik) <1and ag—i,4+1 < bi—i,-
If 4, = 0 then we have ag1 < bg s0 Br—1 < 1 — 0 (since By > 1 — ). By Lemma 4.6, we have 8 < 1
and therefore 801 <1 —9.

If ¢, > 0 then ap_;,+1 < by_;, so at least one of B_;, <1—3dor fr_;,—1 <1—¢ holds. If B_;, <1—9
then H?:kfik Bj < 1-— g and if Ox—;,—1 < 1 — 9 then, as Lemma 4.6 implies B;_;, < 1, we have

Il ——ip—1 Bi < Broi—1 < 16
So for all k > 5, there exists 0 < i} < 3 such that H;?:k*iﬁc B <1-— g. Set kg =1 — g.
Let C > max{HJ o Bikg kot 0<k < 5}. Then H?:o B < leg/ﬁl for 0 <k <5.

Assume now that for some k > 6 we have Hflzo B < Cm§//4 for all k" < k. Then, since 7}, < 3,

k k k—ij—1
k—if — k+4—i), — :
[ = ( TT 2)( TT o) <mo- o0 = om0 < gl
7=0 j=k—1i)
so the claim follows by induction and setting k = /4(1)/ . O

Proof of Proposition 4.2. Since agr1 = 2L (ng — myg),

e = Jokl Y7 agealogl  loel 7
=t [y = my) = [T aja = H 115
: : [vol -2 R

7=0 7=0 =0

[Vj+1]
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so by Lemma 4.16, there exists C' > 0 and 0 < k < 1 such that for all k,

2550t [ 4,
\v|Hﬂﬂ

|k |

meaning ey : %/{kil proves the claim. O

The other ingredient needed to prove discrete spectrum is a bound on how much the words viug and
u vy, differ.

Lemma 4.17. For all k > 0, the words ugvy and vyui differ on a number of locations less than
Skl
2|ug|249=0 ""i (ng — mg)(ny —mq) -+ (Ng—1 — Mg—1).

Proof. Let d be the Hamming distance: the metric defined on pairs of words of the same length by
dlw,z) = {0 <t < |w| : wy # x¢}|. Note that for words w and z of the same length and any words p
and s, we have d(pws, prs) = d(w, ).

Since |ugvg| < 2|ug|, the claim is immediate for £ = 0. Assume the claim holds for k.

Consider first the case when r; = 0. Then, using the triangle inequality,

my—1 nE—1 ng—1 mp—1
(V1 Uk 15 Uk 1 V1) = A(v) gy ® ™ ug, v ugpvg ™t ug)

Nk —mpg uk)

= d(upv),

NnE—mg
» Uk

ne— mkfl
ng—mr—j ,J+1 ng—mr—j—1
< E d( vkukv L0 ugYy, )
7=0

ng—mp—1

= ) d(ugvg, veug)

j=0
Shoia
< (ng — my)2|up|2i=°0 "3 (ng — mo)(n1 — my) -+ (Ng—1 — Mg—1)
k
= 2\u0|227:0 Lr; (no — mo)(m — ml) cee (nk - mk).

Now consider the case when r, > 0. Here

mE—1 rr—1 ni—1 re—1 —1 T 1 —1 T 1
(V1 Uk 15 U1 V1) = A(vy, " vl vy * T up v g, vt up v w0, T up vt )
_ -1 nEg—mg , Ng—mg rp—1
= d(ugv,* Uy L) uRU T ug)

nkfmkfl
J rr—1 ng—mg—j ,j Tk ng—mg—j—1
E (d(vkukvk URUy, L VR URY U V), )
7=0

IN

+d Uj'u, U”u vnkfmkfj 1 ,U]Jrlu ’Urkil'u, vnkfmkfjfl
B4RV YV k k kY

ng—mg—1

= Z 2d(ukvk, vkuk)

=0
Sk=lg,
< 2(ng — my)2|ug|2%9=0 "7 (ng — mo)(ny —mq) -+ (Rg—1 — Mp—1)
k
= 2Jug|2%=0 15 (ng — mg) (n1 — ma) - - (g — ).

Therefore the claim follows by induction. O
We are now in a position to prove discrete spectrum.

Proof of Theorem 4.1. Let X be an infinite minimal subshift with lim sup ( ) < 1.5. Let v, and ug be
the words from Proposition 3.1 with corresponding my, ny and ry.
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A subshift (X, o) is mean almost periodic if for all e > 0 and all z € X, there exists a syndetic set S so
that for all s € S, x and o°z differ on a set of locations with upper density' less than e. Mean almost
periodicity implies discrete spectrum; see e.g. Theorem 2.8 [LS09].

Let z € X. Then x can be written as a bi-infinite concatenation of the words u; and vg. Without loss
of generality, we may assume that x contains ug,; starting at the origin, since for any ¢, j, the set of
locations where o'z and o7 (o'x) differ is just a shift of the set of locations where z and o7z differ. Then,
decomposing x into u; and vy, we have

r=...0pbw1wy...

ol = wwe. ..

where each w; € {ug, vy}

By definition, x does not contain three consecutive uy, i.e. there does not exist j so that w; = w;11 =
wjt2 = uk. We can then decompose z into blocks of the form v,iui, i >0, j € {1,2}, and then each such
block corresponds to a block vé‘luivk (of the same length) within ¢!**z. Therefore, these blocks occur
at the same locations in # and ¢!"*z, and the set of locations at which x and olU*z differ is the union of
such locations in these pairs of blocks. This number of differences in such a pair is d(vkuk, vy 1uf€vk) =
d(vkuk,ukvk), which is bounded from above by 4|u0|223=0 "i (ng — mg)(ny —mq) -+ (ng—1 — mg—_1) by
Lemma 4.17. Since each of uy1 and vg41 contains at most two occurrences of uy, the density of locations
where a uy, starts in = is bounded from above by |v T Putting all of this together,

sEole,
8|ug|2%3=0 "3 (ng — mo)(n1 —ma) -+ (Ng—1 — Mg—1)

d({t = 20 # (o1™l2),}) <

[Vk+1

so by Proposition 4.2,
8Juo| |vk|

8({t LTt 7é (O"Uklx)t}) <

Vg1
where > .7 €, < 0o. Let

|vi

and observe that for all ¢ > 1, there exists 0 < m < |vy| sugh that t — m € S so Si is syndetic. Write
Dy ={t: 2z # (0°x):}. For s € Sk, by the subadditivity of d,

¢
Sk = {ZPHM 4> k,0<p < |UH1|}
ik

14

L L
= = [vi1] Bluollvi|
< Zd(DpJvl\) < Zpld(D‘ﬂA) < Z 0] i < 8|u |Z€z
ik

i=k i=k [Vi1]

Since ) ex < 00, then limy sup,cg, d(Ds) = 0 so X is mean almost periodic, and therefore has discrete
spectrum. O

5 The additive eigenvalue group

In this section, we explicitly compute the additive continuous eigenvalue group for low complexity min-
imal subshifts in terms of the a; and b defined in Section 4, which is the first step in characterizing
the maximal equicontinuous factor. The main tools are the exponential decay already established and
approximation arguments along a similar line of reasoning as in [CP23], though more complex.

Throughout this section, let X be an infinite minimal subshift with lim sup p(¢)/q < 1.5, which therefore
satisfies the conclusions of Propositions 3.1, 3.20, 3.21 and 4.2.

Let uy, and vg, be the words from Proposition 3.1 and (ax) and (bg) as in (2). Any reference to measure
refers to the unique o-invariant measure p. By minimality, the measure of any nonempty open set is
positive.

' The upper density of D C N is limsup n pr %\Dﬁ {M+1,M+2,...,M+ N}|.
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We first introduce the following notation for subgroups of (Q, +).
Definition 5.1. Let 0 < ¢, < oo for each prime p € P. The (¢,)-subgroup of Q is
Qu,) =1¢€Q:3p1,...,pt € Psuch that py---pig € Z and [{1 <i<t:p; =p}| <4, for all p € P}

That Q) is a group under addition is easily verified.

The purpose of this section is to prove the following explicit description of the eigenvalue group. Our
description requires introducing the following standard notation.

Notation 5.2. For a prime p and a € Q, a p-adic number, the p-adic fractional part is

{a}p = i aip’

t=—m

o0
where a =%~

Note that {a +a'}, = {a}, + {a’}, (mod Z) and that for ¢ € Q, ¢ =3_ {q}, (mod Z).

atp is the p-adic expansion of a,.

Theorem 5.3. For each prime p € P, let

|vglag - - - ag
ged(logl, [ve1l])
Rx(p) =sup{t > 0: p" divides ged(|vk|, |vks1|) for some k > 0}

Lx(p) =sup{t > 0:p" divides for some k > 0}

and let Qx be the (Lx(p))-subgroup of Q and Rx be the (Rx(p))-subgroup of Q. Let

A where \ = do

o= —_—
oA+ ool (1 — ) o + 1o

Then there exist e, € Qp for each prime p such that

EX:{qa"‘z{qep}p""riQEQX»TGRX}~

p

In addition, all measurable eigenfunctions are continuous.
Before proceeding, we establish that the Lx(p) are integers.

Lemma 5.4. For all k > 0, ged(|vk|, |vk+1]) divides |volag - - - ay.

Proof. Set go = ged(|vol, |uo| — |vo]) and gr = ged(|vk|, |vg—1]) for k& > 1. Then go divides |ug| and

k1l = Gk gcd(bk% + aki‘v’;gl‘,%) = gk gcd(akilv’;;ll,%) and since gcd(%7 L;:I) =1, then g1
divides gray so by induction gp41 divides |vglag - - - ax for all k. O

5.1 Additive continuous eigenvalues

Our first step is establishing the existence of a family of irrational additive continuous eigenvalues, all of
which are explicitly defined in terms of generalized continued fractions using aj and bg.

Proposition 5.5. A\ and « as defined in Theorem 5.3 are irrational.

Proof. Suppose that A € Q so 0 < A = % for some p,q € Z with p,q > 0. Define the sequence (px) by
P

p_o2 =qand p_; = p and for k > —1, pry1 = —br+1pr + ak+1pk—1. By construction, A = Ay = p%;.

tQ — _Pk - _ Ak41 _ [T
Assume that A\ = P Then, since g1 = bk+1+b:+k2++2... =
Pk+1 Pk—1 Ak+1
= —bgt1 + apt1 bry1 + = Ak+2
pk )\k+
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so by induction, Ay = p”’“ for all k. In particular, pr > 0 for all k since A\ > 0 and p_; > 0 so if there

k—1

were a minimal k such that py < 0 then that Ay < 0).

Now observe that

Ph41|Vkt1] + Pr|Vit2| = =bk1 Pk |Vk41] + Gh1Pr—1| V1| + Prebrt1|Vk41] + Prar41|vk]
= ap+1(Pr|vr] + Pr—1|Vk+1])

and since p_1(|ug| — |vo|) + p—2|vo| = pluo| + (¢ — p)|vol, by induction then
Pr+1|Vk41] + Prlvrt2| = (pluol + (¢ — p)lvol)aoar - - aps1 < (pluo| + (g — p)|vol)€xr1|vi+1]
where €x41 is as in Proposition 4.2. Since pg, pr+1 > 1,

[Vk41] < Prg1|Vit1| + Pr|vira| < (pluol + (¢ — p)|vol) €kt1|vi+1]

but then .
< €xy1 — 0
pluol + (g —p)lvo| ~ "
which is impossible. Therefore A ¢ Q hence a ¢ Q (as |ug| > |vol)- O
Definition 5.6. For all k > 0, define
Qg 1
M=r——andapy= ———
be + 555 |vk| + [vk—1]Ak

(where |v_1| is defined as |ug| — |vp|, obtained by reversing the recursion from Lemma 4.4).

The eigenvalue family is the set {ax}r>0.

We adapt the argument of Host [Hos86] using ‘approximate eigenfunctions’ and deduce convergence to
an actual eigenfunction from the exponential decay of Proposition 4.2.

Proposition 5.7. For k > 0, oy is an additive continuous eigenvalue.

Proof. Fix kg > 0 and let k > ky. Every z € X can be written in a unique way as a concatenation of uy
and vg; we will refer to such as a k-concatenation. Let By be the set of z € X such that x has ug or vy
at the origin when written as a k-concatenation. Let j(x, k) be the minimal j > 0 such that o ™72 € By.

Consider  which has uy, at the origin. If r;, = 0 then one of o~ (™x=Dlvslg or o= =Dlvrly js in By1.
If 7 > 0 then one of o~ (mstrE=2lvkl=lukly op g—(ktre=2)lvel=luklg s in By ;. For x that has v at the
origin, there exists 1 < p < ny + r such that o~ Pkl or gPlvEl=lurly ig in Bi41. Therefore for every
x € X, we have j(z,k+1)—j(z, k) = plug| or j(z,k+1)—j(z, k) = p|lvg| + |ug| for some 1 < p < nyg +7rg.

Since |ug| = |vk| + (Mg—1 — Mmg—1)|vk—1], in the latter case, j(z,k + 1) — j(z, k) = (p + D)|vg| + (ng—1 —
mg—1)|vk—1|. Therefore

j(@,k+1) = j(z, k) = plv| + p'|vi—1] (1)
forsome 1 <p<np+ryandp =0o0rp =ng_1 —mp_1 < ng_1.
Let fi(z) = exp(2miay,j(z, k)). Each fi is ‘approximately’ an eigenfunction: fi(ox) = exp(2miay, ) fr(x)
except when oz € By, and p(Byg) — 0 (since 0By, are disjoint for at least 0 < i < |vg| and |vg| — 00).
Observe that

|fi(z) — fry1(x)] = |exp(2miag,j(x, k) — exp(2mio, j(z, k + 1))]
= | exp(2mia,j(x, k))(1 — exp(2mia, (p|vk| + p'|vk—-1]))]
= |1 — exp(2mia, (p|vk| + p'|ve—1])]
< |1 — exp(2miag, plvk|)| + | exp(2micg, plvk|) — exp(2mian, (p|lvk| + p'|vk—1])|
= [1 — exp(2miak,pvk|)| + |1 — exp(2micu,p'vg—1])]
< 2m{ag,plok|) + 2m (g, p'lvg—1])-
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Suppose we knew that there exist €}, > 0 with Y ¢} < oo such that maxi<p<p,+r, (QroP|VK]) < €}
Sirlge (oD’ lvk—1]) = 0 when p’ = 0 and (og,p'|vk—1]) < €),_; when p’ > 0, then we would have
Yoo r [ feri(x) = fru(@)| < Ype i (€, + €,_;) which tends to zero uniformly over z € X. So then
the fi(z) are uniformly Cauchy in the sup norm, and as each fi(z) is continuous, they converge to
a continuous limit f(z). Since fx(ox) = exp(2miau,)fr(x) on sets approaching full measure (and the
unique invariant measure necessarily has full support), by continuity f(cz) = exp(2miay,)f(z) for all z.
We will now show that such e}, exist.

Set di, = |Vktko+1| for k > —2 (if kg = 0 then set d_s = |ug| — |vo| as v_1 is undefined). Then
di+1 = bitko+1dk + Qftko+1dk—1. Define sequences (¢x) and (ex) by cca =1,¢.1=0,e_2=0,e_1 =1
and the same recursion relation cy41 = bgro+1Ck + Qhtko+1Ck—1 and €x11 = bpgky+1€k + Qktko+1€k—1-
Standard continued fraction theory shows that 2—’; — Ak,- Since the sequences are all defined by the
same linear recurrence relation, dp = d_scy + d_1ey, for all k. Then

1
.,
d_i+d_ohy, °

—1
lime—k = lim (d_1 + d_gck) =(d_1+ d—2/\ko)_1 =
dp €L

It is easily verified by induction that ex1dy — exdis1 = (—1)F|vry—1|are A1 - - - Ak kr1 for all k.

€2k+1

Do approaches ay, from

Since ej41d — erdi41 alternates sign, ;27: approaches ay, from below and

above. Therefore
Ck

di

€k+1 €k

diy1 dg

_ |vke—1lak, - arg Rt
drdr+1

Oéko —

[Vkg—1]kg Qg+ k+1

Then |ag,dr, — €| < s

so for any p,

p|Ukofl|ako C o Qktko+1
di41

(pakydi) <

By Proposition 4.2, there exists e; with " €, < oo such that

g kg1
a4 < €ktko-

d 2b51142)d
For p <mpi1 4+ 11 < 2mpy1 + 2+ rpe1 < 2bge1 + 2, we have Cflfl < (;:Jiiiwik)k < 4. Then

Py |Vko—1lektho 4 [Vko—1]

(pak,di) < Doty ang1 = Yag-- gy F 0"
Setting €}, = 4|vg,—1](ao -+ - agy—1) " €x+r, completes the proof. O
Corollary 5.8. « is an additive continuous eigenvalue.
Proof. Since A\ = boiioh’
A 1 1
“ Tuol + (ol — ool ~ A=Tuo] + [uol — [eo] B2 fug] + [ug] — [vg]
il 0 = agay. O

~ bolvol 4+ Arlvol 4+ ao(luol — [vol) — |u1| + Arlvol

By Proposition 5.7, « is a continuous additive eigenvalue so « is as well.

Corollary 5.9. There is a continuous factor map (X,0) — (S', R,) where R, denotes rotation by
exp(2mia)). The same holds for (S*, Ry, ) for each k.

Proof. Let fo : X — S' be a continuous eigenfunction for exp(2micr). Then f,(cx) = exp(2mic) fo ()
S0 fo is the factor map. The same reasoning applies to . O

Next we prove that every element of QQx« is, up to a rational, an element of the additive continuous
eigenvalue group.
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Proposition 5.10. For all ¢ € Qx there exists ry € Q such that qa 414 € Ex.

Proof. Since A\ = bk‘:‘ﬁ’ we have that A\y41 = ak)\lzl — by,. Therefore, for £ > 1,
1 1 Ak A
oL = = — = =
i [Urs1] + vkl A1 bglog| + axlvs—1| + axlve| At — brlvk]  ar(lve| + [ve—1|Ax) ay
We claim now that ap\, = (—1)’“‘1)(]'5%04 + rg for some r, € Q. Clearly aghg = a = %a + 0.
Observe that
A A1 ao)\il —bo ag — bo\
« = = =
T Jon + Jvold — bofvol + ao(Juol — [vol) + @A [ve| — bolvol — ao(Juel + (Juo| — [ve)A)
so we have
aih 4 |v1] L wol(ao —boA) + [v1|A = ao([vo| + (Juo| — |vo[)A)
1A1 —— =
lvolao |vo| aolvol(Jvol + (Juo| — |vol)A)
_ “boAlvol + boAJvo| + aoA([uo| — Jvol) — ao(fuo| —JvoX _
aolvo|(Jvo| + (Juo| — |vol)A)
Assume that ap\;, = (_1)k\vola‘ov~+‘ak_1a + 7, and likewise for k — 1. Then
A ak)\lzl — by ap — by brag g
Q1 Ak+1 = - = =qp — ———
be|vi| + arlve—1] + aglvi Ay = beloe]  an(jor] + [vk—1]Ar) ak
_ k-1 Ak-1 bpode (—1)k-1 V-1 o TEEL Ly bi v o _ DETE
ap—1 ag |U0|a0"'ak—1 ap—1 |U0|110"'ak ag

(_1)k+1ak|vk—1| +bk|’0k|a+ Tk—1 biTk = (-1 k+1 |Vk11] a Tk—1 biry
lvolao - - - a ag—1  ag lvolao - - - ax ag—1  ak

so by induction, the claim holds. Then

_ M (—1)F |vk| at Tk O
ai |volao - - - ax ar

We now prove that all rationals with denominator an eventual common divisor of |uy| and |vi| are
additive continuous eigenvalues.

Proposition 5.11. A rational number m/n is an additive continuous eigenvalue if n eventually divides
the lengths of both uy and vk, equivalently the lengths of both vy and vi41.

Proof. Assume that n divides the length of u; and v for some k. Let B be the clopen set of x € X
such that as a k-concatenation, o°"x has vy or ui at the origin for some integer s. Then ¢"B = B,

and so e2™/" has continuous eigenfunction ZZ;S Xok €27 /™ Therefore n~! is an additive continuous
eigenvalue so m/n also is. O
Proposition 5.12. The group of additive continuous eigenvalues Ex contains {ga +rq +1r : ¢ €
Qx, re Rx}.

Proof. This is an immediate consequence of Propositions 5.10 and 5.11. O

5.2 Additive measurable eigenvalues

We now prove that every additive measurable eigenvalue is contained in Qxa + Q.
Lemma 5.13. Define Rokhlin towers by, setting uj, such that uy = uj vy,

By, ={x € X :x as a (k+ 1)-concatenation has vg+1 at the origin, possibly as a suffix of uk+1},
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By, ={x € X :x as a (k + 1)-concatenation has uj_ | at the origin, as a prefix of upi1},
and Ty = | 25" 0By and T) = | |} 17117 09 By

Then for all k, T, UT], = X and p(Ty) > 5.

Proof. Every x € X is uniquely decomposable as a concatenation of uy41 and vy hence of uj, 41 and
Vk+1 so the levels of the towers are disjoint and union to the entire space. Since ngy1 < 2mp41 + 2,

[ugs1] — vk = (e — me)|vg] < (mp + 2)|vg| and |vg1] = (my — D)]vk| + [ur| > mgfvg|, then
lukﬁzll;lf‘k*ll < m/jl:Z < 3. Therefore (1) > +p(T), U TY). O

Proposition 5.14. Let v be an additive measurable eigenvalue. Then there exists ¢ € Qx and r € Q
such that v = qo +r.

Proof. Let f be a measurable eigenfunction with eigenvalue exp(27ivy). Let By and By as in Lemma
5.13. For each k, define

[vet1]—1 [ukt1]—lve+1]—1

fe@) = Y @(/GJ_kadu>nmk<z>+ > @(/ﬁﬂfdu) 1ys 5, (2):

7=0 7=0

Let Fj be the o-algebra generated by the sets 07 By, 0 < j < |vp41], and 07B}, 0 < j < |uj,4|. Since
w(Tp UTY) =1 and p(By), w(By,) — 0 (since |ugy1| — |vk+1| > |vk| = 00), the o-algebras Fj, converge to
the o-algebra of all measurable sets. Since each fi is Fy-measurable and E[f|Fx] = E[fx+1|Fx] = fx, by
the Martingale Convergence Theorem, f; converge almost everywhere to f.

For all £ > 0, we have that olvrteeil gakes every occurrence of vi4,11 to an occurrence of vi4441 except
those immediately followed by an occurrence of g y1. Therefore olUs+t+1l takes every occurrence of
Uk41 N A Vg y¢41 to an occurrence of vg11 except for those in a vg44y1 immediately followed by a g y¢41-
Likewise, for 0 < igy¢41, gik+erlvirerl gakes every occurrence of a vi41 in a vgy¢y1 to an occurrence of
V41 except for those in a vi4441 less than i 4441 words prior to a wgqsy1-

For any (k+t+2)-concatenation, since ug1¢yo has vgy4o as a suffix, the concatenation is a concatenation

ME4t4+1, 7 Nk4t4+1, ./ . Tk+4+t+1_ ./ / .

of v 1 Uy and vk+t+} Uyt piq apd, i e > 0, 00 Wy V\//here Uj 441 1S the prefix of
Uk+t+1 such that Uk+t+1 = W Vk4-t+1- Since Nk+t+2 S 2mk+t+2 + 2, then |uk+t+l| S |Uk+t+1| + 2|'Uk+t| <
3|vk4t+1] so at least ; of the vy41 appearing in a (k 4 ¢ + 1)-concatenation are in a vg4y¢41.

Let {i)} such that 0 < ix4+ < max(1,0.5b;1¢). Write d, = |vgy1|. For k + ¢ such that by > 1, then

: byt — dre (1 1
plott e B A By) > 2L R (2B ) > = u(By).
Dtt 4 8
For k such that by4+ = 1, meaning 74 = 0 and my; = 1, we have that olorteril = glunsel takes every
occurrence of vy which precedes a uyy¢ to the vgy; which is a suffix of that wgy¢. Since ng4, < 4, at
least % of the words in a (k + ¢ + 1)-concatenation are ugy+ so at least % of the vi4; are taken to a vi4y
by olvk+e+l (since ugy¢ is always preceded by vgy¢, possibly as a suffix of another ug¢). Then,

1
p(o® By N By) > 1A(Bk).
Then fi(c+tdk+tx) = fi.(z) for a set of measure at least £4(T) > 5. Since fr — f almost everywhere,
there is then a positive measure set such that for any sufficiently small € > 0 and almost every z in the
set, there exists k so that for all ¢, |f(o'k+tdk+tz) — f(z)| < e. Therefore exp(2miyirdy) — 1.

For large enough k (say k > ko), (idp7y) < 1o5 for all 0 < i < max(1,0.5b;41). Suppose that for all ¢ € Z,
we have |C - dk’)/| > 005dfﬁ > 0-05(2bk+1 + 2)71 (using that dk+1 = bk+1dk + ak+1dk_1 < bk+1dk +

(k1 + 2)dk—1). Then [max(1, [0.5bx41])e — max(1, (050541 ])dpy| > 0.0252C05Geanl) > ey

contradiction. This implies that for all £ > ko, there exists ¢}, € Z, so that ‘fy — % < 0.05(dp41)7 L.
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We will prove that ¢, = bry1c), + agyi1¢),_, for all k > ko.
For k > ko, let ¢, | = bxr1¢), + agr1¢),_;. By the above,

/
k
Y dy

/ dk+1

C/
k—1
di+17 — ¢
dy,

"y - < 0.05(dy,)"* and < 0.05(dpy1) "t s0 < 0.05.
k—1

Since |dk—17 — ¢},_;| < 0.05dg_1(dx) ™,

0.05a+1dk—1 < 0-05(bk + 2)dk_1

0.05(3) = 0.15.
i i < 0.05(3)

|ap1dp—17 — ars16,_q | <

Similarly, since |dgy — ¢},| < 0.05dy(dk+1) 7",

_ / . dy_ .05(b 2)d_
1 trsrdiy <chk—1)‘ < 0.05a;+1dk—1 < 005( Lk + ) k—1 < 0.15.

d _ di—1
Qp+10k—17 — CpOk+1
dy,

dp, di41 o di41
Therefore,
dy, Apg1dp— dj.—
1 —+1 1 / k+10k—1 / / / /
Ck = Cpg1| = |G | bhp1 + ——— | = br16 — Apt1C, 1| = [CRAkt1—— — A1,
dy, dy, dy,
di—1

A

/ /
CLOk+1—— — Qp41dp—17Y| + |@rt1dE—1Y — apy1¢,_q | < 0.3.
dy,

Combining with |dyy — ¢,.| < 0.05d,(dg41) " via the triangle inequality yields
k +

diy1
dy,

/ dk+1 "

At ¢ —c
F %

dg+17 — ¢ . |dry — i + 0.3 < 0.35.

+

<

|dy417 — iy | <
Recall that by definition,

d
ML 0.05.

c/
‘7 — KL < 0.05(dpy2) ", and so |dik+17 — Chyr| < 0.05

di 41

dr+2
This implies that ¢, = ¢}, ; (since they are both integers).

For —2 < k < ko, define ¢j, € Q using the recursion relation ¢} ; = bg41¢), + ary1cj,_, in reverse. Since
the recurrence relations defining cg, eg, di, and ¢, are the same linear relation, ¢}, = ¢_,c; + ¢ ey s0

B c, lim c gk +c_jex ek A+
=lim = = = .
U d er d_scn+daern  dortd,
Then
c c d_ c d_o\
o -1 _ -1 1 _ —1 . 2
Yt A, M A d, T d_l( d_2)\+d_1)
c c ,d_ c
/ —1 ’ —1%-2 —1
- 11— d a) = ( _ ) £
a4 i, ( Q) c i, a+ i,

meaning that
d_iy= (legdfl - Cle,Q)Ot + C/,1-

It is easily seen by induction that

/ / / /
Crdr+1 — ckﬂdk CpChk+1 — Chy1Ck

Cl,gdfl - CL1d72

= (-D%ag- - ap41 =

g1 — _jc 2
and therefore, as c% € Z for k> kyand c.1 =0and c_5 =1,

ao...ak0+l

c od 1 —c jd_g)——2
(Cador = ads) e G s

a0 ak, €7Z.
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Thenfy:qa—f—rforsomeqewZandreQ. O

d_1a9-aky+1

5.3 Rational additive measurable eigenvalues
Next, we establish that the only rational additive measurable eigenvalues are those in Rx.

Proposition 5.15. If a rational number m/n in lowest terms is an additive measurable eigenvalue then
n eventually divides the lengths of both uy and vy, equivalently the lengths of both vy, and vgy1.

Proof. Tt suffices to prove the case when m = 1 and n is a prime power. Assume that p~" is an additive
eigenvalue for a pr}me p and integer r > 1. Then there exists a positive measure set A such that
o?" A= Aand o?  Ais disjoint from A. Let B;, and Bj, as in Lemma 5.13. Since cylinder sets generate
the algebra of measurable sets, there exists Sy C {0,...,|vpp1| — 1} and S} € {0,..., |uj | — 1} such
that Ay = [ |;cgp 07 B U|ljcgu 07 By, has p(Ax AA) — 0. Since o7 A = A, sup, g p(Ap Ao? tA) — 0.

Set AY = Ay NTy. Since u(T)) > + and || 1,7, — L7, []2 — 0, by Lemma 3.6 [Dan16], lim inf (AN Ty) >
$1(A). Then p(AY) is uniformly bounded above zero for sufficiently large k.

For p" < j < |vgqal, if j € S} and j —p" ¢ Sy then 0iB, C AY and oI P"By N A, = 0 so 0By,
AV \ 0" Ay. Therefore, since ju(AY) = |S¥|u(Bs),
pr AR\ " Ay) _ pm | p(Ax )\ o? Ay)

+ < o AT TR L)
Skl u(AR) |1S¢] p(AR)

N

1 . . v r v
1571 Hi <lvkgil 15 € SE,5—p" &SP} <
k

so gl €Sy i —p" €SP = 1.

Choose ty, € Z such that p"ty = |vgy1|+ £ for some 0 < ¢, < p”. Then oP" % By, C o'* By, UJE’“B;C. Since
the set of x € X such that x has v,% at the origin is positive measure (as otherwise every z would be a
multiple of uy), the same reasoning as above gives that ﬁH] €Sy j+L,e S — L

k

Since 0 < ¢, < p", there exists a constant 0 < ¢ < p” such that f;, = ¢ for infinitely many k;
and we may assume { is the minimal such constant. Let 0 < z < r maximal such that p* divides
£. Then there exist integers a < 0 and b > 0 such that ap” + b = p*. As a and b are fixed and
7|S’1',;_||{j €Sy i jH+lj—p € S};Z}\ — 1, we have ‘S—lzl\{j €Sy tj+p* eSS =1

Let Sy, = {j € S, : j = jo + [uj, 11| — vk, 1] for some 0 < jo < |vg, 41| —p*} and S, = {j € S}, :
J = jo + |uy, 1] — 2Jvk, 1| for some 0 < jo < |vg, 41| —2p*}. Since |ug, 11| < 3lvk, 41| (Remark 3.14),
1Sk, \ (Sk, L SK,)| < 3p*.

Since u§€1 41, when it appears at the start of a ug,41 in a concatenation, is always followed by vy, 11,
Ulu’“z‘“lB;ﬂ C By,. For j = jo+ |u}, ;1] — [vk,+1] € S}, , then o? *igI B} C oP +90 By, which is a level
in Ty, (as jo < |vk,41| — p*) and for j = jo + [u}, ;1| — 2Jvk,41| € i, then o? tkigIB] C o2 0By,
which is also a level in T},.

Since pu(o? ti Ay, AAy,) — 0, then @Hj €S, Pt +J—|up 4| € Sp} — 1 and @Hg’ ST
2p"t, +J — |up, 1| € SEH — 1. As @H] €Sy j+p*e Sy} — 1, then ‘S—il\{j €S, j+p e
Sk, | — 1 and likewise for S/ so @HJ €Sy j+pP eSSy — 1

Then pu(Ax, AoP” Ay,) — 0 meaning that u(AAcP A) = 0. By choice of A then z = 7. Therefore

P'ti, = |vg,+1] + " so p" divides |vg,11]. As € was chosen minimally, then p"t; = |vg41]| + p" for all
sufficiently large k so p” divides |vg| for all sufficiently large k. Since |ugt1]| = |vgt1| + (g — mi)|vkl,s
then p” divides |ug| for all sufficiently large k as well. O

5.4 The structure of the additive eigenvalue group

We are now ready to establish the relationship between Qx, Rx and Ex.
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Proposition 5.16. There exists a homomorphism ¢ : Qx — Q/Rx with ¢(1) = ¢(0) such that ¢ —
qa + ¢(q) is an isomorphism Qx — Ex/Rx.

Proof. By Proposition 5.10, for every ¢ € @Qx there exists r, € Q such that goo +r, € Ex. Let
#(q) = rq + Rx. If r;7" € Q such that g+ r,qae + 1" € Ex then r — 1’ € Ex NQ = Rx so for
every r € Q such that ga + r € Ex, we have r € ¢(q). Since o € Ex, ¢(1) = Rx = ¢(0). Since
Tgrqg —Tq—Tq¢ =@+ )a+rerqy — (qa+1¢) — (a+1y) € ExNQ = Rx, ¢ is a homomorphism and
therefore g — ga + ¢(q) is a homomorphism Qx — Ex/Rx.

By Proposition 5.14, every v € Ex is of the form ga + r for some ¢ € Qx and r € Q so ¢ — ga + ¢(q)
is onto. Since a ¢ Q, the kernel of ¢ — ga + ¢(q) is {0} meaning ¢ — qa + ¢(g) is an isomorphism. [

To characterize the structure of Ex, we need to establish the nature of such homomorphisms ¢.

Proposition 5.17. Let 0 < {,,1, < 00 and ¢ : Q) — Q/Q,) be a homomorphism such that
#(1) = ¢(0). Then there exist e, € Q, for each prime p such that for all ¢ € Q(,),

¢(Q) = Z{qep}p + Q(rp)-

Proof. Since ¢(1) = ¢(0), there exists a homomorphism ¢ : Q,)/Z — Q/Qy,) such that ¢(q) = (j~>(q+Z).
As Q,)/7Z is an abelian torsion group (since it is a subgroup of Q/Z), it is isomorphic to the direct
sum of its p-power torsion groups. Concretely speaking, adopting the convention that p~>*°Z = Z [1/p],
the map i : Q,)/Z — @p p % Z/Z given by i(q + Z) = ({¢}p + Z), is an isomorphism with inverse
map given by (z, + Z), — Zp xp + Z. Likewise, Q/Q,,) is a torsion group and j : Q/Q.,) —
DZ[Vo] /pZ by j(r+ Q) = ({r}p +p~"*Z), is the isomorphism. As p-power torsion elements
must map to p-power torsion elements, there exist homomorphisms (;)p cp~%Z)7 — T.[\)p| /p~"r7Z such
that = j 1o (EBQEP) o 1.
For p such that r, = oo, qz~5p maps to the trivial group so ggp(p*t) =0 for all t < ¢, and we set e, = 0. For
p such that 7, < co and £, = oo, for each n > 0, let ¢, , € ¢p(p~" + Z). Then p"c,, € ¢p(Z) = p "7
and Pty pim — PPy € PP Gp(pT T+ L) — Gp(pT" 4 7)) = p"dp(Z) = p""*Z. Then p'c,.,, is
a p-adic Cauchy sequence so p™cpn, — €, € Qp and since p"c, , € p~"?Z, ey € p~ P Lp.
Let e, = ZZ—T,, epp’ and p'ey,, = Zfi_rp dp nep' be the p-adic expansions. Since p"t™c¢p pnim —
Plepm € PVTPL, epy = dppy for t < m —rp 50 ey = dpnyr,s for t < m. Then p"{p~"ey}, =
n—1 t n—1 t N[ —N NFT : —n T
te—ry €paD" = Doy Ay, ap’ = p{p7"p 2y ngr, }p meaning that {p~"ep}t, = {P"?Cpntr, }p-
Now p"?¢pnir, = Cpn € ép(Z) =p~ "7 s0 {Prepnir,tp — Cpn €D L
Since we have dealt with all possibilities for p, for every p and n we have {p~"ep}, € qu(pfn).

For p such that £, < oo and 7, < oo, let ¢, 0, € ¢~>p(p4p) and set e, = pépcp,gp € p~"PZ. For n < {p,
{p~"eptp = "% cpe, }p = P "epu, }p € pZP’"&p(p*ep) = g?)p(p*”). Therefore, for all p, there exist
ep € p~"?Z, such that {p~"e,}, € ¢,(p~") for all n < ¢, meaning that ¢,(z + Z) = {ze,}, +p~"rZ for
all x € p~%Z. Therefore for all ¢ € Q)

o) =d(a+2) =i o (D) 0ila+2)
=Jj"o (@ Qgp) <({Q}p + Z)p) =i (({{Q}pez)}p +p7rpZ)p) ’

Since ¢—{q}p € Zp and {e,}, € p~"*Z, {(¢—{a}p)ep}p € P Z. As{qep}p = {(¢—{a}p)entp+{{d}pen}n
(mod Z), then {ge,}, = {{¢}pep}p (mod p~"rZ). Therefore

oa) =5 ((Hakeoly +0772),) =57 ((aepdo +9772),) = Slae by + Q. O
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Now we are in a position to prove the explicit description of the eigenvalue group and verify that all
eigenvalues are continuous.

Proof of Theorem 5.3. Consider any additive (measurable) eigenvalue v. By Proposition 5.14, there exist
g € Qx and r € Q so that v = ga + . By Proposition 5.12, ga + 7, is an additive (even continuous)
eigenvalue. Therefore, r —r, is a rational additive eigenvalue, which must be in Rx by Proposition 5.15,
and soy =qa+r,+ (r—ry) € {ga+r,+7r : ¢ € Qx,r € Rx}. Therefore, by Proposition 5.12,
is also an additive continuous eigenvalue. Since all eigenspaces are one-dimensional by ergodicity of the
unique o-invariant measure y, all eigenfunctions of v are continuous.

By Proposition 5.16, Ex = {ga+ 7 : r € ¢(q)} for some homomorphism ¢ : @x — Ex/Rx. By
Proposition 5.17, there exists e, € Q, such that Zp{qep}p € ¢(q) for all ¢ € Qx. Therefore Ex =
{ga+ > {aeptp +7: 0 € Qx,r € Rx}. 0

6 The maximal equicontinuous factor

In this section, we characterize the maximal equicontinuous factors of low complexity minimal subshifts
as products of odometers and rotations on abelian adelic nilmanifolds. We begin by describing the
odometers and nilmanifolds in question.

Definition 6.1. Let Ax = {(as, (ap)) € A : a, € p~LxP)Z} with the convention that p~*Z, = Q,
and identify @ x with its diagonal embedding ¢ — (g, (—¢)) as a lattice in Ax. The abelian adelic
nilmanifold associated to X is My = Ax/Qx, which is equipped with the action of translation by
an element of M x equivalent to translation by the adele (a, (e,)) where o, e, are as in Theorem 5.3.

Remark 6.2. The simplest example is when Lx(p) = 0 for all primes p, which for instance happens
for any Sturmian subshift. Here Ax = R x Hp Z, and Qx = Z so upon quotienting, Mx =Ax/Qx =
R/Z = S* and so the MEF is an irrational circle rotation.

An example of a p-adic MEF is when Lx(2) = co and Lx (p) = 0 for p # 2. Here Ax = Rx Qg x Hp>2 Ly
and Qx = Z['/2]. Upon quotienting, [],.,Z, disappears, and so Mx = Ax/Qx = (R x Q2)/Z[Y/2] =
M. Therefore, the MEF is a rotation of M5 as described in Section 1.5. This MEF structure occurs
for Example 1.2, but could also occur for a subshift where r, = 1 and ny = my + 1 for all k.

Definition 6.3. The odometer associated to X is
Ox = im Z [yed(onsal, onl) 2
k—o0
under the natural (coordinatewise) +1 action where v; and vj41 are the words from Proposition 3.1.

Theorem 6.4. Let X be an infinite minimal subshift with limsup p(q)/q < 1.5. Then X is measurably
isomorphic to its maximal equicontinuous factor Mx x Ox.

We start by characterizing the MEF as the group of characters on the multiplicative eigenvalue group.

Proposition 6.5. The mazimal equicontinuous factor of X is E;\( equipped with Haar measure under
the action of multiplication by the identity character.

Moreover, (X,o) is measurably isomorphic to é/‘)\( under the action of multiplication by the identity
character.

Proof. By Theorem 2.21 in [BK13|, the maximal equicontinuous factor is homeomorphic to 8/)\( under
multiplication by the identity character. Since X has discrete spectrum, Theorem 2.1 implies X is
measurably isomorphic to £x under that action. O

Next we establish that the space of characters is a direct product of the spaces of characters on ()x and
Rx /7Z. By slight abuse of notation, for x € £x and v € Fx, we will write x(y) to mean x(exp(2mivy))
and treat x as a character on Ex which maps Z to 1.
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-

Proposition 6.6. The space of characters g;\( is isomorphic as a topological group to 6/2; X Rx /7.

Let e, € Qp and a be as in Theorem 5.3. The action of multiplication by the identity character on
Ex maps to the action of multiplication by exp(2mi(qa + Zp{qep}p)) on Qx and multiplication by the

o —

identity character on Rx /Z.

Proof. By Theorem 5.3, Ex = {qa + _ {qep}tp +7:q € Qx,r € Rx}. Let x € Ex. For q € Qx, set
xq(q) = X(qa+zp{q6p}p)- Since > {(¢+q")ep}p =D {aep}p +>_{d'ep}p (mod Z), and since x(1) = 1,
xQlg+4d') =x (qa + Z{qep}p) X (q/a + Z{q/ep}p) X (Z{(q +d)eptp — Z{qep}p - Z{q,ep}p>

= xe(@)xq(d) 1

S0 xqQ € é} Therefore for any ¢ € Qx and r € Ry,
x (g0 + " {aep}p +7) = xal@)x(r)

SO X — XQ - X| Rx defines a homomorphism 5/')\( — Cj)\( X Rx/Z. As every such product of characters
defines a character on £x, the homomorphism is onto and it is easily seen to be continuous and have
trivial kernel.

The action of multiplication by the identity character on £x on x = x¢ - X‘ Rx is

(xt) (qa + Z{qep}p + r) =X (qa + Z{qep}p + 7“) exp (27Ti (qa + Z{qep}p + 7“))
= xq(q) exp <2m' (qa + Z{qep}p)) X‘Rx (r) exp(2mir). O

Our next task then is to characterize the character groups of Q) and Q. )/Z. We begin with an
observation connecting such characters to p-adic integers.

Lemma 6.7. Let 0 < ¢, < oo for each prime p and x € Cj(;. Then there exists a unique 6 € [0,1) and
unique zp € Zp with 0 < z, < p» when p < 0o such that for all ¢ € Q,),

x(q) = exp (27m' (q9 + Z{qu}p)) :

Proof. Let 6 € [0,1) be the unique value such that x(1) = exp(27if) and let x'(¢) = x(q)/ exp(2miqh).
Then X" € Q) and x'(1) = 1. For 0 <t < 4,

()" = <X<p_t>))pt = MU

exp(2mip—to exp(2mif)

so there exist unique integers 0 < z,; < p' such that x'(p~") = exp(2wip~t2,). Since (x'(p~'71))P =
X' (p~"), we have z,,41 (mod p*) = z,,. For p such that ¢, < oo, set z,; = zp, for t > £,. Then
Zpt = 2p € Lp and 0 < 2, < pép when £, < o0.

Since {p~*2z,} = p~'zp4, then x'(p~") = exp(2mi{p~'z,},) for all p and ¢t < £,. Let ¢ € Q(y,). For each
prime p, ¢ has p-adic expansion Zfifm qp.p" for some m < £, so

-1 1
X(atp) = ] X(@pepr') = J[ exp@ri{apin'2p}y) = exp(2mi{qz,},)

t=—m t=—m

and as ¢ = Y {q}, (mod Z),
X(q) = exp(2migh)x’ (q) = exp(2migf) [ [ x'({a})

= exp(2miqg0) H exp(2mi{qzp}tp) = exp (2m’ (q9 + Z{qz,,},,)) . O
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We can now characterize the character group of @ x as an abelian adelic nilmanifold.

Proposition 6.8. Let 0 < ¢, < oo for each prime p. Let Ay = {(a0,(ap)) € A 1 ap € p“rZ,}
with the convention that p~*°Z, = Q, and identify Q(,,) with its diagonal embedding q — (q,(—q)) as a
lattice in Ay,). Then there exists a topological group isomorphism

Quep = “/Q

Proof. For (a0, (ap)) € Aw,), et Xa (a,) € Qe,) DY
Xaoo,(ap) (@) = €xp (27m‘ (qaoo + Z{qap}p>) :

The mapping A ) — (,j((:) is clearly a continuous homomorphism and by Lemma 6.7, it is onto.

Let (aoo, (ap)) € A, such that xq__ (4, is the trivial character. Then exp(27i(aco + > _{ap}p)) =1 so0
(oo = — Y {ap}p (mod Z) hence as € Q. Then aoo = Y {0}, (mod Z) so

Xaw (a,)(4) = €xp (27m' (qaoo + Z{qap}p)) = exp (27m' (Z{qaoo}p + Z{qap}p))
— exp (270 > {ala00 + @)} ) = X0,y 1) (0):

Now aoo +-ap = ap — Zp'{ap’ }pr (mod Z) = (ap —{ap}y) "’Zp/;ép{ap’ }p (mod Z) so, as {ap }p € Zy for
p’ # p, we have aso + a, € Z,. By Lemma 6.7, there is a unique 6 and z, such that the trivial character
is exp(2mi(qf + > {qzp}p)) which clearly must all be zero. Then a, + as = 0 for all p which is precisely
the statement that (aeo,(ap)) = (deo; (—0o0)) € Q(r,) When embedded diagonally so the kernel of the

map A £p) — Q(g ) is Q(gp) O
Likewise, we can characterize the character group of Rx/Z as an odometer.

Proposition 6.9. Let 0 < ¢, < oco. Then Q(gp)/Z equipped with multiplication by the identity character
is isomorphic as a topological dynamical system to the odometer

LZ/H prin(ktn) 7.

Proof. By Lemma 6.7, any x € Q(/gp)\/Z corresponds uniquely to # €[0,1) and ap € Z,. Since X( ) =
we have § = 0. The p-adic expansions a, = Y o 0 Gp, ¢p" have the property that a, ;1 (mod p') =
so the values a,; uniquely determine a point = € 0(gp via the Chinese Remainder Theorem.

Ap,t

Conversely, given z € O, if one defines a, ; as above, then a,; — a, € Z, which uniquely determine

a character on Q(y,)/Z. We have then described a one-one onto mapping from Q,)/Z to O, which
is easily checked to be continuous from the topology of pointwise convergence to the natural topology.

Let (a,) correspond to x and ¢ be the identity character. Then for ¢ < £,,,
(x)(p™") = exp(2mip™")x(p~") = exp(2mip~") exp(2mi{p~"a, },) = exp(2mi{p~"(a, + 1)},).

As the natural action on O,y maps to the action ay, ¢ +— ap ¢ + 1 (mod p'), the claim follows. O
Finally we are in a position to prove the MEF has the claimed structure.

Proof of Theorem 6.4. By Proposition 6.5, X is measurably isomorphic to its maximal equicontinuous
factor £x under multiplication by the identity character. By Proposition 6.6, Ex x under multiplication
by the 1dent1ty character is the direct product of Q x under multiplication by exp(27mi(ga + > {qep}p))

and Ry / Z under multiplication by the identity character.

By Proposition 6.9, R/X/\Z is isomorphic as a topological dynamical system to Ox. By Proposition
6.8, Qx is isomorphic as a topological group to the abelian adelic nilmanifold M = Az, (,))/Qx and
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the action of multiplication by the identity character on 5/)\( becomes multiplication by exp(2mi(ga +
> -{aep}n)).

Set qo = > {ep}p. Since {ey } € Z,, for p’ # p, we have e, — qo € Z,, and therefore (« + qo, (e, — o)) €

R x H/ Zy © Ax. Since Y {qey}, = > {qqo}p + > -{ale, — q0)}p (mod Z) = qqo + > {ale, — q0)}p
(mod Z), for (a, (ap)) € M, the action on the corresponding character x,__ (a,) 18

Xaw(ap) () €XP (27ri (qa + Z{qep}p)) = exp <2m' (qaoo + Z{qap}p tga+ Z{qep}p))
= exp (27ri (q(aoo +a+q)+ Z{qap}p + Z{Q(ep - qO)}p)>
= exp (27ri (q(aoo +a+q) + Z{Q(ap +tep— CIO)}p))

= Xaos+a+qo,(ap+ep—qo) (9)-

Therefore the action on M is (s, (ap)) — (Goo + @ + qo, (ap + €p — qo)), i.€. translation by the element
(o + qo, (ep — qo)) € Ax which is equivalent as a Q-adele to (a, (ep)). O

7 Orbit equivalence and strong orbit equivalence

Orbit equivalence and strong orbit equivalence are two weakened versions of isomorphism which
are well-studied in dynamical systems. It was proved by Giordano, Putnam, and Skau in [GPS95] that
for minimal TDS on a Cantor set, the so-called dimension group (a unital ordered group K°(X, o)) is
a complete invariant for strong orbit equivalence, and the reduced dimension group (a unital ordered

group I/(\O(X ,0)) is a complete invariant for orbit equivalence.

In this section, we will give a description of the dimension group for our class of subshifts, and prove that
it is always equal to the reduced dimension group. As we do not make use of any nuanced properties
of the dimension groups, we omit definitions and refer the reader to e.g. [BCBD"21] for definitions and
details. The first step in characterizing the dimension groups is to show that our subshifts are balanced
on words.

7.1 The balanced property

Theorem 7.1. Any infinite minimal subshift X with limsupp(q)/q < 1.5 is balanced on words.

Proof. We apply our S-adic decomposition from Corollary 3.3 and Theorem 5.8 from [BD14], which gives
a way to view balancedness for letters in terms of so-called incidence matrices of the substitutions.

For any substitution 7, the incidence matrix of 7 is a square |A| x |A| matrix M with m;; equal to
7(4)|i, the number of times ¢ appears in 7(j). A subshift X has uniform letter frequencies if, for
each letter a € A, there exists f(a) which is the uniform limit of the proportion of a letters in k-letter
words in L(X), uniformly in k.

Theorem 5.8, [BD14] states that if X is generated by a sequence (73) of substitutions with incidence
matrices (My), v has uniform letter frequencies with frequency vector f, and

D I(MoMy . M) T g [ M| < oo,
k

then X is balanced on letters. (Here [|[M|ls = cg- ”ﬁiﬁ” represents the operator norm of M restricted

to a subspace S.)

Let M; be the incidence matrix for 7,,, n, ,, and M_; be the incidence matrix for 7.

Let dj, = |vky1| so that dy = brdi—1 + agdr—2 for all k > 0 (setting d_o = |ug| — |vo]). Let gr = |vkt1]1
and g_o = |ugly — |vo|1 so that gr = brgr—1 + aggr—2. Let c_.o = e =1 and c_; = e_5 = 0 and
define ¢; and e, via the same recurrence relation. As shown in the proof of Proposition 5.7, fl—’z — a and
2—’; — ayg. Then z—i — g_oa+g_10ap. Set a* = g_sa+ g1 .
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Therefore, the frequency of 1s in v; approaches a*, and so X has uniform letter frequencies given by
f = (1 —a* a*). Then, f* is spanned by (—a*,1 — o*)T, meaning that ||(M_;M,. ..Mk_l)T”fL <
|(M_y...My_1)T(—a*,1 — a*)T||. Tt’s easily checked by induction that M_; ... My_; is (IZfl‘f }Z:I?)
Therefore,

—lukloa™ +lukl1(1—a*) [uk 1 —ukla™)

(Mey oo M) (—0%, 1 — @) = (ol sty ) (ko))

o1 o
dr—1 @

The top entry is, using the language above, |gr—1 — dg—10*| = dr—1 . It is easily checked by

induction that gr_1dg — grdp—1 = (—1)*agay - - ax(g_2d_1 —g_1d_2). Set C = |g_od_1 —g_1d_5|. Then

k-1 Jk—1 Gk lgk—1dk — grdir—1|  Capar - - ax
1 —dp_10”| =di_ —af| < d_ — == =
lgk—1 k—107] k—1 drs (e} k—1 drs dr dr dr
koA, 7k—1
Cdkfl 2%=o I [1;= (nj —my) dy_1
= < C €L
dk |vk| dk

where €, is as in Proposition 4.2.

Finally, we note that || My]| is the largest entry of My, which is bounded by 2ny. Therefore,

2npdy— 2 4 4
<C 1 lekzcinkekﬁcimk_k e < 8C¢y
dy, mydy_1 my mg

2npdy—
(M Mo . My—2) | pu | M| < C=22

so this series is summable and so X is balanced on letters. Finally, since our substitutions are each
right-proper, meaning that the image of every letter ends with the same letter, Corollary 4.3 from [PS22]
implies that X is balanced on words. [

7.2 The dimension group is the eigenvalue group
We can now describe the dimension groups of any low-complexity infinite minimal subshift.

Theorem 7.2. The dimension group and reduced dimension group are both equal to (Ex, Ex NRT 1).

Proof. We claim first that for every word w, we have p([w]) € Ex. If w ¢ L(X) then u(Jw]) =0 € Ex so
assume w € L£(X) and let kg be minimal such that w is a subword of vy,. Let ag, by, ¢k, dk, ex, be as in the
proof of Proposition 5.7. Define f = |Uktro+1|w for k > —2. Then fr11 = bpy1fetaps1fe—1and fo =0
(since ko is minimal) and so fi = f_iej for all k. Since %= — ay, € Ex, then 5—: — Uk lwok, € Ex.

di
Since (X, o) is uniquely ergodic, g—i = % converges to u([w]), and the claim is proved.
¢ °0

By section 2.4 of [BCBD*21], since X is minimal and uniquely ergodic, the dimension group K°(X, o) and

—

its group of infinitesimals Inf(K°(X, o)) have the property that the reduced dimension group K°(X, o) =
K°(X,0)/Inf(K°(X,0)) is isomorphic to the image group (I(X,0), [(X,0) NR*, 1). Proposition 2.6 in
[BCBD*21] states that I(X,0) = {u([w]) : w € L(X)} so I(X,0) C Ex. Since Ex is always a subgroup
of I(X,0) (see e.g. [CDP16] Proposition 11), then I(X,0) = Ex. By Theorem 7.1, X is balanced on
words so Proposition 5.4 of [BCBD*21] implies there are no infinitesimals. Then I/(\O(X7 0)=K°X,0) =
(Ex,Ex OR+,1). [

The following corollary is now immediate, modulo the simple observation that if G,G’ are additive
subgroups of R containing 1, then (G,GNR* 1) and (G’',G' "R, 1) are isomorphic as unital ordered
groups iff G = G'.

Corollary 7.3. Two minimal subshifts with complexity satisfying limsupp(q)/q < 1.5 are orbit equiva-
lent if and only if they are strong orbit equivalent if and only if they have the same additive eigenvalue
group.
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8 Existence of low complexity minimal subshifts for every odometer

We here demonstrate that there are no restrictions on the abelian adelic one-dimensional nilmanifolds
Mx and odometers Ox which can appear in the MEF of an infinite low complexity subshift. Other

p(q)

than the case when M x is a finite group extension of S' and Ox is finite, we show that lim sup an

take any value in [1,1.5) for subshifts with that MEF.

Theorem 8.1. Let O be an odometer and M be an abelian adelic one-dimensional nilmanifold. There
exists a infinite minimal subshift with limp(q)/q = 1 which has mazimal equicontinuous factor the product
of O and a rotation on M.

If M is not a finite group extension of S* or O is infinite (or both), then for every 0 < § < %, there
exists a minimal uniquely ergodic subshift with limsup p(q)/q = 1+ 0 which has mazimal equicontinuous
factor of the same type.

Remark 8.2. We make two comments about Theorem 8.1. First of all, it’s unavoidable that the second
statement excludes the case where both M is a finite group extension of S and O is finite; in that case,
ay, is eventually 1, meaning that the substitutions are eventually of the form 7y, m,+1,0 (say for k > ko).
In that case, X is the image of a Sturmian subshift under the substitution pg,. Such a subshift is called
quasisturmian, and is known to have p(q) < ¢+ C for a constant C' ([Cas97]), and so is forced to have
limsupp(q)/q = 1.

Secondly, we want to be clear that we are not characterizing the set of possible MEFs of infinite minimal
low-complexity subshifts, since we only show that a single adele (a, (e,)) can occur together with a pair
of a nilmanifold and an odometer; we do not currently know which rotations (e, (e,)) can be associated
with a specific group M x O.

Proof. Define a sequence (dy) of positive reals as follows: when 6 > 0, set J; = J, and when 6 = 0, let
0 be any sequence approaching 0. We first consider the case when M is not a finite group extension of
St. Let 0 < z, < oo such that M = A,y /Qa,)- Let s = pF for pp € PU {1} and g, nonnegative
integers such that for each prime p, kepr—p = Zp and such that s — oo (possible as M is not a finite
extension of S1). Let y, € PU {1} such that O = WmZ/yo - - yZ.

We will define ¢y, my, tx and jj inductively. Set {_; = {3 =1 and jo=0and tc =t; =1 and s_; = 0.
For all k£ > 1, we will set {x11 = myly + tpsg—1fk—1. For ease of notation, write g =ty - - - tg.

Choose mg such that mg > [(5_ —1)t1s0] and po does not divide mg+1. Then ¢1 = moly +tos_14—_1 =

mg + 1 so t; divides % and py does not d1v1de . Also ged(41,4p) = 1 = go.

% and ged(Cy, lg—1) = gr—1. If yj, divides g—i then
set {541 = 1 and jk+1 = jk- Ifnot, set tp11 = yj, and jr1 = jr+1. Set mj = [(5_1—1)tk+1sk] > Sklpt1-

The map m +— m Bt sk Z’; 1 mod tx1 is a cyclic onto homomorphism since gcd( ,tr+1) = 1 (since

ti+1 is a prime power or 1). So there exists 0 < ¢ < tx41 such that ¢511 divides (m}, — z) £t sk f;k -
. A o

If prtry1 were to divide both (m) — z)g—’; + sk,lg’;_i and (m), — tk+1)

1

divides tkH— so pi divides ﬁ—’; but then p; divides both % and sk,lﬁkil

Wthh is unposmble as

gcd(z—k,sk_lék L) = 1. Therefore we may take my such that mj — 2ty11 < my < mj, so that tg4q

9k gk—1
divides ’;“ and p; does not divide ’““ We also have ged(€g41,8k) = ged(mply, + trsp—10k—1,Lk) =
ged(trsp—10k—1,lk) = gr—1 ged(trs,— 19’; L, tk L) = gi gcd(sk,lf;:_i 97) = g

Therefore the sequences exist by induction. Note that if y;, > 1 and fx41 = 1 then necessarily tx42 = yj,
as otherwise y;, divides % and y;, divides % but ged(lk41, k) = gr. By the construction of ji, the
sequence (tx) is just the sequence (y;) with extra interspersed 1s, and so the sequence (t) induces the

odometer O". Set ny = my +1tr+155. Let X be the orbit closure of 1im7ro7-m0 16,00° Oka,nk 0(0) where
7(0) = 0 and 7(1) = 01 so |vgx| = ¢x. By Remark 3.14, ZJ O(TL] — 1| < ZJ O(m] - Djv;| =
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Ipk| < 3|vgl, so by Corollary 3.17,

ng— e
p(|skvg® 2pk|) <14 (ng —myg — 1)|vg| + |px| + C <1 tk+18k +3 + o]

= = < = — 149
|Skvl7clk ka‘ (nk - 2)|Uk| 6k 1tk+18k — 2tk+1 —2

since s, — 00. By Corollary 3.17 and Remark 3.14,

spulET2 — -1 t -1
p(|sk fk—Q Pkl) >14 ng — Mg >14 _f-&-lSk 14
|Skvk pk‘ ng + 1 51@ tht1SK + 2
Since lim sup # is attained along the sequence |skv2”"_2pk\, lim sup % =1+6.

By construction, ged(|vk41], |vg|) = t1 -+ - tr, and so Ox = O. Similarly, ag - - - ax = (ng —mg) -+ (Ng—1 —
|volao---ak
ged(vil,|ve+1l])
Theorem 6.4, the subshift X defined as the orbit closure of im 7 o Ty no.0 © *** © Tiny ng,0(0) has the

claimed properties.

ME—1) = So-**Sk—1t1- Lk SO = 89---Sk_1, implying that Mx = M. Therefore by

Now consider when M is a finite group extension of S' and O is infinite. Let ¢, such that O =
WmZ/to - t,Z and let M = St x Z/qZ. Let 7(0) = 07 and 7(1) = 091. Let jo = 0 and so = 1.

,—1 such that Ss)jz;l > k. Choose my41 such that

ged(my1, sglvk]) = sk and 0 < mp4q — (5;_&1 — D)sps1 < s|vg| and set ngy1 = mgy1 + Sg+1. Then, as

Given j, and |vg|, choose spi1 = &, 541 1),

. Sk—1|Vk—
above, since se-alveal 0,

Sk

pllskop**prl)

C
(g —mg = Dlwe| +[pe| +C | 56 F3F g

<1+ < — — 149 and
[skvp™ il (nk — 2)|vg| 5 tsp — 2
2
p(Iskvi* " "prl) ng —my — 1 sp—1
nk72 —_ 1 i ]- + —1 _> 1 + (57

|skve™ " Pl ng + 0p Sk + sk—1|ve—1| +1
SO limsupm = 1+ 4. By construction, |vglag---ar = ¢So---Sk—1 and |vg41| = me|vk] + (ng—1 —
mi—_1)|vk—1] = sp_1Uk|vr| + sk—_1|vi_1], where ged(yg, |[ve_1|) = 1 since ged(my, sp_1|ve_1|) = sp_1.

Then ged(|vgtl, |vk]) = sk—1ged(|vg|, [vk—1]) so by induction ged(|vgyil, |vk]) = So---Sk—1. For X
defined in the usual way, since the sequence of partial products of (si) is a subsequence of partial
products of (tx), Ox = O, and since #m = q, Mx = M. Therefore, X has the claimed
properties by Theorem 6.4.

Finally, consider when both M = S x Z/qZ and O = Z/rZ. Let w(0) = 09" and 7(1) = 09"1". Let
my = np = 1 for all k. Then it’s an immediate implication of Lemma 3.16 that p(¢ + 1) — p(q) is
eventually 1, and so limsupp(q)/q = 1.

Also, |volag - - - ar, = gr and ged(Jvgsal, |vk|) = ged(Jvk| + [ve—1], |vk|) = ged(Jug—1], |vk|) for all k. Then,
since ged(|v1], |vo|) = ged(gr + qr + 7, qr) = r, ged(|vkt1], |vg]) = 7 for all k. Therefore, X defined as
above has the claimed properties by Theorem 6.4. O

Finally, we address Examples 1.2-1.4 from the introduction. Example 1.2 is fairly straightforward; it
is determined by substitutions with |ug| = |vg] = 1, my = 3 and ng = 5. Therefore, by (2), ag = 1,
all other a; = 2, and all by = 3. The verification that limsupp(q)/q < 3/2 follows from Corollary
3.17 and Remark 3.14. Namely, by Corollary 3.17, the limsup of p(q)/q is achieved along the sequence
ar = |skop* *pr| = |sk| + 3|vk| + [pr], which equals Zf;ol 3|v;| + 4|vk| by Remark 3.14. The value of
p(qr) is equal to gx + Zf:o(”k —my — Dv| = Zi:ol 4|v;| + 5|vg| + C for some constant C. Finally,
we note that by the Perron-Frobenius theorem, the lengths |v;| grow exponentially with base the Perron

k—1
. . . . . . \/ T s 17—
eigenvalue of the incidence matrix (2 $), which is k = 734'2 17 Therefore, 72%‘;" AN —Hil = 712 L and
SO

SE S dfy| + 5lop| +C 4(V1T—1)/8+5 _ 105+ V17
Yoo 3lvil + 4fvl 3(VIT—1)/8+4 86
It remains to verify that the MEF is a rotation of My = (R x Q2)/Z[!/2]. As noted above, a9 = 1

p(ak)/ax = ~ 1.2689 < 3/2.
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and all a; for k > 0 equal 2. Also, |ug| = 1, and it is easily checked by induction that all |vg| are odd;
since ged(|vg1], [vk|) divides |volag - . . ax = 2* by Lemma 5.4, all ged(|vgy1], |vx|) = 1. Therefore, in the
language of Theorem 6.4, Ox is trivial and Mx is Mo.

Since the computations are significantly more unpleasant, we omit details of Example 1.3, except to note
the following differences from Example 1.2. First, the limsup of p(q)/q is now achieved along the sequence
qx = \skvzrlukv};’rlpﬂ = |skurpk|. Second, now every ay, for k > 0 is equal to 2"+ (ny — my) = 4, and
ged(|vg, [vre1]) = 2%, which implies by Theorem 6.4 that My = M, and Oy is the binary odometer.

For Example 1.4, we cannot solve exactly for lim sup p(q)/q since we do not have a closed form for my,
and ny. However, we note that by Corollary 3.17, increasing my, while keeping ng — my and 7 constant
can only decrease this limsup; since (mg,ng) is always either (3,5) or (5,7), this limsup is then clearly
less than or equal to %6‘/? from Example 1.2. As in Example 1.2, ag = 1 and all other a = 2. It
is easily checked by induction and the definition of the p;, that for all k, |vg| is divisible by 2%, but not
by 2F+1. Therefore, ged(|vk|, [vrs1]) = 2F = |volag - - - ax, and so by Theorem 6.4, My is R/Z = S' and

Ox is the binary odometer.
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